code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __snake_case = parse(importlib.metadata.version('''torch''')) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) __UpperCamelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowercase , _lowercase ): __UpperCamelCase = parse(importlib.metadata.version(_lowercase ) ) return operation(_lowercase , parse(_lowercase ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return compare_versions(_lowercase , _lowercase , _lowercase )
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = abs(_lowercase ) __UpperCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = abs(_lowercase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _A ( _lowercase ) -> int: """simple docstring""" return sum(int(_lowercase ) for c in str(abs(_lowercase ) ) ) def _A ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowercase , _lowercase ) -> None: __UpperCamelCase = f'''{func.__name__}({value})''' __UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) print(f'''{call:56} = {func(_lowercase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowercase , _lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def _A ( _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) __UpperCamelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __UpperCamelCase = components[:-1] + [test_fn.replace('.py' , '' )] __UpperCamelCase = '.'.join(_lowercase ) return test_module_path def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = get_module_path(_lowercase ) __UpperCamelCase = importlib.import_module(_lowercase ) return test_module def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = get_test_module(_lowercase ) for attr in dir(_lowercase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_lowercase , _lowercase ) ) # sort with class names return sorted(_lowercase , key=lambda _lowercase : x.__name__ ) def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = get_test_module(_lowercase ) for attr in dir(_lowercase ): __UpperCamelCase = getattr(_lowercase , _lowercase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __UpperCamelCase = getattr(_lowercase , 'all_model_classes' , [] ) if len(_lowercase ) > 0: test_classes.append(_lowercase ) # sort with class names return sorted(_lowercase , key=lambda _lowercase : x.__name__ ) def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = get_test_classes(_lowercase ) __UpperCamelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowercase , key=lambda _lowercase : x.__name__ ) def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = test_class() if hasattr(_lowercase , 'setUp' ): test.setUp() __UpperCamelCase = None if hasattr(_lowercase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __UpperCamelCase = test.model_tester.__class__ return model_tester def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = get_test_classes(_lowercase ) __UpperCamelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowercase ) # sort with class names return sorted(_lowercase , key=lambda _lowercase : x.__name__ ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = get_test_classes_for_model(_lowercase , _lowercase ) __UpperCamelCase = [] for test_class in test_classes: __UpperCamelCase = get_model_tester_from_test_class(_lowercase ) if tester_class is not None: tester_classes.append(_lowercase ) # sort with class names return sorted(_lowercase , key=lambda _lowercase : x.__name__ ) def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = get_test_classes(_lowercase ) __UpperCamelCase = {test_class: get_model_tester_from_test_class(_lowercase ) for test_class in test_classes} return test_tester_mapping def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = get_model_classes(_lowercase ) __UpperCamelCase = { model_class: get_test_classes_for_model(_lowercase , _lowercase ) for model_class in model_classes } return model_test_mapping def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = get_model_classes(_lowercase ) __UpperCamelCase = { model_class: get_tester_classes_for_model(_lowercase , _lowercase ) for model_class in model_classes } return model_to_tester_mapping def _A ( _lowercase ) -> Optional[int]: """simple docstring""" if isinstance(_lowercase , _lowercase ): return o elif isinstance(_lowercase , _lowercase ): return o.__name__ elif isinstance(_lowercase , (list, tuple) ): return [to_json(_lowercase ) for x in o] elif isinstance(_lowercase , _lowercase ): return {to_json(_lowercase ): to_json(_lowercase ) for k, v in o.items()} else: return o
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
import warnings from functools import wraps from typing import Callable def _A ( _lowercase ) -> Callable: """simple docstring""" @wraps(_lowercase ) def _inner_fn(*_lowercase , **_lowercase ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _lowercase , ) return fn(*_lowercase , **_lowercase ) return _inner_fn
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class __lowerCamelCase (_a ): _lowercase = ["""pixel_values"""] def __init__( self: Optional[Any],A_: bool = True,A_: Optional[Dict[str, int]] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: Dict[str, int] = None,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: Any,): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = size if size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_ ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_,default_to_square=A_,param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = do_rescale __UpperCamelCase = do_normalize __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = rescale_factor __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BILINEAR,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __UpperCamelCase = (size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(A_,size=A_,resample=A_,data_format=A_,**A_ ) def snake_case_ ( self: Any,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ ) def snake_case_ ( self: Tuple,A_: np.ndarray,A_: float,A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[Any] ): '''simple docstring''' return rescale(A_,scale=A_,data_format=A_,**A_ ) def snake_case_ ( self: Optional[int],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[Any],): '''simple docstring''' return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ ) def snake_case_ ( self: int,A_: ImageInput,A_: Optional[bool] = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: int = None,A_: Optional[bool] = None,A_: Optional[float] = None,A_: Optional[bool] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: Union[str, ChannelDimension] = ChannelDimension.FIRST,**A_: Dict,): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(A_,param_name='crop_size',default_to_square=A_ ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(A_ ) if not is_batched(A_ ): __UpperCamelCase = [images] if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_,tensor_type=A_ )
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __snake_case = '''sshleifer/bart-tiny-random''' __snake_case = '''patrickvonplaten/t5-tiny-random''' @require_torch class __lowerCamelCase (unittest.TestCase ): @cached_property def snake_case_ ( self: Tuple ): '''simple docstring''' return AutoConfig.from_pretrained(A_ ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=1 ) self.assertEqual(student.config.num_hidden_layers,1 ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=A_ ) self.assertEqual(student.config.encoder_layers,1 ) self.assertEqual(student.config.decoder_layers,self.teacher_config.encoder_layers ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=1 ) self.assertEqual(student.config.encoder_layers,1 ) self.assertEqual(student.config.decoder_layers,1 ) def snake_case_ ( self: str ): '''simple docstring''' with self.assertRaises(A_ ): create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=A_,d=A_ )
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase (_a ): _lowercase = ["""pixel_values"""] def __init__( self: Optional[int],A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: Dict[str, int] = None,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: bool = True,**A_: Optional[Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = size if size is not None else {'shortest_edge': 224} __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_,default_to_square=A_,param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase = do_convert_rgb def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ ) return resize(A_,size=A_,resample=A_,data_format=A_,**A_ ) def snake_case_ ( self: Optional[int],A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ ) def snake_case_ ( self: int,A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[str],): '''simple docstring''' return rescale(A_,scale=A_,data_format=A_,**A_ ) def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,): '''simple docstring''' return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ ) def snake_case_ ( self: str,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: int = None,A_: bool = None,A_: float = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: bool = None,A_: Optional[Union[str, TensorType]] = None,A_: Optional[ChannelDimension] = ChannelDimension.FIRST,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(A_,param_name='size',default_to_square=A_ ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(A_,param_name='crop_size',default_to_square=A_ ) __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_,tensor_type=A_ )
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __snake_case = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) __snake_case = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} __snake_case = '''zero2''' __snake_case = '''zero3''' __snake_case = [ZEROa, ZEROa] def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = parameterized.to_safe_name('_'.join(str(_lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test __snake_case = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCamelCase (_a ): @parameterized.expand(A_,name_func=A_ ) def snake_case_ ( self: Optional[Any],A_: str,A_: Optional[int] ): '''simple docstring''' self.run_and_check( stage=A_,model=A_,distributed=A_,fpaa=A_,) @require_torch_multi_gpu @parameterized.expand(A_,name_func=A_ ) def snake_case_ ( self: Tuple,A_: Any,A_: Any ): '''simple docstring''' self.run_and_check( stage=A_,model=A_,distributed=A_,fpaa=A_,) @parameterized.expand(A_,name_func=A_ ) def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[int] ): '''simple docstring''' self.run_and_check( stage=A_,model=A_,distributed=A_,fpaa=A_,) @require_torch_multi_gpu @parameterized.expand(A_,name_func=A_ ) def snake_case_ ( self: Union[str, Any],A_: int,A_: Tuple ): '''simple docstring''' self.run_and_check( stage=A_,model=A_,distributed=A_,fpaa=A_,) def snake_case_ ( self: Any,A_: List[Any] ): '''simple docstring''' pass def snake_case_ ( self: Optional[Any],A_: str,A_: str,A_: int = 10,A_: bool = True,A_: bool = True,A_: bool = True,): '''simple docstring''' __UpperCamelCase = models[model] __UpperCamelCase = self.run_trainer( stage=A_,model_name=A_,eval_steps=A_,num_train_epochs=1,distributed=A_,fpaa=A_,) self.do_checks(A_ ) return output_dir def snake_case_ ( self: Union[str, Any],A_: str,A_: str,A_: int = 10,A_: int = 1,A_: bool = True,A_: bool = True,): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir('./xxx',after=A_ ) __UpperCamelCase = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(A_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __UpperCamelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() __UpperCamelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] __UpperCamelCase = self.get_launcher(A_ ) __UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A_,env=self.get_env() ) return output_dir def snake_case_ ( self: str,A_: List[Any]=False ): '''simple docstring''' __UpperCamelCase = min(2,get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
310
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) __UpperCamelCase = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , _lowercase ) if matches: __UpperCamelCase = float(matches[1] ) __UpperCamelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCamelCase = 10_01 __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ) + 1: v for k, v in idalabel.items()} __UpperCamelCase = 'background' __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Optional[int]: """simple docstring""" __UpperCamelCase = get_mobilenet_va_config(_lowercase ) # Load 🤗 model __UpperCamelCase = MobileNetVaForImageClassification(_lowercase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowercase , _lowercase , _lowercase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCamelCase = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": __UpperCamelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCamelCase = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __UpperCamelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: print('Pushing to the hub...' ) __UpperCamelCase = 'google/' + model_name image_processor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
310
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
1
def _A ( _lowercase = 4_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase, __UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) __UpperCamelCase, __UpperCamelCase = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
310
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case = 2_5_6_0_4_7 __snake_case = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = NllbTokenizer _lowercase = NllbTokenizerFast _lowercase = True _lowercase = True _lowercase = {} def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase = NllbTokenizer(A_,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = NllbTokenizer(A_,keep_accents=A_ ) __UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ),[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],) __UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ],) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ ) __UpperCamelCase = self.tokenizer_class.from_pretrained(A_,**A_ ) __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = tokenizer_r.save_pretrained(A_ ) __UpperCamelCase = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __UpperCamelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A_,A_ ) # Checks everything loads correctly in the same way __UpperCamelCase = tokenizer_r.from_pretrained(A_ ) __UpperCamelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = tokenizer_r.save_pretrained(A_,legacy_format=A_ ) __UpperCamelCase = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_,A_ ) # Checks everything loads correctly in the same way __UpperCamelCase = tokenizer_r.from_pretrained(A_ ) __UpperCamelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = tokenizer_r.save_pretrained(A_,legacy_format=A_ ) __UpperCamelCase = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCamelCase = tokenizer_r.from_pretrained(A_ ) __UpperCamelCase = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_,A_ ) ) shutil.rmtree(A_ ) @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' if not self.test_seqaseq: return __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. __UpperCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __UpperCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __UpperCamelCase = tokenizer.prepare_seqaseq_batch( src_texts=A_,tgt_texts=A_,max_length=3,max_target_length=10,return_tensors='pt',src_lang='eng_Latn',tgt_lang='ron_Latn',) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],10 ) # max_target_length will default to max_length if not specified __UpperCamelCase = tokenizer.prepare_seqaseq_batch( A_,tgt_texts=A_,max_length=3,return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],3 ) __UpperCamelCase = tokenizer.prepare_seqaseq_batch( src_texts=A_,max_length=3,max_target_length=10,return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1],3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1],3 ) self.assertNotIn('decoder_input_ids',A_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def snake_case_ ( self: Any ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCamelCase = [AddedToken('<special>',lstrip=A_ )] __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( A_,additional_special_tokens=A_,**A_ ) __UpperCamelCase = tokenizer_r.encode('Hey this is a <special> token' ) __UpperCamelCase = tokenizer_r.encode('<special>',add_special_tokens=A_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( A_,additional_special_tokens=A_,**A_,) __UpperCamelCase = self.tokenizer_class.from_pretrained( A_,additional_special_tokens=A_,**A_ ) __UpperCamelCase = tokenizer_p.encode('Hey this is a <special> token' ) __UpperCamelCase = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(A_,A_ ) self.assertEqual(A_,A_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase (unittest.TestCase ): _lowercase = """facebook/nllb-200-distilled-600M""" _lowercase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _lowercase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _lowercase = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def snake_case_ ( cls: Any ): '''simple docstring''' __UpperCamelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name,src_lang='eng_Latn',tgt_lang='ron_Latn' ) __UpperCamelCase = 1 return cls def snake_case_ ( self: Dict ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'],25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'],25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'],25_6057 ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens,A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' self.assertIn(A_,self.tokenizer.all_special_ids ) # fmt: off __UpperCamelCase = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __UpperCamelCase = self.tokenizer.decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=A_ ) self.assertEqual(A_,A_ ) self.assertNotIn(self.tokenizer.eos_token,A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0],A_ ) __UpperCamelCase = 10 __UpperCamelCase = self.tokenizer(A_,max_length=A_,truncation=A_ ).input_ids[0] self.assertEqual(ids[-1],2 ) self.assertEqual(ids[0],A_ ) self.assertEqual(len(A_ ),A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ),[25_6203, 3] ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) __UpperCamelCase = NllbTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids,A_ ) @require_torch def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.tokenizer( self.src_text,text_target=self.tgt_text,padding=A_,truncation=A_,max_length=len(self.expected_src_tokens ),return_tensors='pt',) __UpperCamelCase = shift_tokens_right( batch['labels'],self.tokenizer.pad_token_id,self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(A_,A_ ) self.assertEqual((2, 15),batch.input_ids.shape ) self.assertEqual((2, 15),batch.attention_mask.shape ) __UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens,A_ ) self.assertEqual(A_,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.tokenizer(self.src_text,padding=A_,truncation=A_,max_length=3,return_tensors='pt' ) __UpperCamelCase = self.tokenizer( text_target=self.tgt_text,padding=A_,truncation=A_,max_length=10,return_tensors='pt' ) __UpperCamelCase = targets['input_ids'] __UpperCamelCase = shift_tokens_right( A_,self.tokenizer.pad_token_id,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang],) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.decoder_input_ids.shape[1],10 ) @require_torch def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.tokenizer._build_translation_inputs( 'A test',return_tensors='pt',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(A_ ),{ # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, },) @require_torch def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = self.tokenizer( 'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __UpperCamelCase = False __UpperCamelCase = self.tokenizer( 'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
import flax.linen as nn import jax import jax.numpy as jnp class __lowerCamelCase (nn.Module ): _lowercase = 42 _lowercase = jnp.floataa def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = nn.Conv( self.out_channels,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,) def __call__( self: str,A_: List[Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = hidden_states.shape __UpperCamelCase = jax.image.resize( A_,shape=(batch, height * 2, width * 2, channels),method='nearest',) __UpperCamelCase = self.conv(A_ ) return hidden_states class __lowerCamelCase (nn.Module ): _lowercase = 42 _lowercase = jnp.floataa def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = nn.Conv( self.out_channels,kernel_size=(3, 3),strides=(2, 2),padding=((1, 1), (1, 1)),dtype=self.dtype,) def __call__( self: Any,A_: Any ): '''simple docstring''' __UpperCamelCase = self.conv(A_ ) return hidden_states class __lowerCamelCase (nn.Module ): _lowercase = 42 _lowercase = None _lowercase = 0.0 _lowercase = None _lowercase = jnp.floataa def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.in_channels if self.out_channels is None else self.out_channels __UpperCamelCase = nn.GroupNorm(num_groups=32,epsilon=1E-5 ) __UpperCamelCase = nn.Conv( A_,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,) __UpperCamelCase = nn.Dense(A_,dtype=self.dtype ) __UpperCamelCase = nn.GroupNorm(num_groups=32,epsilon=1E-5 ) __UpperCamelCase = nn.Dropout(self.dropout_prob ) __UpperCamelCase = nn.Conv( A_,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,) __UpperCamelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCamelCase = None if use_nin_shortcut: __UpperCamelCase = nn.Conv( A_,kernel_size=(1, 1),strides=(1, 1),padding='VALID',dtype=self.dtype,) def __call__( self: List[str],A_: int,A_: Union[str, Any],A_: Tuple=True ): '''simple docstring''' __UpperCamelCase = hidden_states __UpperCamelCase = self.norma(A_ ) __UpperCamelCase = nn.swish(A_ ) __UpperCamelCase = self.conva(A_ ) __UpperCamelCase = self.time_emb_proj(nn.swish(A_ ) ) __UpperCamelCase = jnp.expand_dims(jnp.expand_dims(A_,1 ),1 ) __UpperCamelCase = hidden_states + temb __UpperCamelCase = self.norma(A_ ) __UpperCamelCase = nn.swish(A_ ) __UpperCamelCase = self.dropout(A_,A_ ) __UpperCamelCase = self.conva(A_ ) if self.conv_shortcut is not None: __UpperCamelCase = self.conv_shortcut(A_ ) return hidden_states + residual
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __lowerCamelCase (ctypes.Structure ): # _fields is a specific attr expected by ctypes _lowercase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def _A ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": __UpperCamelCase = CursorInfo() __UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) ) __UpperCamelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def _A ( ) -> Any: """simple docstring""" if os.name == "nt": __UpperCamelCase = CursorInfo() __UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) ) __UpperCamelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def _A ( ) -> Optional[Any]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
310
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(),encoding='utf-8',check=A_,) assert hasattr(self,'env' ) def snake_case_ ( self: List[Any],A_: Tuple ): '''simple docstring''' __UpperCamelCase = { 'enabled': True, 'processes_per_host': 8, } __UpperCamelCase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __UpperCamelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __UpperCamelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''',instance_count=A_,instance_type=self.instance_type,debugger_hook_config=A_,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, },metric_definitions=self.env.metric_definitions,distribution=A_,py_version='py36',) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def snake_case_ ( self: List[Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.create_estimator(A_ ) # run training estimator.fit() # result dataframe __UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds',99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''','w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss},A_ )
310
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
1
def _A ( _lowercase ) -> str: """simple docstring""" return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowerCamelCase (enum.Enum ): _lowercase = 0 _lowercase = 1 _lowercase = 2 @add_end_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self: Union[str, Any],*A_: Optional[int],**A_: Dict ): '''simple docstring''' super().__init__(*A_,**A_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __UpperCamelCase = None if self.model.config.prefix is not None: __UpperCamelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __UpperCamelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self._sanitize_parameters(prefix=A_,**self._forward_params ) __UpperCamelCase = {**self._preprocess_params, **preprocess_params} __UpperCamelCase = {**self._forward_params, **forward_params} def snake_case_ ( self: str,A_: Dict=None,A_: List[str]=None,A_: int=None,A_: Any=None,A_: Union[str, Any]=None,A_: Union[str, Any]=None,A_: Dict=None,A_: Any=None,**A_: Optional[int],): '''simple docstring''' __UpperCamelCase = {} if prefix is not None: __UpperCamelCase = prefix if prefix: __UpperCamelCase = self.tokenizer( A_,padding=A_,add_special_tokens=A_,return_tensors=self.framework ) __UpperCamelCase = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) __UpperCamelCase = handle_long_generation preprocess_params.update(A_ ) __UpperCamelCase = generate_kwargs __UpperCamelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __UpperCamelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __UpperCamelCase = ReturnType.TENSORS if return_type is not None: __UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCamelCase = self.tokenizer.encode(A_,add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case_ ( self: str,*A_: Tuple,**A_: Optional[Any] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*A_,**A_ ) def __call__( self: int,A_: Tuple,**A_: List[str] ): '''simple docstring''' return super().__call__(A_,**A_ ) def snake_case_ ( self: Optional[int],A_: List[Any],A_: Optional[Any]="",A_: List[Any]=None,**A_: List[Any] ): '''simple docstring''' __UpperCamelCase = self.tokenizer( prefix + prompt_text,padding=A_,add_special_tokens=A_,return_tensors=self.framework ) __UpperCamelCase = prompt_text if handle_long_generation == "hole": __UpperCamelCase = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __UpperCamelCase = generate_kwargs['max_new_tokens'] else: __UpperCamelCase = generate_kwargs.get('max_length',self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __UpperCamelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __UpperCamelCase = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __UpperCamelCase = inputs['attention_mask'][:, -keep_length:] return inputs def snake_case_ ( self: str,A_: Optional[int],**A_: int ): '''simple docstring''' __UpperCamelCase = model_inputs['input_ids'] __UpperCamelCase = model_inputs.get('attention_mask',A_ ) # Allow empty prompts if input_ids.shape[1] == 0: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = 1 else: __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __UpperCamelCase = generate_kwargs.pop('prefix_length',0 ) if prefix_length > 0: __UpperCamelCase = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __UpperCamelCase = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __UpperCamelCase = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __UpperCamelCase = self.model.generate(input_ids=A_,attention_mask=A_,**A_ ) __UpperCamelCase = generated_sequence.shape[0] if self.framework == "pt": __UpperCamelCase = generated_sequence.reshape(A_,out_b // in_b,*generated_sequence.shape[1:] ) elif self.framework == "tf": __UpperCamelCase = tf.reshape(A_,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case_ ( self: str,A_: Optional[Any],A_: Union[str, Any]=ReturnType.FULL_TEXT,A_: Tuple=True ): '''simple docstring''' __UpperCamelCase = model_outputs['generated_sequence'][0] __UpperCamelCase = model_outputs['input_ids'] __UpperCamelCase = model_outputs['prompt_text'] __UpperCamelCase = generated_sequence.numpy().tolist() __UpperCamelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __UpperCamelCase = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __UpperCamelCase = self.tokenizer.decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __UpperCamelCase = 0 else: __UpperCamelCase = len( self.tokenizer.decode( input_ids[0],skip_special_tokens=A_,clean_up_tokenization_spaces=A_,) ) if return_type == ReturnType.FULL_TEXT: __UpperCamelCase = prompt_text + text[prompt_length:] else: __UpperCamelCase = text[prompt_length:] __UpperCamelCase = {'generated_text': all_text} records.append(A_ ) return records
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} __snake_case = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } __snake_case = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off __snake_case = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = ["""input_ids""", """attention_mask"""] _lowercase = [] _lowercase = [] def __init__( self: Optional[Any],A_: Tuple,A_: Optional[Any]=None,A_: Tuple=None,A_: List[str]="</s>",A_: Optional[int]="</s>",A_: List[str]="<s>",A_: Union[str, Any]="<unk>",A_: int="<pad>",A_: Optional[Any]="<mask>",A_: Optional[Dict[str, Any]] = None,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase = kwargs.get('additional_special_tokens',[] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_,tgt_lang=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase = 1 __UpperCamelCase = len(self.sp_model ) __UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ ) } __UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCamelCase = src_lang if src_lang is not None else 'en_XX' __UpperCamelCase = self.lang_code_to_id[self._src_lang] __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ ( self: Dict ): '''simple docstring''' return self._src_lang @src_lang.setter def snake_case_ ( self: int,A_: str ): '''simple docstring''' __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: Tuple,A_: Dict ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self: List[str],A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: Tuple,A_: str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self: int,A_: int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self: Optional[Any],A_: Any ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(A_ ) __UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def snake_case_ ( self: str,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) __UpperCamelCase = [1] * len(self.prefix_tokens ) __UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self: List[str],A_: Optional[Any],A_: str,A_: Optional[str],A_: Optional[str],**A_: Dict ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(A_,add_special_tokens=A_,return_tensors=A_,**A_ ) __UpperCamelCase = self.convert_tokens_to_ids(A_ ) __UpperCamelCase = tgt_lang_id return inputs def snake_case_ ( self: Union[str, Any],A_: List[str],A_: str = "en_XX",A_: Optional[List[str]] = None,A_: str = "ro_RO",**A_: Union[str, Any],): '''simple docstring''' __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(A_,A_,**A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self: str ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self: str,A_: str ): '''simple docstring''' __UpperCamelCase = self.lang_code_to_id[src_lang] __UpperCamelCase = [self.cur_lang_code_id] __UpperCamelCase = [self.eos_token_id] def snake_case_ ( self: Union[str, Any],A_: str ): '''simple docstring''' __UpperCamelCase = self.lang_code_to_id[tgt_lang] __UpperCamelCase = [self.cur_lang_code_id] __UpperCamelCase = [self.eos_token_id]
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = CpmAntTokenizer _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' super().setUp() __UpperCamelCase = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __UpperCamelCase = '今天天气真好!' __UpperCamelCase = ['今天', '天气', '真', '好', '!'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = '今天天气真好!' __UpperCamelCase = [tokenizer.bos_token] + tokens __UpperCamelCase = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertEqual(A_,A_ )
