code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
__snake_case = parse(importlib.metadata.version('''torch'''))
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
__UpperCamelCase = STR_OPERATION_TO_FUNC[operation]
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = parse(importlib.metadata.version(_lowercase ) )
return operation(_lowercase , parse(_lowercase ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return compare_versions(_lowercase , _lowercase , _lowercase )
| 310
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = MgpstrTokenizer
_lowercase = False
_lowercase = {}
_lowercase = False
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
def snake_case_ ( self: Dict,**A_: Tuple ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'tester'
__UpperCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ )
self.assertEqual(len(A_ ),1 )
__UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ )
__UpperCamelCase = tokenizer.tokenize(A_ )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertNotEqual(len(A_ ),0 )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertIsInstance(A_,A_ )
self.assertEqual(text_a.replace(' ','' ),A_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
| 310
| 1
|
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = abs(_lowercase )
__UpperCamelCase = 0
while n > 0:
res += n % 10
n //= 10
return res
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = abs(_lowercase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def _A ( _lowercase ) -> int:
"""simple docstring"""
return sum(int(_lowercase ) for c in str(abs(_lowercase ) ) )
def _A ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_lowercase , _lowercase ) -> None:
__UpperCamelCase = f'''{func.__name__}({value})'''
__UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' )
print(f'''{call:56} = {func(_lowercase )} -- {timing:.4f} seconds''' )
for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(_lowercase , _lowercase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 310
|
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"""The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = RobertaEmbeddings(A_ )
self.init_weights()
@add_start_docstrings(
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Any,A_: int ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = config.num_labels
__UpperCamelCase = config.num_hidden_layers
__UpperCamelCase = DeeRobertaModel(A_ )
__UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels )
@add_start_docstrings_to_model_forward(A_ )
def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,):
'''simple docstring'''
__UpperCamelCase = self.num_layers
try:
__UpperCamelCase = self.roberta(
A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,)
__UpperCamelCase = outputs[1]
__UpperCamelCase = self.dropout(A_ )
__UpperCamelCase = self.classifier(A_ )
__UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCamelCase = e.message
__UpperCamelCase = e.exit_layer
__UpperCamelCase = outputs[0]
if not self.training:
__UpperCamelCase = entropy(A_ )
__UpperCamelCase = []
__UpperCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
__UpperCamelCase = []
for highway_exit in outputs[-1]:
__UpperCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(A_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(A_ )
if train_highway:
__UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCamelCase = (loss,) + outputs
if not self.training:
__UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
| 1
|
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('''.''')
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '
f'''{test_file} instead.''' )
__UpperCamelCase = components[-1]
if not test_fn.endswith('py' ):
raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('test_modeling_' ):
raise ValueError(
f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
__UpperCamelCase = components[:-1] + [test_fn.replace('.py' , '' )]
__UpperCamelCase = '.'.join(_lowercase )
return test_module_path
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = get_module_path(_lowercase )
__UpperCamelCase = importlib.import_module(_lowercase )
return test_module
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = get_test_module(_lowercase )
for attr in dir(_lowercase ):
if attr.endswith('ModelTester' ):
tester_classes.append(getattr(_lowercase , _lowercase ) )
# sort with class names
return sorted(_lowercase , key=lambda _lowercase : x.__name__ )
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = get_test_module(_lowercase )
for attr in dir(_lowercase ):
__UpperCamelCase = getattr(_lowercase , _lowercase )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
__UpperCamelCase = getattr(_lowercase , 'all_model_classes' , [] )
if len(_lowercase ) > 0:
test_classes.append(_lowercase )
# sort with class names
return sorted(_lowercase , key=lambda _lowercase : x.__name__ )
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = get_test_classes(_lowercase )
__UpperCamelCase = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(_lowercase , key=lambda _lowercase : x.__name__ )
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = test_class()
if hasattr(_lowercase , 'setUp' ):
test.setUp()
__UpperCamelCase = None
if hasattr(_lowercase , 'model_tester' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
__UpperCamelCase = test.model_tester.__class__
return model_tester
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = get_test_classes(_lowercase )
__UpperCamelCase = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(_lowercase )
# sort with class names
return sorted(_lowercase , key=lambda _lowercase : x.__name__ )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = get_test_classes_for_model(_lowercase , _lowercase )
__UpperCamelCase = []
for test_class in test_classes:
__UpperCamelCase = get_model_tester_from_test_class(_lowercase )
if tester_class is not None:
tester_classes.append(_lowercase )
# sort with class names
return sorted(_lowercase , key=lambda _lowercase : x.__name__ )
def _A ( _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = get_test_classes(_lowercase )
__UpperCamelCase = {test_class: get_model_tester_from_test_class(_lowercase ) for test_class in test_classes}
return test_tester_mapping
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = get_model_classes(_lowercase )
__UpperCamelCase = {
model_class: get_test_classes_for_model(_lowercase , _lowercase ) for model_class in model_classes
}
return model_test_mapping
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = get_model_classes(_lowercase )
__UpperCamelCase = {
model_class: get_tester_classes_for_model(_lowercase , _lowercase ) for model_class in model_classes
}
return model_to_tester_mapping
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
return o
elif isinstance(_lowercase , _lowercase ):
return o.__name__
elif isinstance(_lowercase , (list, tuple) ):
return [to_json(_lowercase ) for x in o]
elif isinstance(_lowercase , _lowercase ):
return {to_json(_lowercase ): to_json(_lowercase ) for k, v in o.items()}
else:
return o
| 310
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
| 1
|
import warnings
from functools import wraps
from typing import Callable
def _A ( _lowercase ) -> Callable:
"""simple docstring"""
@wraps(_lowercase )
def _inner_fn(*_lowercase , **_lowercase ):
warnings.warn(
(f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _lowercase , )
return fn(*_lowercase , **_lowercase )
return _inner_fn
| 310
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
| 1
|
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 310
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
| 1
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 310
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ):
return False
return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule )
def _A ( _lowercase , _lowercase = True ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCamelCase = is_compiled_module(_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(_lowercase , _lowercase ):
__UpperCamelCase = model.module
if not keep_fpaa_wrapper:
__UpperCamelCase = getattr(_lowercase , 'forward' )
__UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase )
if original_forward is not None:
while hasattr(_lowercase , '__wrapped__' ):
__UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
__UpperCamelCase = forward
if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ):
convert_model(_lowercase , to_transformer_engine=_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = compiled_model
return model
def _A ( ) -> Any:
"""simple docstring"""
PartialState().wait_for_everyone()
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(_lowercase , _lowercase )
elif PartialState().local_process_index == 0:
torch.save(_lowercase , _lowercase )
@contextmanager
def _A ( **_lowercase ) -> Union[str, Any]:
"""simple docstring"""
for key, value in kwargs.items():
__UpperCamelCase = str(_lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ):
__UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase )
if hasattr(_lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(_lowercase , '__name__' ):
return obj.__name__
return str(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key, value in source.items():
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = destination.setdefault(_lowercase , {} )
merge_dicts(_lowercase , _lowercase )
else:
__UpperCamelCase = value
return destination
def _A ( _lowercase = None ) -> bool:
"""simple docstring"""
if port is None:
__UpperCamelCase = 2_95_00
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 310
| 1
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: Optional[Any],A_: bool = True,A_: Optional[Dict[str, int]] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: Dict[str, int] = None,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: Any,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_,param_name='crop_size' )
__UpperCamelCase = do_resize
__UpperCamelCase = do_rescale
__UpperCamelCase = do_normalize
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = rescale_factor
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BILINEAR,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__UpperCamelCase = (size['height'], size['width'])
else:
raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: Any,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ )
def snake_case_ ( self: Tuple,A_: np.ndarray,A_: float,A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[Any] ):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: Optional[int],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[Any],):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: int,A_: ImageInput,A_: Optional[bool] = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: int = None,A_: Optional[bool] = None,A_: Optional[float] = None,A_: Optional[bool] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: Union[str, ChannelDimension] = ChannelDimension.FIRST,**A_: Dict,):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(A_,param_name='crop_size',default_to_square=A_ )
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_ )
if not is_batched(A_ ):
__UpperCamelCase = [images]
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 310
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
| 1
|
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
__snake_case = '''sshleifer/bart-tiny-random'''
__snake_case = '''patrickvonplaten/t5-tiny-random'''
@require_torch
class __lowerCamelCase (unittest.TestCase ):
@cached_property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return AutoConfig.from_pretrained(A_ )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=1 )
self.assertEqual(student.config.num_hidden_layers,1 )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=A_ )
self.assertEqual(student.config.encoder_layers,1 )
self.assertEqual(student.config.decoder_layers,self.teacher_config.encoder_layers )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase, *__UpperCamelCase = create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=1,d=1 )
self.assertEqual(student.config.encoder_layers,1 )
self.assertEqual(student.config.decoder_layers,1 )
def snake_case_ ( self: str ):
'''simple docstring'''
with self.assertRaises(A_ ):
create_student_by_copying_alternating_layers(A_,tempfile.mkdtemp(),e=A_,d=A_ )
| 310
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
| 1
|