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = generate_pascal_triangle(_lowercase ) for row_idx in range(_lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def _A ( _lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __UpperCamelCase = [] for current_row_idx in range(_lowercase ): __UpperCamelCase = populate_current_row(_lowercase , _lowercase ) triangle.append(_lowercase ) return triangle def _A ( _lowercase , _lowercase ) -> list[int]: """simple docstring""" __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase, __UpperCamelCase = 1, 1 for current_col_idx in range(1 , _lowercase ): calculate_current_element( _lowercase , _lowercase , _lowercase , _lowercase ) return current_row def _A ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: """simple docstring""" __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def _A ( _lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __UpperCamelCase = [[1]] for row_index in range(1 , _lowercase ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(_lowercase , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(_lowercase ) return result def _A ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowercase , _lowercase ) -> None: __UpperCamelCase = f'''{func.__name__}({value})''' __UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowercase , _lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __snake_case = 6_378_137.0 __snake_case = 6_356_752.314_245 __snake_case = 6_3_7_8_1_3_7 def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> float: """simple docstring""" __UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __UpperCamelCase = atan((1 - flattening) * tan(radians(_lowercase ) ) ) __UpperCamelCase = atan((1 - flattening) * tan(radians(_lowercase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __UpperCamelCase = haversine_distance(_lowercase , _lowercase , _lowercase , _lowercase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __UpperCamelCase = (b_lata + b_lata) / 2 __UpperCamelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __UpperCamelCase = (sin(_lowercase ) ** 2) * (cos(_lowercase ) ** 2) __UpperCamelCase = cos(sigma / 2 ) ** 2 __UpperCamelCase = (sigma - sin(_lowercase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __UpperCamelCase = (cos(_lowercase ) ** 2) * (sin(_lowercase ) ** 2) __UpperCamelCase = sin(sigma / 2 ) ** 2 __UpperCamelCase = (sigma + sin(_lowercase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small',return_dict=A_ ).to(A_ ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there',return_tensors='pt' ).input_ids __UpperCamelCase = tokenizer('Hi I am',return_tensors='pt' ).input_ids __UpperCamelCase = model(input_ids.to(A_ ),labels=labels.to(A_ ) ).loss __UpperCamelCase = -(labels.shape[-1] * loss.item()) __UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
from __future__ import annotations from math import pi def _A ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
from __future__ import annotations def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = str(_lowercase ) return n == n[::-1] def _A ( _lowercase = 1_00_00_00 ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 0 for i in range(1 , _lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} __snake_case = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __snake_case = { '''camembert-base''': 5_1_2, } __snake_case = '''▁''' class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: Union[str, Any],A_: Optional[int],A_: Union[str, Any]="<s>",A_: List[Any]="</s>",A_: List[str]="</s>",A_: Union[str, Any]="<s>",A_: str="<unk>",A_: Dict="<pad>",A_: Union[str, Any]="<mask>",A_: int=["<s>NOTUSED", "</s>NOTUSED"],A_: Optional[Dict[str, Any]] = None,**A_: Any,): '''simple docstring''' __UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,additional_special_tokens=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __UpperCamelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} __UpperCamelCase = len(self.fairseq_tokens_to_ids ) __UpperCamelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: List[Any],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self: Dict,A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: str,A_: Tuple ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A_ ) def snake_case_ ( self: str,A_: Any ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(A_ ) __UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self: int ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: str,A_: str ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Tuple,A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
310
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __UpperCamelCase = 1_28 elif "12-12" in model_name: __UpperCamelCase = 12 __UpperCamelCase = 12 elif "14-14" in model_name: __UpperCamelCase = 14 __UpperCamelCase = 14 elif "16-16" in model_name: __UpperCamelCase = 16 __UpperCamelCase = 16 else: raise ValueError('Model not supported' ) __UpperCamelCase = 'huggingface/label-files' if "speech-commands" in model_name: __UpperCamelCase = 35 __UpperCamelCase = 'speech-commands-v2-id2label.json' else: __UpperCamelCase = 5_27 __UpperCamelCase = 'audioset-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( _lowercase ) -> str: """simple docstring""" if "module.v" in name: __UpperCamelCase = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: __UpperCamelCase = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: __UpperCamelCase = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: __UpperCamelCase = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __UpperCamelCase = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: __UpperCamelCase = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: __UpperCamelCase = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: __UpperCamelCase = key.split('.' ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = config.hidden_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[:dim] __UpperCamelCase = val[dim : dim * 2] __UpperCamelCase = val[-dim:] else: __UpperCamelCase = val return orig_state_dict def _A ( _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase=False ) -> str: """simple docstring""" __UpperCamelCase = get_audio_spectrogram_transformer_config(_lowercase ) __UpperCamelCase = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict __UpperCamelCase = model_name_to_url[model_name] __UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' ) # remove some keys remove_keys(_lowercase ) # rename some keys __UpperCamelCase = convert_state_dict(_lowercase , _lowercase ) # load 🤗 model __UpperCamelCase = ASTForAudioClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __UpperCamelCase = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 __UpperCamelCase = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 __UpperCamelCase = 10_24 if 'speech-commands' not in model_name else 1_28 __UpperCamelCase = ASTFeatureExtractor(mean=_lowercase , std=_lowercase , max_length=_lowercase ) if "speech-commands" in model_name: __UpperCamelCase = load_dataset('speech_commands' , 'v0.02' , split='validation' ) __UpperCamelCase = dataset[0]['audio']['array'] else: __UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) __UpperCamelCase, __UpperCamelCase = torchaudio.load(_lowercase ) __UpperCamelCase = waveform.squeeze().numpy() __UpperCamelCase = feature_extractor(_lowercase , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __UpperCamelCase = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __UpperCamelCase = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __UpperCamelCase = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __UpperCamelCase = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __UpperCamelCase = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __UpperCamelCase = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __UpperCamelCase = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": __UpperCamelCase = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_lowercase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
310
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
1
from __future__ import annotations class __lowerCamelCase : def __init__( self: Tuple,A_: str,A_: str ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = text, pattern __UpperCamelCase, __UpperCamelCase = len(A_ ), len(A_ ) def snake_case_ ( self: List[Any],A_: str ): '''simple docstring''' for i in range(self.patLen - 1,-1,-1 ): if char == self.pattern[i]: return i return -1 def snake_case_ ( self: Optional[Any],A_: int ): '''simple docstring''' for i in range(self.patLen - 1,-1,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: __UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = '''ABAABA''' __snake_case = '''AB''' __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __lowerCamelCase (_a ): _lowercase = """wav2vec2""" def __init__( self: Dict,A_: Any=32,A_: Tuple=768,A_: Dict=12,A_: List[str]=12,A_: int=3072,A_: List[Any]="gelu",A_: Dict=0.1,A_: Any=0.1,A_: Optional[int]=0.1,A_: Tuple=0.0,A_: Optional[Any]=0.0,A_: int=0.1,A_: Union[str, Any]=0.1,A_: Union[str, Any]=0.0_2,A_: Optional[int]=1E-5,A_: Tuple="group",A_: Any="gelu",A_: List[str]=(512, 512, 512, 512, 512, 512, 512),A_: Optional[Any]=(5, 2, 2, 2, 2, 2, 2),A_: Union[str, Any]=(10, 3, 3, 3, 3, 2, 2),A_: Dict=False,A_: str=128,A_: Dict=16,A_: Dict=False,A_: Union[str, Any]=True,A_: Any=0.0_5,A_: Tuple=10,A_: List[str]=2,A_: Any=0.0,A_: Any=10,A_: Dict=0,A_: List[str]=320,A_: Union[str, Any]=2,A_: Optional[int]=0.1,A_: int=100,A_: Tuple=256,A_: Any=256,A_: List[Any]=0.1,A_: str="sum",A_: Optional[Any]=False,A_: List[str]=False,A_: Optional[int]=256,A_: Dict=(512, 512, 512, 512, 1500),A_: Optional[int]=(5, 3, 3, 1, 1),A_: List[str]=(1, 2, 3, 1, 1),A_: int=512,A_: List[Any]=0,A_: Tuple=1,A_: Any=2,A_: Optional[int]=False,A_: Tuple=3,A_: List[str]=2,A_: Any=3,A_: Optional[int]=None,A_: Union[str, Any]=None,**A_: Any,): '''simple docstring''' super().__init__(**A_,pad_token_id=A_,bos_token_id=A_,eos_token_id=A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(A_ ) __UpperCamelCase = list(A_ ) __UpperCamelCase = list(A_ ) __UpperCamelCase = conv_bias __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = feat_quantizer_dropout __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # adapter __UpperCamelCase = add_adapter __UpperCamelCase = adapter_kernel_size __UpperCamelCase = adapter_stride __UpperCamelCase = num_adapter_layers __UpperCamelCase = output_hidden_size or hidden_size __UpperCamelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = list(A_ ) __UpperCamelCase = list(A_ ) __UpperCamelCase = list(A_ ) __UpperCamelCase = xvector_output_dim @property def snake_case_ ( self: Any ): '''simple docstring''' return functools.reduce(operator.mul,self.conv_stride,1 )
310
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCamelCase (_a ): _lowercase = (KDPMaDiscreteScheduler,) _lowercase = 10 def snake_case_ ( self: Optional[int],**A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**A_ ) return config def snake_case_ ( self: Dict ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1],[0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=A_,beta_end=A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3 def snake_case_ ( self: int ): '''simple docstring''' if torch_device == "mps": return __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 def snake_case_ ( self: Dict ): '''simple docstring''' if torch_device == "mps": return __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps,device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if str(A_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
import random class __lowerCamelCase : @staticmethod def snake_case_ ( A_: str ): '''simple docstring''' __UpperCamelCase = [ord(A_ ) for i in text] __UpperCamelCase = [] __UpperCamelCase = [] for i in plain: __UpperCamelCase = random.randint(1,300 ) __UpperCamelCase = (i + k) * k cipher.append(A_ ) key.append(A_ ) return cipher, key @staticmethod def snake_case_ ( A_: list[int],A_: list[int] ): '''simple docstring''' __UpperCamelCase = [] for i in range(len(A_ ) ): __UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(A_ ) ) return "".join(A_ ) if __name__ == "__main__": __snake_case , __snake_case = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
310
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __snake_case = True except ImportError: __snake_case = False try: from torch.hub import _get_torch_home __snake_case = _get_torch_home() except ImportError: __snake_case = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) __snake_case = os.path.join(torch_cache_home, '''transformers''') __snake_case = '''https://cdn.huggingface.co''' __snake_case = '''https://s3.amazonaws.com/models.huggingface.co/bert''' __snake_case = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) __snake_case = os.path.join(PATH, '''config.yaml''') __snake_case = os.path.join(PATH, '''attributes.txt''') __snake_case = os.path.join(PATH, '''objects.txt''') __snake_case = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) __snake_case = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) __snake_case = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) __snake_case = '''pytorch_model.bin''' __snake_case = '''config.yaml''' def _A ( _lowercase=OBJECTS , _lowercase=ATTRIBUTES ) -> Any: """simple docstring""" __UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = OrderedDict() with open(_lowercase , 'rb' ) as f: __UpperCamelCase = pkl.load(_lowercase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCamelCase = ckp.pop(_lowercase ) if isinstance(_lowercase , np.ndarray ): __UpperCamelCase = torch.tensor(_lowercase ) else: assert isinstance(_lowercase , torch.tensor ), type(_lowercase ) __UpperCamelCase = v return r class __lowerCamelCase : _lowercase = {} def __init__( self: int,A_: dict,A_: str = "root",A_: Union[str, Any]=0 ): '''simple docstring''' __UpperCamelCase = name __UpperCamelCase = level __UpperCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCamelCase = copy.deepcopy(A_ ) __UpperCamelCase = copy.deepcopy(A_ ) if isinstance(A_,A_ ): __UpperCamelCase = Config(A_,name=A_,level=level + 1 ) __UpperCamelCase = v setattr(self,A_,A_ ) __UpperCamelCase = d def __repr__( self: Any ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self: Dict,A_: str,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = val __UpperCamelCase = val __UpperCamelCase = key.split('.' ) __UpperCamelCase = len(A_ ) - 1 __UpperCamelCase = self._pointer if len(A_ ) > 1: for i, l in enumerate(A_ ): if hasattr(self,A_ ) and isinstance(getattr(self,A_ ),A_ ): setattr(getattr(self,A_ ),'.'.join(levels[i:] ),A_ ) if l == last_level: __UpperCamelCase = val else: __UpperCamelCase = pointer[l] def snake_case_ ( self: int ): '''simple docstring''' return self._pointer def snake_case_ ( self: str,A_: Tuple,A_: List[str] ): '''simple docstring''' with open(F'''{file_name}''','w' ) as stream: dump(A_,A_ ) def snake_case_ ( self: List[str],A_: Optional[Any],A_: List[str] ): '''simple docstring''' with open(F'''{file_name}''','w' ) as stream: json.dump(A_,A_ ) @staticmethod def snake_case_ ( A_: int ): '''simple docstring''' with open(A_ ) as stream: __UpperCamelCase = load(A_,Loader=A_ ) return data def __str__( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = ' ' if self._name != "root": __UpperCamelCase = F'''{t * (self._level-1)}{self._name}:\n''' else: __UpperCamelCase = '' __UpperCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A_,A_ ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(A_ ).