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: Optional[int],A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: Dict[str, int] = None,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: bool = True,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'shortest_edge': 224}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_,param_name='crop_size' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCamelCase = do_convert_rgb
def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ )
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: Optional[int],A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ )
def snake_case_ ( self: int,A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[str],):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: str,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: int = None,A_: bool = None,A_: float = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: bool = None,A_: Optional[Union[str, TensorType]] = None,A_: Optional[ChannelDimension] = ChannelDimension.FIRST,**A_: List[Any],):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_,param_name='size',default_to_square=A_ )
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(A_,param_name='crop_size',default_to_square=A_ )
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCamelCase = [convert_to_rgb(A_ ) for image in images]
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 310
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
| 1
|
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__snake_case = Path(__file__).resolve().parents[3] / '''src'''
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(4_2)
__snake_case = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''}
__snake_case = '''zero2'''
__snake_case = '''zero3'''
__snake_case = [ZEROa, ZEROa]
def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = parameterized.to_safe_name('_'.join(str(_lowercase ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
__snake_case = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __lowerCamelCase (_a ):
@parameterized.expand(A_,name_func=A_ )
def snake_case_ ( self: Optional[Any],A_: str,A_: Optional[int] ):
'''simple docstring'''
self.run_and_check(
stage=A_,model=A_,distributed=A_,fpaa=A_,)
@require_torch_multi_gpu
@parameterized.expand(A_,name_func=A_ )
def snake_case_ ( self: Tuple,A_: Any,A_: Any ):
'''simple docstring'''
self.run_and_check(
stage=A_,model=A_,distributed=A_,fpaa=A_,)
@parameterized.expand(A_,name_func=A_ )
def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[int] ):
'''simple docstring'''
self.run_and_check(
stage=A_,model=A_,distributed=A_,fpaa=A_,)
@require_torch_multi_gpu
@parameterized.expand(A_,name_func=A_ )
def snake_case_ ( self: Union[str, Any],A_: int,A_: Tuple ):
'''simple docstring'''
self.run_and_check(
stage=A_,model=A_,distributed=A_,fpaa=A_,)
def snake_case_ ( self: Any,A_: List[Any] ):
'''simple docstring'''
pass
def snake_case_ ( self: Optional[Any],A_: str,A_: str,A_: int = 10,A_: bool = True,A_: bool = True,A_: bool = True,):
'''simple docstring'''
__UpperCamelCase = models[model]
__UpperCamelCase = self.run_trainer(
stage=A_,model_name=A_,eval_steps=A_,num_train_epochs=1,distributed=A_,fpaa=A_,)
self.do_checks(A_ )
return output_dir
def snake_case_ ( self: Union[str, Any],A_: str,A_: str,A_: int = 10,A_: int = 1,A_: bool = True,A_: bool = True,):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir('./xxx',after=A_ )
__UpperCamelCase = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(A_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__UpperCamelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
__UpperCamelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
__UpperCamelCase = self.get_launcher(A_ )
__UpperCamelCase = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(A_,env=self.get_env() )
return output_dir
def snake_case_ ( self: str,A_: List[Any]=False ):
'''simple docstring'''
__UpperCamelCase = min(2,get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
| 310
|
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
__snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ):
__UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip()
__UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 310
| 1
|
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = MobileNetVaConfig(layer_norm_eps=0.0_01 )
if "_quant" in model_name:
raise ValueError('Quantized models are not supported.' )
__UpperCamelCase = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , _lowercase )
if matches:
__UpperCamelCase = float(matches[1] )
__UpperCamelCase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCamelCase = 10_01
__UpperCamelCase = 'imagenet-1k-id2label.json'
__UpperCamelCase = 'huggingface/label-files'
__UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(_lowercase ) + 1: v for k, v in idalabel.items()}
__UpperCamelCase = 'background'
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
return config
def _A ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = get_mobilenet_va_config(_lowercase )
# Load 🤗 model
__UpperCamelCase = MobileNetVaForImageClassification(_lowercase ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_lowercase , _lowercase , _lowercase )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCamelCase = MobileNetVaImageProcessor(
crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , )
__UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' )
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits
assert logits.shape == (1, 10_01)
if model_name == "mobilenet_v1_1.0_224":
__UpperCamelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCamelCase = torch.tensor([-3.94_40, -2.31_41, -0.33_33] )
else:
__UpperCamelCase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
print('Pushing to the hub...' )
__UpperCamelCase = 'google/' + model_name
image_processor.push_to_hub(_lowercase )
model.push_to_hub(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''mobilenet_v1_1.0_224''',
type=str,
help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''',
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 310
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
def merge(_lowercase , _lowercase ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowercase ) <= 1:
return collection
__UpperCamelCase = len(_lowercase ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 310
| 1
|
def _A ( _lowercase = 4_00_00_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase, __UpperCamelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_lowercase )
__UpperCamelCase, __UpperCamelCase = b, a + b
return sum(_lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 310
|
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 0
_lowercase = False
_lowercase = 3.0
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs(),{} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} )
self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} )
@require_cuda
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale,1_0_2_4.0 )
self.assertEqual(scaler._growth_factor,2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor,0.5 )
self.assertEqual(scaler._growth_interval,2000 )
self.assertEqual(scaler._enabled,A_ )
@require_multi_gpu
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_,env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
__snake_case = Accelerator(kwargs_handlers=[ddp_scaler])
__snake_case = torch.nn.Linear(1_0_0, 2_0_0)
__snake_case = accelerator.prepare(model)
# Check the values changed in kwargs
__snake_case = ''''''
__snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 310
| 1
|
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 310
|
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCamelCase (_a ):
_lowercase = ["""image_processor""", """tokenizer"""]
_lowercase = """OwlViTImageProcessor"""
_lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.',A_,)
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_,A_ )
def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )):
__UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )]
elif isinstance(A_,A_ ) and isinstance(text[0],A_ ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(A_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A_ ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(A_ ))
__UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )
encodings.append(A_ )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
A_,return_tensors=A_,**A_ ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ),tensor_type=A_ )
def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process(*A_,**A_ )
def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*A_,**A_ )
def snake_case_ ( self: str,*A_: Tuple,**A_: int ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*A_,**A_ )
def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*A_,**A_ )
def snake_case_ ( self: int,*A_: Any,**A_: Tuple ):
'''simple docstring'''
return self.tokenizer.decode(*A_,**A_ )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,)
return self.image_processor_class
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,)
return self.image_processor
| 310
| 1
|
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__snake_case = 2_5_6_0_4_7
__snake_case = 2_5_6_1_4_5
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = NllbTokenizer
_lowercase = NllbTokenizerFast
_lowercase = True
_lowercase = True
_lowercase = {}
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCamelCase = NllbTokenizer(A_,keep_accents=A_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = NllbTokenizer(A_,keep_accents=A_ )
__UpperCamelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(A_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A_ ),[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],)
__UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
self.assertListEqual(
A_,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
],)
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(
A_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ )
__UpperCamelCase = self.tokenizer_class.from_pretrained(A_,**A_ )
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = tokenizer_r.save_pretrained(A_ )
__UpperCamelCase = tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
__UpperCamelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(A_,A_ )
# Checks everything loads correctly in the same way
__UpperCamelCase = tokenizer_r.from_pretrained(A_ )
__UpperCamelCase = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_,A_ ) )
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=True
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = tokenizer_r.save_pretrained(A_,legacy_format=A_ )
__UpperCamelCase = tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files
self.assertSequenceEqual(A_,A_ )
# Checks everything loads correctly in the same way
__UpperCamelCase = tokenizer_r.from_pretrained(A_ )
__UpperCamelCase = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_,A_ ) )
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=False
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = tokenizer_r.save_pretrained(A_,legacy_format=A_ )
__UpperCamelCase = tokenizer_p.save_pretrained(A_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCamelCase = tokenizer_r.from_pretrained(A_ )
__UpperCamelCase = tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_,A_ ) )
shutil.rmtree(A_ )
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
if not self.test_seqaseq:
return
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Longer text that will definitely require truncation.
__UpperCamelCase = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'
' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'
' will only worsen the violence and misery for millions of people.',
]
__UpperCamelCase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
try:
__UpperCamelCase = tokenizer.prepare_seqaseq_batch(
src_texts=A_,tgt_texts=A_,max_length=3,max_target_length=10,return_tensors='pt',src_lang='eng_Latn',tgt_lang='ron_Latn',)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1],3 )
self.assertEqual(batch.labels.shape[1],10 )
# max_target_length will default to max_length if not specified
__UpperCamelCase = tokenizer.prepare_seqaseq_batch(
A_,tgt_texts=A_,max_length=3,return_tensors='pt' )
self.assertEqual(batch.input_ids.shape[1],3 )
self.assertEqual(batch.labels.shape[1],3 )
__UpperCamelCase = tokenizer.prepare_seqaseq_batch(
src_texts=A_,max_length=3,max_target_length=10,return_tensors='pt' )