__name__})\n''' __UpperCamelCase = level return r[:-1] @classmethod def snake_case_ ( cls: List[Any],A_: str,**A_: Dict ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ ) return cls(A_ ) @classmethod def snake_case_ ( cls: Any,A_: str,**A_: Tuple ): '''simple docstring''' __UpperCamelCase = kwargs.pop('cache_dir',A_ ) __UpperCamelCase = kwargs.pop('force_download',A_ ) __UpperCamelCase = kwargs.pop('resume_download',A_ ) __UpperCamelCase = kwargs.pop('proxies',A_ ) __UpperCamelCase = kwargs.pop('local_files_only',A_ ) if os.path.isdir(A_ ): __UpperCamelCase = os.path.join(A_,A_ ) elif os.path.isfile(A_ ) or is_remote_url(A_ ): __UpperCamelCase = pretrained_model_name_or_path else: __UpperCamelCase = hf_bucket_url(A_,filename=A_,use_cdn=A_ ) try: # Load from URL or cache if already cached __UpperCamelCase = cached_path( A_,cache_dir=A_,force_download=A_,proxies=A_,resume_download=A_,local_files_only=A_,) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCamelCase = Config.load_yaml(A_ ) except EnvironmentError: __UpperCamelCase = 'Can\'t load config for' raise EnvironmentError(A_ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(A_ ), kwargs def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = torch.load('dump.pt' , map_location=in_tensor.device ) __UpperCamelCase = in_tensor.numpy() __UpperCamelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = urlparse(_lowercase ) return parsed.scheme in ("http", "https") def _A ( _lowercase , _lowercase , _lowercase=True ) -> str: """simple docstring""" __UpperCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCamelCase = '/' not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=0 , _lowercase=None , ) -> Any: """simple docstring""" __UpperCamelCase = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowercase , _lowercase ): ua += "; " + "; ".join('{}/{}'.format(_lowercase , _lowercase ) for k, v in user_agent.items() ) elif isinstance(_lowercase , _lowercase ): ua += "; " + user_agent __UpperCamelCase = {'user-agent': ua} if resume_size > 0: __UpperCamelCase = 'bytes=%d-' % (resume_size,) __UpperCamelCase = requests.get(_lowercase , stream=_lowercase , proxies=_lowercase , headers=_lowercase ) if response.status_code == 4_16: # Range not satisfiable return __UpperCamelCase = response.headers.get('Content-Length' ) __UpperCamelCase = resume_size + int(_lowercase ) if content_length is not None else None __UpperCamelCase = tqdm( unit='B' , unit_scale=_lowercase , total=_lowercase , initial=_lowercase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowercase ) ) temp_file.write(_lowercase ) progress.close() def _A ( _lowercase , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=10 , _lowercase=False , _lowercase=None , _lowercase=False , ) -> Tuple: """simple docstring""" if cache_dir is None: __UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase , _lowercase ): __UpperCamelCase = str(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) __UpperCamelCase = None if not local_files_only: try: __UpperCamelCase = requests.head(_lowercase , allow_redirects=_lowercase , proxies=_lowercase , timeout=_lowercase ) if response.status_code == 2_00: __UpperCamelCase = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCamelCase = url_to_filename(_lowercase , _lowercase ) # get cache path to put the file __UpperCamelCase = os.path.join(_lowercase , _lowercase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowercase ): return cache_path else: __UpperCamelCase = [ file for file in fnmatch.filter(os.listdir(_lowercase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_lowercase ) > 0: return os.path.join(_lowercase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_lowercase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCamelCase = cache_path + '.lock' with FileLock(_lowercase ): # If the download just completed while the lock was activated. if os.path.exists(_lowercase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCamelCase = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_lowercase , 'a+b' ) as f: yield f __UpperCamelCase = _resumable_file_manager if os.path.exists(_lowercase ): __UpperCamelCase = os.stat(_lowercase ).st_size else: __UpperCamelCase = 0 else: __UpperCamelCase = partial(tempfile.NamedTemporaryFile , dir=_lowercase , delete=_lowercase ) __UpperCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , _lowercase , temp_file.name , ) http_get( _lowercase , _lowercase , proxies=_lowercase , resume_size=_lowercase , user_agent=_lowercase , ) os.replace(temp_file.name , _lowercase ) __UpperCamelCase = {'url': url, 'etag': etag} __UpperCamelCase = cache_path + '.json' with open(_lowercase , 'w' ) as meta_file: json.dump(_lowercase , _lowercase ) return cache_path def _A ( _lowercase , _lowercase=None ) -> Any: """simple docstring""" __UpperCamelCase = url.encode('utf-8' ) __UpperCamelCase = shaaaa(_lowercase ) __UpperCamelCase = url_hash.hexdigest() if etag: __UpperCamelCase = etag.encode('utf-8' ) __UpperCamelCase = shaaaa(_lowercase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def _A ( _lowercase , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ) -> Optional[int]: """simple docstring""" if cache_dir is None: __UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase , _lowercase ): __UpperCamelCase = str(_lowercase ) if isinstance(_lowercase , _lowercase ): __UpperCamelCase = str(_lowercase ) if is_remote_url(_lowercase ): # URL, so get it from the cache (downloading if necessary) __UpperCamelCase = get_from_cache( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , user_agent=_lowercase , local_files_only=_lowercase , ) elif os.path.exists(_lowercase ): # File, and it exists. __UpperCamelCase = url_or_filename elif urlparse(_lowercase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_lowercase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_lowercase ) ) if extract_compressed_file: if not is_zipfile(_lowercase ) and not tarfile.is_tarfile(_lowercase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCamelCase, __UpperCamelCase = os.path.split(_lowercase ) __UpperCamelCase = output_file.replace('.' , '-' ) + '-extracted' __UpperCamelCase = os.path.join(_lowercase , _lowercase ) if os.path.isdir(_lowercase ) and os.listdir(_lowercase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCamelCase = output_path + '.lock' with FileLock(_lowercase ): shutil.rmtree(_lowercase , ignore_errors=_lowercase ) os.makedirs(_lowercase ) if is_zipfile(_lowercase ): with ZipFile(_lowercase , 'r' ) as zip_file: zip_file.extractall(_lowercase ) zip_file.close() elif tarfile.is_tarfile(_lowercase ): __UpperCamelCase = tarfile.open(_lowercase ) tar_file.extractall(_lowercase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_lowercase ) ) return output_path_extracted return output_path def _A ( _lowercase , _lowercase="," ) -> List[Any]: """simple docstring""" assert isinstance(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): with open(_lowercase ) as f: __UpperCamelCase = eval(f.read() ) else: __UpperCamelCase = requests.get(_lowercase ) try: __UpperCamelCase = requests.json() except Exception: __UpperCamelCase = req.content.decode() assert data is not None, "could not connect" try: __UpperCamelCase = eval(_lowercase ) except Exception: __UpperCamelCase = data.split('\n' ) req.close() return data def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = requests.get(_lowercase ) __UpperCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowercase ) with open(_lowercase , 'rb' ) as stream: __UpperCamelCase = pkl.load(_lowercase ) __UpperCamelCase = weights.pop('model' ) __UpperCamelCase = {} for k, v in model.items(): __UpperCamelCase = torch.from_numpy(_lowercase ) if "running_var" in k: __UpperCamelCase = torch.tensor([0] ) __UpperCamelCase = k.replace('running_var' , 'num_batches_tracked' ) __UpperCamelCase = zero return new def _A ( ) -> Union[str, Any]: """simple docstring""" print(f'''{os.path.abspath(os.path.join(_lowercase , os.pardir ) )}/demo.ipynb''' ) def _A ( _lowercase , _lowercase="RGB" ) -> str: """simple docstring""" assert isinstance(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): __UpperCamelCase = cva.imread(_lowercase ) else: __UpperCamelCase = get_image_from_url(_lowercase ) assert img is not None, f'''could not connect to: {im}''' __UpperCamelCase = cva.cvtColor(_lowercase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCamelCase = img[:, :, ::-1] return img def _A ( _lowercase , _lowercase=1 ) -> Any: """simple docstring""" return (images[i : i + batch] for i in range(0 , len(_lowercase ) , _lowercase ))
310
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = AlbertConfig.from_json_file(_lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCamelCase = AlbertForPreTraining(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __UpperCamelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCamelCase = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=_lowercase , output_all_encodings=_lowercase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , _lowercase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCamelCase = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __UpperCamelCase = os.path.join(get_home_dir() , 'models' ) __UpperCamelCase = _load_vocab(_lowercase , _lowercase , _lowercase , cls=_lowercase ) __UpperCamelCase = nlp.model.BERTModel( _lowercase , len(_lowercase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=_lowercase , use_token_type_embed=_lowercase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=_lowercase , use_decoder=_lowercase , ) original_bort.load_parameters(_lowercase , cast_dtype=_lowercase , ignore_extra=_lowercase ) __UpperCamelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCamelCase = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(_lowercase ), } __UpperCamelCase = BertConfig.from_dict(_lowercase ) __UpperCamelCase = BertForMaskedLM(_lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowercase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowercase , _lowercase ): __UpperCamelCase = hf_param.shape __UpperCamelCase = to_torch(params[gluon_param] ) __UpperCamelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCamelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCamelCase = hf_bort_model.bert.encoder.layer[i] # self attention __UpperCamelCase = layer.attention.self __UpperCamelCase = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __UpperCamelCase = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __UpperCamelCase = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __UpperCamelCase = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __UpperCamelCase = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __UpperCamelCase = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __UpperCamelCase = layer.attention.output __UpperCamelCase = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __UpperCamelCase = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __UpperCamelCase = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __UpperCamelCase = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __UpperCamelCase = layer.intermediate __UpperCamelCase = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __UpperCamelCase = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __UpperCamelCase = layer.output __UpperCamelCase = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __UpperCamelCase = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __UpperCamelCase = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __UpperCamelCase = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCamelCase = RobertaTokenizer.from_pretrained('roberta-base' ) __UpperCamelCase = tokenizer.encode_plus(_lowercase )['input_ids'] # Get gluon output __UpperCamelCase = mx.nd.array([input_ids] ) __UpperCamelCase = original_bort(inputs=_lowercase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowercase ) __UpperCamelCase = BertModel.from_pretrained(_lowercase ) hf_bort_model.eval() __UpperCamelCase = tokenizer.encode_plus(_lowercase , return_tensors='pt' ) __UpperCamelCase = hf_bort_model(**_lowercase )[0] __UpperCamelCase = output_gluon[0].asnumpy() __UpperCamelCase = output_hf[0].detach().numpy() __UpperCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCamelCase = np.allclose(_lowercase , _lowercase , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , _lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = GPTaTokenizer _lowercase = GPTaTokenizerFast _lowercase = True _lowercase = {"""add_prefix_space""": True} _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file,'w',encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: List[Any],**A_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: Any,**A_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: Union[str, Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) __UpperCamelCase = 'lower newer' __UpperCamelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __UpperCamelCase = tokenizer.tokenize(A_,add_prefix_space=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) def snake_case_ ( self: int ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=A_ ) __UpperCamelCase = 'lower newer' # Testing tokenization __UpperCamelCase = tokenizer.tokenize(A_,add_prefix_space=A_ ) __UpperCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) # Testing conversion to ids without special tokens __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_,add_prefix_space=A_ ) __UpperCamelCase = rust_tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) # Testing conversion to ids with special tokens __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=A_ ) __UpperCamelCase = tokenizer.encode(A_,add_prefix_space=A_ ) __UpperCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_,A_ ) # Testing the unknown token __UpperCamelCase = tokens + [rust_tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ),A_ ) def snake_case_ ( self: int,*A_: Tuple,**A_: List[Any] ): '''simple docstring''' pass def snake_case_ ( self: List[str],A_: Tuple=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ ) # Simple input __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase = ('This is a simple input', 'This is a pair') __UpperCamelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(A_,tokenizer_r.encode,A_,max_length=A_,padding='max_length' ) # Simple input self.assertRaises(A_,tokenizer_r.encode_plus,A_,max_length=A_,padding='max_length' ) # Simple input self.assertRaises( A_,tokenizer_r.batch_encode_plus,A_,max_length=A_,padding='max_length',) # Pair input self.assertRaises(A_,tokenizer_r.encode,A_,max_length=A_,padding='max_length' ) # Pair input self.assertRaises(A_,tokenizer_r.encode_plus,A_,max_length=A_,padding='max_length' ) # Pair input self.assertRaises( A_,tokenizer_r.batch_encode_plus,A_,max_length=A_,padding='max_length',) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname,pad_token='<pad>' ) # Simple input __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input looooooooong', 'This is a simple input'] __UpperCamelCase = ('This is a simple input', 'This is a pair') __UpperCamelCase = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer(A_,padding='max_length',max_length=30,return_tensors='np' ) __UpperCamelCase = tokenizer(A_,padding=A_,truncate=A_,return_tensors='np' ) __UpperCamelCase = tokenizer(*A_,padding='max_length',max_length=60,return_tensors='np' ) __UpperCamelCase = tokenizer(A_,padding=A_,truncate=A_,return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1],30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1],33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1],60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1],52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = '$$$' __UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname,bos_token=A_,add_bos_token=A_ ) __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer(A_ ) __UpperCamelCase = tokenizer(A_ ) self.assertEqual(out_s.input_ids[0],A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __UpperCamelCase = tokenizer.decode(out_s.input_ids ) __UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = [self.get_tokenizer(do_lower_case=A_,add_bos_token=A_ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = 'Encode this.' __UpperCamelCase = 'This one too please.' __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) encoded_sequence += tokenizer.encode(A_,add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode_plus( A_,A_,add_special_tokens=A_,return_special_tokens_mask=A_,) __UpperCamelCase = encoded_sequence_dict['input_ids'] __UpperCamelCase = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(A_ ),len(A_ ) ) __UpperCamelCase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ ) ] __UpperCamelCase = [x for x in filtered_sequence if x is not None] self.assertEqual(A_,A_ ) @require_tokenizers class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',from_slow=A_ ) __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( A_,) self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) __UpperCamelCase = AutoTokenizer.from_pretrained('./test_opt' ) __UpperCamelCase = tokenizer.encode( A_,) self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',use_slow=A_ ) __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( A_,) # Same as above self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',from_slow=A_ ) __UpperCamelCase = 'bos' __UpperCamelCase = tokenizer.get_vocab()['bos'] __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( A_,) # We changed the bos token self.assertEqual(A_,[3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) __UpperCamelCase = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) __UpperCamelCase = tokenizer.encode( A_,) self.assertEqual(A_,[3_1957, 250, 1345, 9, 10, 4758] )
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _A ( ) -> None: """simple docstring""" print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _A ( _lowercase ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print('Generating prime p...' ) __UpperCamelCase = rabinMiller.generate_large_prime(_lowercase ) print('Generating prime q...' ) __UpperCamelCase = rabinMiller.generate_large_prime(_lowercase ) __UpperCamelCase = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __UpperCamelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowercase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __UpperCamelCase = cryptoMath.find_mod_inverse(_lowercase , (p - 1) * (q - 1) ) __UpperCamelCase = (n, e) __UpperCamelCase = (n, d) return (public_key, private_key) def _A ( _lowercase , _lowercase ) -> None: """simple docstring""" if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase, __UpperCamelCase = generate_key(_lowercase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s __snake_case = 3e8 # unit of c : m * s^-1 def _A ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __UpperCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: __UpperCamelCase = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __UpperCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __snake_case = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''DPTFeatureExtractor'''] __snake_case = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
import os from pathlib import Path def _A ( ) -> List[Any]: """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase = Path(_lowercase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' __UpperCamelCase = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _lowercase , with_cuda=_lowercase , extra_include_paths=[str(_lowercase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __snake_case = TypeVar('''T''') class __lowerCamelCase (Generic[T] ): _lowercase = 42 # Cache store of keys _lowercase = 42 # References of the keys in cache _lowercase = 10 # Maximum capacity of cache def __init__( self: List[str],A_: int ): '''simple docstring''' __UpperCamelCase = deque() __UpperCamelCase = set() if not n: __UpperCamelCase = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: __UpperCamelCase = n def snake_case_ ( self: Optional[Any],A_: T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase = self.dq_store.pop() self.key_reference.remove(A_ ) else: self.dq_store.remove(A_ ) self.dq_store.appendleft(A_ ) self.key_reference.add(A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' for k in self.dq_store: print(A_ ) def __repr__( self: List[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __snake_case = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
from math import sqrt def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = 0 for i in range(1 , int(sqrt(_lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(_lowercase ): total += i + n // i elif i == sqrt(_lowercase ): total += i return total - n def _A ( _lowercase = 1_00_00 ) -> int: """simple docstring""" __UpperCamelCase = sum( i for i in range(1 , _lowercase ) if sum_of_divisors(sum_of_divisors(_lowercase ) ) == i and sum_of_divisors(_lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """swinv2""" _lowercase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self: Optional[Any],A_: Tuple=224,A_: Tuple=4,A_: Dict=3,A_: Tuple=96,A_: int=[2, 2, 6, 2],A_: Optional[int]=[3, 6, 12, 24],A_: Any=7,A_: Union[str, Any]=4.0,A_: Dict=True,A_: Tuple=0.0,A_: List[Any]=0.0,A_: List[str]=0.1,A_: Dict="gelu",A_: str=False,A_: Optional[int]=0.0_2,A_: Any=1E-5,A_: Dict=32,**A_: List[Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = len(A_ ) __UpperCamelCase = num_heads __UpperCamelCase = window_size __UpperCamelCase = mlp_ratio __UpperCamelCase = qkv_bias __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = drop_path_rate __UpperCamelCase = hidden_act __UpperCamelCase = use_absolute_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) ) __UpperCamelCase = (0, 0, 0, 0)
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
import copy import random from transformers import CLIPTokenizer class __lowerCamelCase (_a ): def __init__( self: int,*A_: Optional[int],**A_: str ): '''simple docstring''' super().__init__(*A_,**A_ ) __UpperCamelCase = {} def snake_case_ ( self: int,A_: Dict,*A_: List[str],**A_: Any ): '''simple docstring''' __UpperCamelCase = super().add_tokens(A_,*A_,**A_ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case_ ( self: int,A_: Dict,*A_: Optional[int],A_: Optional[Any]=1,**A_: List[Any] ): '''simple docstring''' __UpperCamelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(A_,*A_,**A_ ) output.append(A_ ) else: __UpperCamelCase = [] for i in range(A_ ): __UpperCamelCase = placeholder_token + F'''_{i}''' self.try_adding_tokens(A_,*A_,**A_ ) output.append(A_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) __UpperCamelCase = output def snake_case_ ( self: Tuple,A_: str,A_: Union[str, Any]=False,A_: Optional[Any]=1.0 ): '''simple docstring''' if isinstance(A_,A_ ): __UpperCamelCase = [] for i in range(len(A_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=A_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __UpperCamelCase = self.token_map[placeholder_token] __UpperCamelCase = tokens[: 1 + int(len(A_ ) * prop_tokens_to_load )] if vector_shuffle: __UpperCamelCase = copy.copy(A_ ) random.shuffle(A_ ) __UpperCamelCase = text.replace(A_,' '.join(A_ ) ) return text def __call__( self: Any,A_: Optional[Any],*A_: Optional[int],A_: List[str]=False,A_: List[Any]=1.0,**A_: str ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( A_,vector_shuffle=A_,prop_tokens_to_load=A_ ),*A_,**A_,) def snake_case_ ( self: Any,A_: str,*A_: Tuple,A_: List[str]=False,A_: Any=1.0,**A_: Any ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( A_,vector_shuffle=A_,prop_tokens_to_load=A_ ),*A_,**A_,)
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCamelCase (_a ): _lowercase = """biogpt""" def __init__( self: str,A_: List[Any]=4_2384,A_: Union[str, Any]=1024,A_: List[str]=24,A_: Union[str, Any]=16,A_: Any=4096,A_: Optional[Any]="gelu",A_: Dict=0.1,A_: Optional[Any]=0.1,A_: Dict=1024,A_: List[str]=0.0_2,A_: Optional[int]=1E-12,A_: Any=True,A_: Dict=True,A_: List[Any]=0.0,A_: int=0.0,A_: int=1,A_: List[Any]=0,A_: Union[str, Any]=2,**A_: Union[str, Any],): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = scale_embedding __UpperCamelCase = use_cache __UpperCamelCase = layerdrop __UpperCamelCase = activation_dropout super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCamelCase (unittest.TestCase ): def __init__( self: Any,A_: Union[str, Any],A_: Union[str, Any]=13,A_: List[Any]=7,A_: Tuple=True,A_: Optional[Any]=True,A_: Dict=True,A_: Union[str, Any]=True,A_: List[Any]=99,A_: str=32,A_: List[str]=5,A_: Optional[int]=4,A_: List[Any]=37,A_: List[str]="gelu",A_: Any=0.1,A_: List[Any]=0.1,A_: Dict=512,A_: Optional[int]=16,A_: List[str]=2,A_: Optional[Any]=0.0_2,A_: Optional[Any]=4,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_choices def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) __UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=A_,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs __UpperCamelCase = True __UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = True _lowercase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = FlaxRobertaModelTester(self ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('roberta-base',from_pt=A_ ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ )
310
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
1
__snake_case = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
def _A ( _lowercase ) -> str: """simple docstring""" if number > 0: raise ValueError('input must be a negative integer' ) __UpperCamelCase = len(bin(_lowercase )[3:] ) __UpperCamelCase = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:] __UpperCamelCase = ( ( '1' + '0' * (binary_number_length - len(_lowercase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
310
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _A ( _lowercase , _lowercase , _lowercase = 10**-10 ) -> float: """simple docstring""" __UpperCamelCase = a while True: __UpperCamelCase = Decimal(_lowercase ) - ( Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowercase ) ) < precision: # noqa: S307 return float(_lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = DownBlockaD # noqa F405 _lowercase = """down""" def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = ResnetDownsampleBlockaD # noqa F405 _lowercase = """down""" def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnDownBlockaD # noqa F405 _lowercase = """down""" def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = CrossAttnDownBlockaD # noqa F405 _lowercase = """down""" def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase = """down""" @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps','MPS result is not consistent' ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = SkipDownBlockaD # noqa F405 _lowercase = """down""" @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnSkipDownBlockaD # noqa F405 _lowercase = """down""" @property def snake_case_ ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = DownEncoderBlockaD # noqa F405 _lowercase = """down""" @property def snake_case_ ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = { 'in_channels': 32, 'out_channels': 32, } __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnDownEncoderBlockaD # noqa F405 _lowercase = """down""" @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = { 'in_channels': 32, 'out_channels': 32, } __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = UNetMidBlockaD # noqa F405 _lowercase = """mid""" def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = { 'in_channels': 32, 'temb_channels': 128, } __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = UNetMidBlockaDCrossAttn # noqa F405 _lowercase = """mid""" def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase = """mid""" @property def snake_case_ ( self: List[str] ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = UpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = ResnetUpsampleBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = CrossAttnUpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_,include_encoder_hidden_states=A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase = 32 return init_dict, inputs_dict def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnUpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: List[str] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) @unittest.skipIf(torch_device == 'mps','MPS result is not consistent' ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = SkipUpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnSkipUpBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = UpDecoderBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_temb=A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = {'in_channels': 32, 'out_channels': 32} __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(A_ ) class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = AttnUpDecoderBlockaD # noqa F405 _lowercase = """up""" @property def snake_case_ ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = {'in_channels': 32, 'out_channels': 32} __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(A_ )
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowerCamelCase (_a ): _lowercase = """informer""" _lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self: Dict,A_: Optional[int] = None,A_: Optional[int] = None,A_: str = "student_t",A_: str = "nll",A_: int = 1,A_: List[int] = None,A_: Optional[Union[str, bool]] = "mean",A_: int = 0,A_: int = 0,A_: int = 0,A_: int = 0,A_: Optional[List[int]] = None,A_: Optional[List[int]] = None,A_: int = 64,A_: int = 32,A_: int = 32,A_: int = 2,A_: int = 2,A_: int = 2,A_: int = 2,A_: bool = True,A_: str = "gelu",A_: float = 0.0_5,A_: float = 0.1,A_: float = 0.1,A_: float = 0.1,A_: float = 0.1,A_: int = 100,A_: float = 0.0_2,A_: int=True,A_: str = "prob",A_: int = 5,A_: bool = True,**A_: Any,): '''simple docstring''' __UpperCamelCase = prediction_length __UpperCamelCase = context_length or prediction_length __UpperCamelCase = distribution_output __UpperCamelCase = loss __UpperCamelCase = input_size __UpperCamelCase = num_time_features __UpperCamelCase = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __UpperCamelCase = scaling __UpperCamelCase = num_dynamic_real_features __UpperCamelCase = num_static_real_features __UpperCamelCase = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase = cardinality else: __UpperCamelCase = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase = embedding_dimension else: __UpperCamelCase = [min(50,(cat + 1) // 2 ) for cat in self.cardinality] __UpperCamelCase = num_parallel_samples # Transformer architecture configuration __UpperCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features __UpperCamelCase = d_model __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_attention_heads __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = decoder_layers __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = use_cache # Informer __UpperCamelCase = attention_type __UpperCamelCase = sampling_factor __UpperCamelCase = distil super().__init__(is_encoder_decoder=A_,**A_ ) @property def snake_case_ ( self: int ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
310
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
1
class __lowerCamelCase : def __init__( self: List[str],A_: Any ): '''simple docstring''' __UpperCamelCase = arr.split(',' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = [int(self.array[0] )] * len(self.array ) __UpperCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1,len(self.array ) ): __UpperCamelCase = max( int(self.array[i] ) + sum_value[i - 1],int(self.array[i] ) ) __UpperCamelCase = max(sum_value[i],rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __snake_case = input('''please input some numbers:''') __snake_case = SubArray(whole_array) __snake_case = array.solve_sub_array() print(('''the results is:''', re))
310
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCamelCase (_a ): _lowercase = 42 _lowercase = 42 def __init__( self: Tuple,A_: UNetaDModel,A_: ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=A_,scheduler=A_ ) @torch.no_grad() def __call__( self: str,A_: int = 1,A_: int = 2000,A_: Optional[Union[torch.Generator, List[torch.Generator]]] = None,A_: Optional[str] = "pil",A_: bool = True,**A_: Optional[int],): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(A_,generator=A_ ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(A_ ) self.scheduler.set_sigmas(A_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0],device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(A_,A_ ).sample __UpperCamelCase = self.scheduler.step_correct(A_,A_,generator=A_ ).prev_sample # prediction step __UpperCamelCase = model(A_,A_ ).sample __UpperCamelCase = self.scheduler.step_pred(A_,A_,A_,generator=A_ ) __UpperCamelCase, __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0,1 ) __UpperCamelCase = sample.cpu().permute(0,2,3,1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A_ )