self.assertEqual(batch_encoder_only.input_ids.shape[1],3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1],3 )
self.assertNotIn('decoder_input_ids',A_ )
@unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' )
def snake_case_ ( self: Any ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCamelCase = [AddedToken('<special>',lstrip=A_ )]
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_,additional_special_tokens=A_,**A_ )
__UpperCamelCase = tokenizer_r.encode('Hey this is a <special> token' )
__UpperCamelCase = tokenizer_r.encode('<special>',add_special_tokens=A_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_,additional_special_tokens=A_,**A_,)
__UpperCamelCase = self.tokenizer_class.from_pretrained(
A_,additional_special_tokens=A_,**A_ )
__UpperCamelCase = tokenizer_p.encode('Hey this is a <special> token' )
__UpperCamelCase = tokenizer_cr.encode('Hey this is a <special> token' )
self.assertEqual(A_,A_ )
self.assertEqual(A_,A_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
_lowercase = """facebook/nllb-200-distilled-600M"""
_lowercase = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
_lowercase = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"""
""" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"""
""" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
_lowercase = [
25_6047,
1_6297,
13_4408,
8165,
24_8066,
1_4734,
950,
1135,
10_5721,
3573,
83,
2_7352,
108,
4_9486,
2,
]
@classmethod
def snake_case_ ( cls: Any ):
'''simple docstring'''
__UpperCamelCase = NllbTokenizer.from_pretrained(
cls.checkpoint_name,src_lang='eng_Latn',tgt_lang='ron_Latn' )
__UpperCamelCase = 1
return cls
def snake_case_ ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'],25_6001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'],25_6002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'],25_6057 )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens,A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
self.assertIn(A_,self.tokenizer.all_special_ids )
# fmt: off
__UpperCamelCase = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047]
# fmt: on
__UpperCamelCase = self.tokenizer.decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=A_ )
self.assertEqual(A_,A_ )
self.assertNotIn(self.tokenizer.eos_token,A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0],A_ )
__UpperCamelCase = 10
__UpperCamelCase = self.tokenizer(A_,max_length=A_,truncation=A_ ).input_ids[0]
self.assertEqual(ids[-1],2 )
self.assertEqual(ids[0],A_ )
self.assertEqual(len(A_ ),A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ),[25_6203, 3] )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(A_ )
__UpperCamelCase = NllbTokenizer.from_pretrained(A_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids,A_ )
@require_torch
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer(
self.src_text,text_target=self.tgt_text,padding=A_,truncation=A_,max_length=len(self.expected_src_tokens ),return_tensors='pt',)
__UpperCamelCase = shift_tokens_right(
batch['labels'],self.tokenizer.pad_token_id,self.tokenizer.lang_code_to_id['ron_Latn'] )
self.assertIsInstance(A_,A_ )
self.assertEqual((2, 15),batch.input_ids.shape )
self.assertEqual((2, 15),batch.attention_mask.shape )
__UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens,A_ )
self.assertEqual(A_,batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens,[EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer(self.src_text,padding=A_,truncation=A_,max_length=3,return_tensors='pt' )
__UpperCamelCase = self.tokenizer(
text_target=self.tgt_text,padding=A_,truncation=A_,max_length=10,return_tensors='pt' )
__UpperCamelCase = targets['input_ids']
__UpperCamelCase = shift_tokens_right(
A_,self.tokenizer.pad_token_id,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang],)
self.assertEqual(batch.input_ids.shape[1],3 )
self.assertEqual(batch.decoder_input_ids.shape[1],10 )
@require_torch
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer._build_translation_inputs(
'A test',return_tensors='pt',src_lang='eng_Latn',tgt_lang='fra_Latn' )
self.assertEqual(
nested_simplify(A_ ),{
# A, test, EOS, en_XX
'input_ids': [[25_6047, 70, 7356, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_6057,
},)
@require_torch
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = self.tokenizer(
'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] )
__UpperCamelCase = False
__UpperCamelCase = self.tokenizer(
'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
| 310
|
import math
def _A ( _lowercase ) -> int:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
__UpperCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 1:
__UpperCamelCase = f'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowercase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2
__UpperCamelCase = [3, 5]
__UpperCamelCase = 2
__UpperCamelCase = 3
for block in range(1 , _lowercase ):
for _ in range(_lowercase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(1_1):
__snake_case = 0
try:
__snake_case = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 310
| 1
|
import flax.linen as nn
import jax
import jax.numpy as jnp
class __lowerCamelCase (nn.Module ):
_lowercase = 42
_lowercase = jnp.floataa
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = nn.Conv(
self.out_channels,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,)
def __call__( self: str,A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = hidden_states.shape
__UpperCamelCase = jax.image.resize(
A_,shape=(batch, height * 2, width * 2, channels),method='nearest',)
__UpperCamelCase = self.conv(A_ )
return hidden_states
class __lowerCamelCase (nn.Module ):
_lowercase = 42
_lowercase = jnp.floataa
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = nn.Conv(
self.out_channels,kernel_size=(3, 3),strides=(2, 2),padding=((1, 1), (1, 1)),dtype=self.dtype,)
def __call__( self: Any,A_: Any ):
'''simple docstring'''
__UpperCamelCase = self.conv(A_ )
return hidden_states
class __lowerCamelCase (nn.Module ):
_lowercase = 42
_lowercase = None
_lowercase = 0.0
_lowercase = None
_lowercase = jnp.floataa
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.in_channels if self.out_channels is None else self.out_channels
__UpperCamelCase = nn.GroupNorm(num_groups=32,epsilon=1E-5 )
__UpperCamelCase = nn.Conv(
A_,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,)