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = analyze_text(_lowercase ) __UpperCamelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __UpperCamelCase = sum(single_char_strings.values() ) # one length string __UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCamelCase = single_char_strings[ch] __UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __UpperCamelCase = sum(two_char_strings.values() ) __UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCamelCase = cha + cha if sequence in two_char_strings: __UpperCamelCase = two_char_strings[sequence] __UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _A ( _lowercase ) -> tuple[dict, dict]: """simple docstring""" __UpperCamelCase = Counter() # type: ignore __UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _A ( ) -> Optional[Any]: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __snake_case = logging.get_logger(__name__) def _A ( _lowercase=None , _lowercase=None ) -> List[str]: """simple docstring""" return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class __lowerCamelCase : _lowercase = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) _lowercase = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) _lowercase = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) _lowercase = field( default=_a , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) _lowercase = field( default=_a , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) _lowercase = field( default=_a , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) _lowercase = field(default=_a , metadata={"""help""": """Use FP16 to accelerate inference."""} ) _lowercase = field(default=_a , metadata={"""help""": """Benchmark training of model"""} ) _lowercase = field(default=_a , metadata={"""help""": """Verbose memory tracing"""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) _lowercase = field( default=_a , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) _lowercase = field(default=_a , metadata={"""help""": """Trace memory line by line"""} ) _lowercase = field(default=_a , metadata={"""help""": """Save result to a CSV file"""} ) _lowercase = field(default=_a , metadata={"""help""": """Save all print statements in a log file"""} ) _lowercase = field(default=_a , metadata={"""help""": """Whether to print environment information"""} ) _lowercase = field( default=_a , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) _lowercase = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) _lowercase = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) _lowercase = field( default=f"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) _lowercase = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) _lowercase = field( default=f"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) _lowercase = field( default=f"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) _lowercase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def snake_case_ ( self: Dict ): '''simple docstring''' warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.',A_,) def snake_case_ ( self: Any ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ),indent=2 ) @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def snake_case_ ( self: Dict ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case = logging.get_logger(__name__) def _A ( _lowercase , _lowercase , _lowercase ) -> str: """simple docstring""" return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def _A ( _lowercase , _lowercase , _lowercase = None ) -> Any: """simple docstring""" __UpperCamelCase = tesseract_config if tesseract_config is not None else '' # apply OCR __UpperCamelCase = to_pil_image(_lowercase ) __UpperCamelCase, __UpperCamelCase = pil_image.size __UpperCamelCase = pytesseract.image_to_data(_lowercase , lang=_lowercase , output_type='dict' , config=_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates __UpperCamelCase = [idx for idx, word in enumerate(_lowercase ) if not word.strip()] __UpperCamelCase = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __UpperCamelCase = [] for x, y, w, h in zip(_lowercase , _lowercase , _lowercase , _lowercase ): __UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(_lowercase ) # finally, normalize the bounding boxes __UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowercase , _lowercase , _lowercase ) ) assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCamelCase (_a ): _lowercase = ["""pixel_values"""] def __init__( self: int,A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BILINEAR,A_: bool = True,A_: Optional[str] = None,A_: Optional[str] = "",**A_: List[Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = size if size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_ ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = apply_ocr __UpperCamelCase = ocr_lang __UpperCamelCase = tesseract_config def snake_case_ ( self: Union[str, Any],A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BILINEAR,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __UpperCamelCase = (size['height'], size['width']) return resize(A_,size=A_,resample=A_,data_format=A_,**A_ ) def snake_case_ ( self: str,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: Optional[str] = None,A_: Optional[str] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: Tuple,): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(A_ ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(A_ ) for image in images] if apply_ocr: requires_backends(self,'pytesseract' ) __UpperCamelCase = [] __UpperCamelCase = [] for image in images: __UpperCamelCase, __UpperCamelCase = apply_tesseract(A_,A_,A_ ) words_batch.append(A_ ) boxes_batch.append(A_ ) if do_resize: __UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __UpperCamelCase = [flip_channel_order(A_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images] __UpperCamelCase = BatchFeature(data={'pixel_values': images},tensor_type=A_ ) if apply_ocr: __UpperCamelCase = words_batch __UpperCamelCase = boxes_batch return data
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCamelCase (_a ): @staticmethod @abstractmethod def snake_case_ ( A_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case_ ( self: str ): '''simple docstring''' raise NotImplementedError()
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
def _A ( _lowercase = 2_00 ) -> int: """simple docstring""" __UpperCamelCase = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __UpperCamelCase = [0] * (pence + 1) __UpperCamelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __snake_case = False __snake_case = True __snake_case = False if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __snake_case = parser.parse_args() __snake_case = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } __snake_case = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } __snake_case = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: __snake_case = reader.read() __snake_case = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): __snake_case = UNetaDModel(**config) else: __snake_case = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel __snake_case = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __snake_case = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __snake_case = config[key] del config[key] __snake_case = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] __snake_case = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: __snake_case = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) __snake_case = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue __snake_case = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: __snake_case = param_value __snake_case = True if not has_changed: __snake_case = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
from functools import reduce __snake_case = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _A ( _lowercase = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
import math def _A ( _lowercase ) -> bool: """simple docstring""" return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = BertConfig.from_json_file(_lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCamelCase = BertForPreTraining(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(),encoding='utf-8',check=A_,) assert hasattr(self,'env' ) def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' __UpperCamelCase = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings __UpperCamelCase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=A_,instance_count=A_,instance_type=self.instance_type,debugger_hook_config=A_,hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path},metric_definitions=self.env.metric_definitions,distribution=A_,py_version='py36',) def snake_case_ ( self: int,A_: Any ): '''simple docstring''' TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def snake_case_ ( self: Any,A_: Any ): '''simple docstring''' __UpperCamelCase = self.create_estimator(A_ ) # run training estimator.fit() # result dataframe __UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds',99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''','w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss},A_ )
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
def _A ( _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowercase ) ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" if index == len(_lowercase ): return True # Recursive Step for i in range(_lowercase ): if valid_coloring(graph[index] , _lowercase , _lowercase ): # Color current vertex __UpperCamelCase = i # Validate coloring if util_color(_lowercase , _lowercase , _lowercase , index + 1 ): return True # Backtrack __UpperCamelCase = -1 return False def _A ( _lowercase , _lowercase ) -> list[int]: """simple docstring""" __UpperCamelCase = [-1] * len(_lowercase ) if util_color(_lowercase , _lowercase , _lowercase , 0 ): return colored_vertices return []
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase (_a ): _lowercase = """vit_msn""" def __init__( self: str,A_: List[str]=768,A_: List[str]=12,A_: Tuple=12,A_: Optional[int]=3072,A_: Tuple="gelu",A_: int=0.0,A_: Any=0.0,A_: Any=0.0_2,A_: Optional[int]=1E-06,A_: Dict=224,A_: List[Any]=16,A_: List[Any]=3,A_: Dict=True,**A_: List[Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias
310
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
1
def _A ( _lowercase ) -> list: """simple docstring""" if len(_lowercase ) <= 1: return [tuple(_lowercase )] __UpperCamelCase = [] def generate(_lowercase , _lowercase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _lowercase ) for i in range(k - 1 ): if k % 2 == 0: # k is even __UpperCamelCase, __UpperCamelCase = arr[k - 1], arr[i] else: # k is odd __UpperCamelCase, __UpperCamelCase = arr[k - 1], arr[0] generate(k - 1 , _lowercase ) generate(len(_lowercase ) , _lowercase ) return res if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
310
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
1
def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCamelCase = set() return any( node not in visited and depth_first_search(_lowercase , _lowercase , _lowercase , _lowercase ) for node in graph ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: """simple docstring""" visited.add(_lowercase ) rec_stk.add(_lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(_lowercase , _lowercase , _lowercase , _lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
310
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCamelCase (_a ): _lowercase = 0 _lowercase = False _lowercase = 3.0 class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs(),{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} ) self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} ) @require_cuda def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale,1_0_2_4.0 ) self.assertEqual(scaler._growth_factor,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor,0.5 ) self.assertEqual(scaler._growth_interval,2000 ) self.assertEqual(scaler._enabled,A_ ) @require_multi_gpu def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_,env=os.environ.copy() ) if __name__ == "__main__": __snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) __snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case = torch.nn.Linear(1_0_0, 2_0_0) __snake_case = accelerator.prepare(model) # Check the values changed in kwargs __snake_case = '''''' __snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
310
1
from math import sqrt def _A ( _lowercase = 1_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
310
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """OwlViTImageProcessor""" _lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )): __UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )] elif isinstance(A_,A_ ) and isinstance(text[0],A_ ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(A_ )) __UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_ ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process(*A_,**A_ ) def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_,**A_ ) def snake_case_ ( self: str,*A_: Tuple,**A_: int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_,**A_ ) def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Any,**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,) return self.image_processor_class @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,) return self.image_processor
310
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 __snake_case = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] _lowercase = TaTokenizer _lowercase = [] def __init__( self: List[str],A_: List[str]=None,A_: int=None,A_: int="</s>",A_: Tuple="<unk>",A_: Dict="<pad>",A_: Union[str, Any]=100,A_: Optional[Any]=None,**A_: List[str],): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __UpperCamelCase = [F'''<extra_id_{i}>''' for i in range(A_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCamelCase = len(set(filter(lambda A_ : bool('extra_id_' in str(A_ ) ),A_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( A_,tokenizer_file=A_,eos_token=A_,unk_token=A_,pad_token=A_,extra_ids=A_,additional_special_tokens=A_,**A_,) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True __UpperCamelCase = extra_ids @staticmethod def snake_case_ ( A_: str,A_: Union[str, Any],A_: Dict ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.',A_,) return max_model_length def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file,A_ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def snake_case_ ( self: Dict,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case_ ( self: str ): '''simple docstring''' return list( set(filter(lambda A_ : bool(re.search(r'<extra_id_\d+>',A_ ) ) is not None,self.additional_special_tokens ) ) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(A_ ) for token in self.get_sentinel_tokens()]
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __snake_case = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __snake_case = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __snake_case = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _A ( _lowercase , _lowercase ) -> tuple[str, float]: """simple docstring""" __UpperCamelCase = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def _A ( _lowercase , _lowercase ) -> tuple[str, str]: """simple docstring""" __UpperCamelCase = random.randint(0 , len(_lowercase ) - 1 ) __UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] __UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCamelCase = random.choice(_lowercase ) return "".join(_lowercase ) def _A ( _lowercase , _lowercase , _lowercase , ) -> list[str]: """simple docstring""" __UpperCamelCase = [] # Generate more children proportionally to the fitness score. __UpperCamelCase = int(parent_a[1] * 1_00 ) + 1 __UpperCamelCase = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): __UpperCamelCase = population_score[random.randint(0 , _lowercase )][0] __UpperCamelCase, __UpperCamelCase = crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def _A ( _lowercase , _lowercase , _lowercase = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: __UpperCamelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCamelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_lowercase ) # Generate random starting population. __UpperCamelCase = [] for _ in range(_lowercase ): population.append(''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCamelCase, __UpperCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCamelCase = [evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. __UpperCamelCase = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. __UpperCamelCase = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": __snake_case = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __snake_case = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __snake_case , __snake_case , __snake_case = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
310
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BioGptTokenizer _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(A_ ) ) def snake_case_ ( self: Optional[int],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file ) __UpperCamelCase = 'lower' __UpperCamelCase = ['low', 'er</w>'] __UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokens + ['<unk>'] __UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
310
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCamelCase : _lowercase = 42 # setable values _lowercase = 42 _lowercase = 42 _lowercase = None @classmethod def snake_case_ ( cls: Optional[int],A_: CommonSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray ): '''simple docstring''' return cls(common=A_,init_noise_sigma=A_,timesteps=A_ ) @dataclass class __lowerCamelCase (_a ): _lowercase = 42 class __lowerCamelCase (_a , _a ): _lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase = 42 @property def snake_case_ ( self: List[Any] ): '''simple docstring''' return True @register_to_config def __init__( self: Tuple,A_: int = 1000,A_: float = 0.0_0_0_1,A_: float = 0.0_2,A_: str = "linear",A_: Optional[jnp.ndarray] = None,A_: str = "fixed_small",A_: bool = True,A_: str = "epsilon",A_: jnp.dtype = jnp.floataa,): '''simple docstring''' __UpperCamelCase = dtype def snake_case_ ( self: str,A_: Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: __UpperCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __UpperCamelCase = jnp.array(1.0,dtype=self.dtype ) __UpperCamelCase = jnp.arange(0,self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A_,init_noise_sigma=A_,timesteps=A_,) def snake_case_ ( self: Dict,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: Optional[int] = None ): '''simple docstring''' return sample def snake_case_ ( self: int,A_: DDPMSchedulerState,A_: int,A_: Tuple = () ): '''simple docstring''' __UpperCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (jnp.arange(0,A_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A_,timesteps=A_,) def snake_case_ ( self: str,A_: DDPMSchedulerState,A_: List[str],A_: str=None,A_: Union[str, Any]=None ): '''simple docstring''' __UpperCamelCase = state.common.alphas_cumprod[t] __UpperCamelCase = jnp.where(t > 0,state.common.alphas_cumprod[t - 1],jnp.array(1.0,dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCamelCase = jnp.clip(A_,a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCamelCase = jnp.log(jnp.clip(A_,a_min=1E-20 ) ) elif variance_type == "fixed_large": __UpperCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCamelCase = variance __UpperCamelCase = state.common.betas[t] __UpperCamelCase = (predicted_variance + 1) / 2 __UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def snake_case_ ( self: Optional[int],A_: DDPMSchedulerState,A_: jnp.ndarray,A_: int,A_: jnp.ndarray,A_: Optional[jax.random.KeyArray] = None,A_: bool = True,): '''simple docstring''' __UpperCamelCase = timestep if key is None: __UpperCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCamelCase, __UpperCamelCase = jnp.split(A_,sample.shape[1],axis=1 ) else: __UpperCamelCase = None # 1. compute alphas, betas __UpperCamelCase = state.common.alphas_cumprod[t] __UpperCamelCase = jnp.where(t > 0,state.common.alphas_cumprod[t - 1],jnp.array(1.0,dtype=self.dtype ) ) __UpperCamelCase = 1 - alpha_prod_t __UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase = model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase = jnp.clip(A_,-1,1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCamelCase = jax.random.split(A_,num=1 ) __UpperCamelCase = jax.random.normal(A_,shape=model_output.shape,dtype=self.dtype ) return (self._get_variance(A_,A_,predicted_variance=A_ ) ** 0.5) * noise __UpperCamelCase = jnp.where(t > 0,random_variance(),jnp.zeros(model_output.shape,dtype=self.dtype ) ) __UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A_,state=A_ ) def snake_case_ ( self: int,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray,A_: jnp.ndarray,): '''simple docstring''' return add_noise_common(state.common,A_,A_,A_ ) def snake_case_ ( self: Tuple,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray,A_: jnp.ndarray,): '''simple docstring''' return get_velocity_common(state.common,A_,A_,A_ ) def __len__( self: List[str] ): '''simple docstring''' return self.config.num_train_timesteps
310
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_a ) class __lowerCamelCase (_a ): _lowercase = """rag""" _lowercase = True def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],): '''simple docstring''' super().__init__( bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase = kwargs.pop('question_encoder' ) __UpperCamelCase = question_encoder_config.pop('model_type' ) __UpperCamelCase = kwargs.pop('generator' ) __UpperCamelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = AutoConfig.for_model(A_,**A_ ) __UpperCamelCase = reduce_loss __UpperCamelCase = label_smoothing __UpperCamelCase = exclude_bos_score __UpperCamelCase = do_marginalize __UpperCamelCase = title_sep __UpperCamelCase = doc_sep __UpperCamelCase = n_docs __UpperCamelCase = max_combined_length __UpperCamelCase = dataset __UpperCamelCase = dataset_split __UpperCamelCase = index_name __UpperCamelCase = retrieval_vector_size __UpperCamelCase = retrieval_batch_size __UpperCamelCase = passages_path __UpperCamelCase = index_path __UpperCamelCase = use_dummy_dataset __UpperCamelCase = output_retrieved __UpperCamelCase = do_deduplication __UpperCamelCase = use_cache if self.forced_eos_token_id is None: __UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ ) @classmethod def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.question_encoder.to_dict() __UpperCamelCase = self.generator.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __snake_case = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __snake_case = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _A ( _lowercase ) -> str: """simple docstring""" if "://" in dataset_path: __UpperCamelCase = dataset_path.split('://' )[1] return dataset_path def _A ( _lowercase ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def _A ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = threading.Lock()
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
import math import sys def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = '' try: with open(_lowercase , 'rb' ) as binary_file: __UpperCamelCase = binary_file.read() for dat in data: __UpperCamelCase = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = {'0': '0', '1': '1'} __UpperCamelCase, __UpperCamelCase = '', '' __UpperCamelCase = len(_lowercase ) for i in range(len(_lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCamelCase = lexicon[curr_string] result += last_match_id __UpperCamelCase = last_match_id + '0' if math.loga(_lowercase ).is_integer(): __UpperCamelCase = {} for curr_key in list(_lowercase ): __UpperCamelCase = lexicon.pop(_lowercase ) __UpperCamelCase = new_lex __UpperCamelCase = last_match_id + '1' index += 1 __UpperCamelCase = '' return result def _A ( _lowercase , _lowercase ) -> None: """simple docstring""" __UpperCamelCase = 8 try: with open(_lowercase , 'wb' ) as opened_file: __UpperCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase ) , _lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _A ( _lowercase ) -> str: """simple docstring""" __UpperCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __UpperCamelCase = data_bits[counter:] __UpperCamelCase = data_bits[counter + 1 :] return data_bits def _A ( _lowercase , _lowercase ) -> None: """simple docstring""" __UpperCamelCase = read_file_binary(_lowercase ) __UpperCamelCase = remove_prefix(_lowercase ) __UpperCamelCase = decompress_data(_lowercase ) write_file_binary(_lowercase , _lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = FunnelTokenizer _lowercase = FunnelTokenizerFast _lowercase = True _lowercase = True def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() __UpperCamelCase = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def snake_case_ ( self: Optional[Any],**A_: int ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],**A_: List[Any] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: Tuple,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'UNwant\u00E9d,running' __UpperCamelCase = 'unwanted, running' return input_text, output_text def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class(self.vocab_file ) __UpperCamelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),[7, 4, 5, 10, 8, 9] ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: __UpperCamelCase = tokenizer('UNwant\u00E9d,running' ) __UpperCamelCase = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'],[2] + [0] * sentence_len ) __UpperCamelCase = tokenizer('UNwant\u00E9d,running','UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'],[2] + [0] * sentence_len + [1] * sentence_len )
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCamelCase (unittest.TestCase , _a ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = load_tool('text-to-speech' ) self.tool.setup() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = self.tool('hey' ) __UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ),) ) def snake_case_ ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = self.tool('hey' ) __UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ),) )
310
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = MgpstrTokenizer _lowercase = False _lowercase = {} _lowercase = False def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def snake_case_ ( self: Dict,**A_: Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ ) def snake_case_ ( self: List[Any],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ ) self.assertEqual(len(A_ ),1 ) __UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ ) __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ ) self.assertListEqual(A_,A_ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ),0 ) __UpperCamelCase = tokenizer.decode(A_ ) self.assertIsInstance(A_,A_ ) self.assertEqual(text_a.replace(' ','' ),A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass
310
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_CAUSAL_LM_MAPPING _lowercase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = pipeline(task='text-generation',model='sshleifer/tiny-ctrl',framework='pt' ) # Using `do_sample=False` to force deterministic output __UpperCamelCase = text_generator('This is a test',do_sample=A_ ) self.assertEqual( A_,[ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ],) __UpperCamelCase = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_,[ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ],) __UpperCamelCase = text_generator('This is a test',do_sample=A_,num_return_sequences=2,return_tensors=A_ ) self.assertEqual( A_,[ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ],) __UpperCamelCase = text_generator.model.config.eos_token_id __UpperCamelCase = '<pad>' __UpperCamelCase = text_generator( ['This is a test', 'This is a second test'],do_sample=A_,num_return_sequences=2,batch_size=2,return_tensors=A_,) self.assertEqual( A_,[ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ],) @require_tf def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = pipeline(task='text-generation',model='sshleifer/tiny-ctrl',framework='tf' ) # Using `do_sample=False` to force deterministic output __UpperCamelCase = text_generator('This is a test',do_sample=A_ ) self.assertEqual( A_,[ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ],) __UpperCamelCase = text_generator(['This is a test', 'This is a second test'],do_sample=A_ ) self.assertEqual( A_,[ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ],) def snake_case_ ( self: Dict,A_: List[Any],A_: int,A_: List[Any] ): '''simple docstring''' __UpperCamelCase = TextGenerationPipeline(model=A_,tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'Hello I believe in' __UpperCamelCase = pipeline('text-generation',model='hf-internal-testing/tiny-random-gpt2' ) __UpperCamelCase = text_generator(A_ ) self.assertEqual( A_,[{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}],) __UpperCamelCase = text_generator(A_,stop_sequence=' fe' ) self.assertEqual(A_,[{'generated_text': 'Hello I believe in fe'}] ) def snake_case_ ( self: int,A_: List[str],A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = text_generator.model __UpperCamelCase = text_generator.tokenizer __UpperCamelCase = text_generator('This is a test' ) self.assertEqual(A_,[{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __UpperCamelCase = text_generator('This is a test',return_full_text=A_ ) self.assertEqual(A_,[{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test',outputs[0]['generated_text'] ) __UpperCamelCase = pipeline(task='text-generation',model=A_,tokenizer=A_,return_full_text=A_ ) __UpperCamelCase = text_generator('This is a test' ) self.assertEqual(A_,[{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test',outputs[0]['generated_text'] ) __UpperCamelCase = text_generator('This is a test',return_full_text=A_ ) self.assertEqual(A_,[{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __UpperCamelCase = text_generator(['This is great !', 'Something else'],num_return_sequences=2,do_sample=A_ ) self.assertEqual( A_,[ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ],) if text_generator.tokenizer.pad_token is not None: __UpperCamelCase = text_generator( ['This is great !', 'Something else'],num_return_sequences=2,batch_size=2,do_sample=A_ ) self.assertEqual( A_,[ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ],) with self.assertRaises(A_ ): __UpperCamelCase = text_generator('test',return_full_text=A_,return_text=A_ ) with self.assertRaises(A_ ): __UpperCamelCase = text_generator('test',return_full_text=A_,return_tensors=A_ ) with self.assertRaises(A_ ): __UpperCamelCase = text_generator('test',return_text=A_,return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __UpperCamelCase = text_generator('' ) self.assertEqual(A_,[{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __UpperCamelCase = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __UpperCamelCase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500,max_new_tokens=20 ) __UpperCamelCase = text_generator('This is a test' * 500,handle_long_generation='hole',max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500,handle_long_generation='hole',max_new_tokens=tokenizer.model_max_length + 10,) @require_torch @require_accelerate @require_torch_gpu def snake_case_ ( self: Optional[Any] ): '''simple docstring''' import torch # Classic `model_kwargs` __UpperCamelCase = pipeline( model='hf-internal-testing/tiny-random-bloom',model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa},) self.assertEqual(pipe.model.device,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype,torch.bfloataa ) __UpperCamelCase = pipe('This is a test' ) self.assertEqual( A_,[ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ],) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto',torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype,torch.bfloataa ) __UpperCamelCase = pipe('This is a test' ) self.assertEqual( A_,[ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ],) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto' ) self.assertEqual(pipe.model.device,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype,torch.floataa ) __UpperCamelCase = pipe('This is a test' ) self.assertEqual( A_,[ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ],) @require_torch @require_torch_gpu def snake_case_ ( self: List[str] ): '''simple docstring''' import torch __UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device=0,torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def snake_case_ ( self: int ): '''simple docstring''' import torch __UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto',torch_dtype=torch.floataa ) pipe('This is a test',do_sample=A_,top_p=0.5 ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = 'Hello world' __UpperCamelCase = pipeline('text-generation',model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": __UpperCamelCase = logging.get_logger('transformers.generation.tf_utils' ) else: __UpperCamelCase = logging.get_logger('transformers.generation.utils' ) __UpperCamelCase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: __UpperCamelCase = text_generator(A_,max_length=10,max_new_tokens=1 ) self.assertIn(A_,cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: __UpperCamelCase = text_generator(A_,max_new_tokens=1 ) self.assertNotIn(A_,cl.out ) with CaptureLogger(A_ ) as cl: __UpperCamelCase = text_generator(A_,max_length=10 ) self.assertNotIn(A_,cl.out )