__UpperCamelCase = nn.Dense(A_,dtype=self.dtype )
__UpperCamelCase = nn.GroupNorm(num_groups=32,epsilon=1E-5 )
__UpperCamelCase = nn.Dropout(self.dropout_prob )
__UpperCamelCase = nn.Conv(
A_,kernel_size=(3, 3),strides=(1, 1),padding=((1, 1), (1, 1)),dtype=self.dtype,)
__UpperCamelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCamelCase = None
if use_nin_shortcut:
__UpperCamelCase = nn.Conv(
A_,kernel_size=(1, 1),strides=(1, 1),padding='VALID',dtype=self.dtype,)
def __call__( self: List[str],A_: int,A_: Union[str, Any],A_: Tuple=True ):
'''simple docstring'''
__UpperCamelCase = hidden_states
__UpperCamelCase = self.norma(A_ )
__UpperCamelCase = nn.swish(A_ )
__UpperCamelCase = self.conva(A_ )
__UpperCamelCase = self.time_emb_proj(nn.swish(A_ ) )
__UpperCamelCase = jnp.expand_dims(jnp.expand_dims(A_,1 ),1 )
__UpperCamelCase = hidden_states + temb
__UpperCamelCase = self.norma(A_ )
__UpperCamelCase = nn.swish(A_ )
__UpperCamelCase = self.dropout(A_,A_ )
__UpperCamelCase = self.conva(A_ )
if self.conv_shortcut is not None:
__UpperCamelCase = self.conv_shortcut(A_ )
return hidden_states + residual
| 310
|
import torch
from transformers import AutoModel
class __lowerCamelCase (torch.nn.Module ):
def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(A_,self ).__init__()
__UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ )
__UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 )
__UpperCamelCase = torch.nn.Softmax(dim=1 )
def snake_case_ ( self: Tuple,**A_: Union[str, Any] ):
'''simple docstring'''
return self.bert(**A_ ).last_hidden_state
def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
return token_embeddings.sum(2,keepdim=A_ )
def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(A_,A_ ) )
def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = W_supports['sizes'].tolist()
__UpperCamelCase = W_supports['start_token_id'].item()
__UpperCamelCase = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = W_supports['input_ids'] == start_token_id
__UpperCamelCase = W_supports['input_ids'] == end_token_id
for i, size in enumerate(A_ ):
if i == 0:
__UpperCamelCase = 0
else:
__UpperCamelCase = support_sizes[i - 1]
__UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]]
__UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]]
__UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 )
__UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
__UpperCamelCase = torch.vstack((p_starts, p_start) )
__UpperCamelCase = torch.vstack((p_ends, p_end) )
else:
__UpperCamelCase = p_start
__UpperCamelCase = p_end
return p_starts, p_ends
| 310
| 1
|
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __lowerCamelCase (ctypes.Structure ):
# _fields is a specific attr expected by ctypes
_lowercase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def _A ( ) -> Optional[Any]:
"""simple docstring"""
if os.name == "nt":
__UpperCamelCase = CursorInfo()
__UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) )
__UpperCamelCase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def _A ( ) -> Any:
"""simple docstring"""
if os.name == "nt":
__UpperCamelCase = CursorInfo()
__UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) )
__UpperCamelCase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def _A ( ) -> Optional[Any]:
"""simple docstring"""
try:
hide_cursor()
yield
finally:
show_cursor()
| 310
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = BioGptTokenizer
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w' ) as fp:
fp.write(json.dumps(A_ ) )
with open(self.merges_file,'w' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: Optional[int],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'lower newer'
__UpperCamelCase = 'lower newer'
return input_text, output_text
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file )
__UpperCamelCase = 'lower'
__UpperCamelCase = ['low', 'er</w>']
__UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokens + ['<unk>']
__UpperCamelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
__UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 310
| 1
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(),encoding='utf-8',check=A_,)
assert hasattr(self,'env' )
def snake_case_ ( self: List[Any],A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = {
'enabled': True,
'processes_per_host': 8,
}
__UpperCamelCase = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
__UpperCamelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
__UpperCamelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''',instance_count=A_,instance_type=self.instance_type,debugger_hook_config=A_,hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 500,
},metric_definitions=self.env.metric_definitions,distribution=A_,py_version='py36',)
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def snake_case_ ( self: List[Any],A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.create_estimator(A_ )
# run training
estimator.fit()
# result dataframe
__UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds',99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''','w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss},A_ )
| 310
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__snake_case = r'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(_a )
class __lowerCamelCase (_a ):
_lowercase = """rag"""
_lowercase = True
def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],):
'''simple docstring'''
super().__init__(
bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__UpperCamelCase = kwargs.pop('question_encoder' )
__UpperCamelCase = question_encoder_config.pop('model_type' )
__UpperCamelCase = kwargs.pop('generator' )
__UpperCamelCase = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = reduce_loss
__UpperCamelCase = label_smoothing
__UpperCamelCase = exclude_bos_score
__UpperCamelCase = do_marginalize
__UpperCamelCase = title_sep
__UpperCamelCase = doc_sep
__UpperCamelCase = n_docs
__UpperCamelCase = max_combined_length
__UpperCamelCase = dataset
__UpperCamelCase = dataset_split
__UpperCamelCase = index_name
__UpperCamelCase = retrieval_vector_size
__UpperCamelCase = retrieval_batch_size
__UpperCamelCase = passages_path
__UpperCamelCase = index_path
__UpperCamelCase = use_dummy_dataset
__UpperCamelCase = output_retrieved
__UpperCamelCase = do_deduplication
__UpperCamelCase = use_cache
if self.forced_eos_token_id is None:
__UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ )
@classmethod
def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ):
'''simple docstring'''
return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = self.question_encoder.to_dict()
__UpperCamelCase = self.generator.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
| 310
| 1
|
def _A ( _lowercase ) -> str:
"""simple docstring"""
return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 310
|
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase (_a ):
_lowercase = """M-CLIP"""
def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ):
'''simple docstring'''
__UpperCamelCase = transformerDimSize
__UpperCamelCase = imageDimSize
super().__init__(**A_ )
class __lowerCamelCase (_a ):
_lowercase = MCLIPConfig
def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ):
'''simple docstring'''
super().__init__(A_,*A_,**A_ )
__UpperCamelCase = XLMRobertaModel(A_ )
__UpperCamelCase = torch.nn.Linear(
in_features=config.transformerDimensions,out_features=config.numDims )
def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0]
__UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(A_ ), embs
| 310
| 1
|
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class __lowerCamelCase (enum.Enum ):
_lowercase = 0
_lowercase = 1
_lowercase = 2
@add_end_docstrings(_a )
class __lowerCamelCase (_a ):
_lowercase = """
In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The
voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western
Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision
and denounces one of the men as a horse thief. Although his father initially slaps him for making such an
accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,
begging for his blessing. <eod> </s> <eos>
"""
def __init__( self: Union[str, Any],*A_: Optional[int],**A_: Dict ):
'''simple docstring'''
super().__init__(*A_,**A_ )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
__UpperCamelCase = None
if self.model.config.prefix is not None:
__UpperCamelCase = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
__UpperCamelCase = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self._sanitize_parameters(prefix=A_,**self._forward_params )
__UpperCamelCase = {**self._preprocess_params, **preprocess_params}
__UpperCamelCase = {**self._forward_params, **forward_params}
def snake_case_ ( self: str,A_: Dict=None,A_: List[str]=None,A_: int=None,A_: Any=None,A_: Union[str, Any]=None,A_: Union[str, Any]=None,A_: Dict=None,A_: Any=None,**A_: Optional[int],):
'''simple docstring'''
__UpperCamelCase = {}
if prefix is not None:
__UpperCamelCase = prefix
if prefix:
__UpperCamelCase = self.tokenizer(
A_,padding=A_,add_special_tokens=A_,return_tensors=self.framework )
__UpperCamelCase = prefix_inputs['input_ids'].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected'''
' [None, \'hole\']' )
__UpperCamelCase = handle_long_generation
preprocess_params.update(A_ )
__UpperCamelCase = generate_kwargs
__UpperCamelCase = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('`return_text` is mutually exclusive with `return_full_text`' )
if return_tensors is not None:
raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' )
__UpperCamelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('`return_text` is mutually exclusive with `return_tensors`' )
__UpperCamelCase = ReturnType.TENSORS
if return_type is not None:
__UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
__UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
__UpperCamelCase = self.tokenizer.encode(A_,add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
__UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def snake_case_ ( self: str,*A_: Tuple,**A_: Optional[Any] ):
'''simple docstring'''
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'add_space_before_punct_symbol': True} )
return super()._parse_and_tokenize(*A_,**A_ )
def __call__( self: int,A_: Tuple,**A_: List[str] ):
'''simple docstring'''
return super().__call__(A_,**A_ )
def snake_case_ ( self: Optional[int],A_: List[Any],A_: Optional[Any]="",A_: List[Any]=None,**A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer(
prefix + prompt_text,padding=A_,add_special_tokens=A_,return_tensors=self.framework )
__UpperCamelCase = prompt_text
if handle_long_generation == "hole":
__UpperCamelCase = inputs['input_ids'].shape[-1]
if "max_new_tokens" in generate_kwargs:
__UpperCamelCase = generate_kwargs['max_new_tokens']
else:
__UpperCamelCase = generate_kwargs.get('max_length',self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('We cannot infer how many new tokens are expected' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
__UpperCamelCase = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'We cannot use `hole` to handle this generation the number of desired tokens exceeds the'
' models max length' )
__UpperCamelCase = inputs['input_ids'][:, -keep_length:]
if "attention_mask" in inputs:
__UpperCamelCase = inputs['attention_mask'][:, -keep_length:]
return inputs
def snake_case_ ( self: str,A_: Optional[int],**A_: int ):
'''simple docstring'''
__UpperCamelCase = model_inputs['input_ids']
__UpperCamelCase = model_inputs.get('attention_mask',A_ )
# Allow empty prompts
if input_ids.shape[1] == 0:
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = 1
else:
__UpperCamelCase = input_ids.shape[0]
__UpperCamelCase = model_inputs.pop('prompt_text' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
__UpperCamelCase = generate_kwargs.pop('prefix_length',0 )
if prefix_length > 0:
__UpperCamelCase = 'max_new_tokens' in generate_kwargs or (
'generation_config' in generate_kwargs
and generate_kwargs['generation_config'].max_new_tokens is not None
)
if not has_max_new_tokens:
__UpperCamelCase = generate_kwargs.get('max_length' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
__UpperCamelCase = 'min_new_tokens' in generate_kwargs or (
'generation_config' in generate_kwargs
and generate_kwargs['generation_config'].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