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """conditional_detr""" _lowercase = ["""past_key_values"""] _lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Any,A_: List[str]=True,A_: Tuple=None,A_: str=3,A_: List[str]=300,A_: Tuple=6,A_: Tuple=2048,A_: List[Any]=8,A_: List[Any]=6,A_: str=2048,A_: Optional[Any]=8,A_: Any=0.0,A_: Any=0.0,A_: List[str]=True,A_: Optional[Any]="relu",A_: List[str]=256,A_: str=0.1,A_: Tuple=0.0,A_: Dict=0.0,A_: Tuple=0.0_2,A_: str=1.0,A_: Optional[Any]=False,A_: List[str]="sine",A_: List[str]="resnet50",A_: Tuple=True,A_: str=False,A_: Tuple=2,A_: Any=5,A_: int=2,A_: Any=1,A_: str=1,A_: List[Any]=2,A_: Optional[Any]=5,A_: Optional[int]=2,A_: Tuple=0.2_5,**A_: Optional[int],): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(A_,A_ ): __UpperCamelCase = backbone_config.get('model_type' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(A_ ) __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = cls_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=A_,**A_ ) @property def snake_case_ ( self: List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.d_model def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output class __lowerCamelCase (_a ): _lowercase = version.parse("""1.11""" ) @property def snake_case_ ( self: Dict ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def snake_case_ ( self: Tuple ): '''simple docstring''' return 1E-5 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 12
310
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = torch.device('''cpu''') def _A ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def _A ( _lowercase ) -> Any: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _A ( _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = dct.pop(_lowercase ) __UpperCamelCase = val def _A ( _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = [] for k in state_dict.keys(): __UpperCamelCase = k if ".pwconv" in k: __UpperCamelCase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __UpperCamelCase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __UpperCamelCase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __UpperCamelCase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __UpperCamelCase = k_new.split('.' ) if ls[2].isdigit(): __UpperCamelCase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __UpperCamelCase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCamelCase = 10_00 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCamelCase = [3, 3, 6, 4] __UpperCamelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": __UpperCamelCase = [3, 3, 9, 6] __UpperCamelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": __UpperCamelCase = [4, 3, 10, 5] __UpperCamelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": __UpperCamelCase = [4, 4, 12, 6] __UpperCamelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' , check_hash=_lowercase ) else: __UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) __UpperCamelCase = checkpoint __UpperCamelCase = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model __UpperCamelCase = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs __UpperCamelCase = prepare_img() __UpperCamelCase = ViTImageProcessor.from_pretrained('preprocessor_config' ) __UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ) # compare outputs from both models __UpperCamelCase = get_expected_output(_lowercase ) __UpperCamelCase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') __snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
310
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase (_a ): _lowercase = """xlm-roberta""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
310
1
def _A ( _lowercase ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
310
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase (_a ): _lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) _lowercase = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) _lowercase = field( default=_a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) _lowercase = field( default=_a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(A_,A_ ): __UpperCamelCase = v.to_dict() return d
310
1
import comet # From: unbabel-comet import torch import datasets __snake_case = datasets.logging.get_logger(__name__) __snake_case = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' __snake_case = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' __snake_case = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,homepage='https://unbabel.github.io/COMET/html/index.html',inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'sources': datasets.Value('string',id='sequence' ), 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/Unbabel/COMET'],reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ],) def snake_case_ ( self: Tuple,A_: str ): '''simple docstring''' if self.config_name == "default": __UpperCamelCase = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: __UpperCamelCase = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def snake_case_ ( self: List[str],A_: Any,A_: Optional[Any],A_: List[str],A_: Optional[Any]=None,A_: str=False ): '''simple docstring''' if gpus is None: __UpperCamelCase = 1 if torch.cuda.is_available() else 0 __UpperCamelCase = {'src': sources, 'mt': predictions, 'ref': references} __UpperCamelCase = [dict(zip(A_,A_ ) ) for t in zip(*data.values() )] __UpperCamelCase, __UpperCamelCase = self.scorer.predict(A_,gpus=A_,progress_bar=A_ ) return {"mean_score": mean_score, "scores": scores}
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Dict,**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Optional[Any],A_: List[str],A_: str,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = pipeline( 'zero-shot-object-detection',model='hf-internal-testing/tiny-random-owlvit-object-detection' ) __UpperCamelCase = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def snake_case_ ( self: List[str],A_: List[str],A_: Tuple ): '''simple docstring''' __UpperCamelCase = object_detector(examples[0],threshold=0.0 ) __UpperCamelCase = len(A_ ) self.assertGreater(A_,0 ) self.assertEqual( A_,[ { 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, } for i in range(A_ ) ],) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def snake_case_ ( self: Any ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = pipeline( 'zero-shot-object-detection',model='hf-internal-testing/tiny-random-owlvit-object-detection' ) __UpperCamelCase = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png',candidate_labels=['cat', 'remote', 'couch'],threshold=0.6_4,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ],) __UpperCamelCase = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ],threshold=0.6_4,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ],) @require_torch @slow def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = pipeline('zero-shot-object-detection' ) __UpperCamelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ],) __UpperCamelCase = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ],) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ],) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def snake_case_ ( self: Tuple ): '''simple docstring''' pass @require_torch @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = 0.2 __UpperCamelCase = pipeline('zero-shot-object-detection' ) __UpperCamelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],threshold=A_,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ],) @require_torch @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 2 __UpperCamelCase = pipeline('zero-shot-object-detection' ) __UpperCamelCase = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],top_k=A_,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ],)
310
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : def __init__( self: Any,A_: Tuple,A_: List[str]=13,A_: Dict=30,A_: int=2,A_: Tuple=3,A_: Optional[int]=True,A_: str=True,A_: Optional[Any]=32,A_: Optional[int]=5,A_: Any=4,A_: Optional[int]=37,A_: int="gelu",A_: Dict=0.1,A_: Tuple=0.1,A_: List[str]=10,A_: Optional[int]=0.0_2,A_: List[Any]=None,A_: Optional[int]=2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ ( self: str ): '''simple docstring''' return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=A_,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,) def snake_case_ ( self: Optional[int],A_: Tuple,A_: str,A_: str ): '''simple docstring''' __UpperCamelCase = ViTModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: Optional[Any],A_: Any,A_: Union[str, Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = ViTForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = ViTForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self: str,A_: List[Any],A_: List[Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = ViTForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = ViTForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowercase = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = ViTModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,has_text_modality=A_,hidden_size=37 ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case_ ( self: List[Any] ): '''simple docstring''' pass def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_,nn.Linear ) ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(A_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1],A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ViTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _A ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCamelCase (unittest.TestCase ): @cached_property def snake_case_ ( self: List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(A_ ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=A_,return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**A_ ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape,A_ ) __UpperCamelCase = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3],A_,atol=1E-4 ) ) @slow def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = ViTModel.from_pretrained('facebook/dino-vits8' ).to(A_ ) __UpperCamelCase = ViTImageProcessor.from_pretrained('facebook/dino-vits8',size=480 ) __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=A_,return_tensors='pt' ) __UpperCamelCase = inputs.pixel_values.to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase = model(A_,interpolate_pos_encoding=A_ ) # verify the logits __UpperCamelCase = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape,A_ ) __UpperCamelCase = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3],A_,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ViTModel.from_pretrained('facebook/dino-vits8',torch_dtype=torch.floataa,device_map='auto' ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=A_,return_tensors='pt' ) __UpperCamelCase = inputs.pixel_values.to(A_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __UpperCamelCase = model(A_ )
310
import os def _A ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file: __UpperCamelCase = str(file.readlines()[0] ) __UpperCamelCase = names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase = 0 __UpperCamelCase = 0 for i, name in enumerate(_lowercase ): for letter in name: name_score += ord(_lowercase ) - 64 total_score += (i + 1) * name_score __UpperCamelCase = 0 return total_score if __name__ == "__main__": print(solution())
310
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = '''hf-internal-testing/tiny-random-bert''' __snake_case = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __snake_case = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = cached_file(A_,A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_,A_ ) ) ) with open(os.path.join(A_,'refs','main' ) ) as f: __UpperCamelCase = f.read() self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. __UpperCamelCase = cached_file(A_,A_ ) self.assertEqual(A_,A_ ) # Using a specific revision to test the full commit hash. __UpperCamelCase = cached_file(A_,A_,revision='9b8c223' ) self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' with self.assertRaisesRegex(A_,'is not a valid model identifier' ): __UpperCamelCase = cached_file('tiny-random-bert',A_ ) with self.assertRaisesRegex(A_,'is not a valid git identifier' ): __UpperCamelCase = cached_file(A_,A_,revision='aaaa' ) with self.assertRaisesRegex(A_,'does not appear to have a file named' ): __UpperCamelCase = cached_file(A_,'conf' ) def snake_case_ ( self: List[Any] ): '''simple docstring''' with self.assertRaisesRegex(A_,'does not appear to have a file named' ): __UpperCamelCase = cached_file(A_,'conf' ) with open(os.path.join(A_,'refs','main' ) ) as f: __UpperCamelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(A_,'.no_exist',A_,'conf' ) ) ) __UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __UpperCamelCase = cached_file(A_,'conf',local_files_only=A_,_raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Optional[Any] ): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) def snake_case_ ( self: Any ): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased','ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_,'is not a valid model identifier' ): get_file_from_repo('bert-base-case',A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_,'is not a valid git identifier' ): get_file_from_repo('bert-base-cased',A_,revision='ahaha' ) __UpperCamelCase = get_file_from_repo('bert-base-cased',A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. __UpperCamelCase = json.loads(open(A_,'r' ).read() ) self.assertEqual(config['hidden_size'],768 ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = Path(A_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(A_,'a.txt' ),str(A_ ) ) self.assertIsNone(get_file_from_repo(A_,'b.txt' ) )
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case = logging.get_logger(__name__) @add_end_docstrings(_a ) class __lowerCamelCase (_a ): def __init__( self: Dict,**A_: str ): '''simple docstring''' super().__init__(**A_ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self: List[Any],A_: Union[np.ndarray, bytes, str],**A_: Any ): '''simple docstring''' return super().__call__(A_,**A_ ) def snake_case_ ( self: int,**A_: List[Any] ): '''simple docstring''' __UpperCamelCase = {} if "candidate_labels" in kwargs: __UpperCamelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __UpperCamelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def snake_case_ ( self: Dict,A_: List[Any],A_: Optional[int]=None,A_: Any="This is a sound of {}." ): '''simple docstring''' if isinstance(A_,A_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __UpperCamelCase = requests.get(A_ ).content else: with open(A_,'rb' ) as f: __UpperCamelCase = f.read() if isinstance(A_,A_ ): __UpperCamelCase = ffmpeg_read(A_,self.feature_extractor.sampling_rate ) if not isinstance(A_,np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __UpperCamelCase = self.feature_extractor( [audio],sampling_rate=self.feature_extractor.sampling_rate,return_tensors='pt' ) __UpperCamelCase = candidate_labels __UpperCamelCase = [hypothesis_template.format(A_ ) for x in candidate_labels] __UpperCamelCase = self.tokenizer(A_,return_tensors=self.framework,padding=A_ ) __UpperCamelCase = [text_inputs] return inputs def snake_case_ ( self: int,A_: Dict ): '''simple docstring''' __UpperCamelCase = model_inputs.pop('candidate_labels' ) __UpperCamelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0],A_ ): __UpperCamelCase = text_inputs[0] else: # Batching case. __UpperCamelCase = text_inputs[0][0] __UpperCamelCase = self.model(**A_,**A_ ) __UpperCamelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def snake_case_ ( self: int,A_: Any ): '''simple docstring''' __UpperCamelCase = model_outputs.pop('candidate_labels' ) __UpperCamelCase = model_outputs['logits'][0] if self.framework == "pt": __UpperCamelCase = logits.softmax(dim=0 ) __UpperCamelCase = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __UpperCamelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(A_,A_ ),key=lambda A_ : -x[0] ) ] return result
310
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
1
import warnings from .generation import TFGenerationMixin class __lowerCamelCase (_a ): # warning at import time warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , _a , )
310
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
310
1