__UpperCamelCase = self.model.generate(input_ids=A_,attention_mask=A_,**A_ )
__UpperCamelCase = generated_sequence.shape[0]
if self.framework == "pt":
__UpperCamelCase = generated_sequence.reshape(A_,out_b // in_b,*generated_sequence.shape[1:] )
elif self.framework == "tf":
__UpperCamelCase = tf.reshape(A_,(in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def snake_case_ ( self: str,A_: Optional[Any],A_: Union[str, Any]=ReturnType.FULL_TEXT,A_: Tuple=True ):
'''simple docstring'''
__UpperCamelCase = model_outputs['generated_sequence'][0]
__UpperCamelCase = model_outputs['input_ids']
__UpperCamelCase = model_outputs['prompt_text']
__UpperCamelCase = generated_sequence.numpy().tolist()
__UpperCamelCase = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
__UpperCamelCase = {'generated_token_ids': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
__UpperCamelCase = self.tokenizer.decode(
A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_,)
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
__UpperCamelCase = 0
else:
__UpperCamelCase = len(
self.tokenizer.decode(
input_ids[0],skip_special_tokens=A_,clean_up_tokenization_spaces=A_,) )
if return_type == ReturnType.FULL_TEXT:
__UpperCamelCase = prompt_text + text[prompt_length:]
else:
__UpperCamelCase = text[prompt_length:]
__UpperCamelCase = {'generated_text': all_text}
records.append(A_ )
return records
| 310
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCamelCase :
_lowercase = XGLMConfig
_lowercase = {}
_lowercase = """gelu"""
def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = ffn_dim
__UpperCamelCase = activation_function
__UpperCamelCase = activation_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 2
__UpperCamelCase = 1
def snake_case_ ( self: Dict ):
'''simple docstring'''
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = self.get_config()
__UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,)
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowercase = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Optional[Any],A_: int=True ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(),A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' )
__UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] )
__UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ )
__UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = 'left'
# use different length sentences to test batching
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_,A_ )
self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
| 310
| 1
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = '''▁'''
__snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__snake_case = {
'''vocab_file''': {
'''facebook/mbart-large-50-one-to-many-mmt''': (
'''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model'''
),
}
}
__snake_case = {
'''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4,
}
# fmt: off
__snake_case = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI''']
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = ["""input_ids""", """attention_mask"""]
_lowercase = []
_lowercase = []
def __init__( self: Optional[Any],A_: Tuple,A_: Optional[Any]=None,A_: Tuple=None,A_: List[str]="</s>",A_: Optional[int]="</s>",A_: List[str]="<s>",A_: Union[str, Any]="<unk>",A_: int="<pad>",A_: Optional[Any]="<mask>",A_: Optional[Dict[str, Any]] = None,**A_: List[Any],):
'''simple docstring'''
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token
__UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
__UpperCamelCase = kwargs.get('additional_special_tokens',[] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=A_,tgt_lang=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,)
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A_ ) )
__UpperCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCamelCase = 1
__UpperCamelCase = len(self.sp_model )
__UpperCamelCase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A_ )
}
__UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()}
__UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__UpperCamelCase = src_lang if src_lang is not None else 'en_XX'
__UpperCamelCase = self.lang_code_to_id[self._src_lang]
__UpperCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def snake_case_ ( self: int,A_: str ):
'''simple docstring'''
__UpperCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = self.__dict__.copy()
__UpperCamelCase = None
return state
def __setstate__( self: Tuple,A_: Dict ):
'''simple docstring'''
__UpperCamelCase = d
# for backward compatibility
if not hasattr(self,'sp_model_kwargs' ):
__UpperCamelCase = {}
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self: List[str],A_: str ):
'''simple docstring'''
return self.sp_model.encode(A_,out_type=A_ )
def snake_case_ ( self: Tuple,A_: str ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCamelCase = self.sp_model.PieceToId(A_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self: Optional[Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = ''
__UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A_ ) + token
__UpperCamelCase = True
__UpperCamelCase = []
else:
current_sub_tokens.append(A_ )
__UpperCamelCase = False
out_string += self.sp_model.decode(A_ )
return out_string.strip()
def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file,A_ )
elif not os.path.isfile(self.vocab_file ):
with open(A_,'wb' ) as fi:
__UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(A_ )
return (out_vocab_file,)
def snake_case_ ( self: str,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
__UpperCamelCase = [1] * len(self.prefix_tokens )
__UpperCamelCase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(A_ )) + suffix_ones
return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones
def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def snake_case_ ( self: List[str],A_: Optional[Any],A_: str,A_: Optional[str],A_: Optional[str],**A_: Dict ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__UpperCamelCase = src_lang
__UpperCamelCase = self(A_,add_special_tokens=A_,return_tensors=A_,**A_ )
__UpperCamelCase = self.convert_tokens_to_ids(A_ )
__UpperCamelCase = tgt_lang_id
return inputs
def snake_case_ ( self: Union[str, Any],A_: List[str],A_: str = "en_XX",A_: Optional[List[str]] = None,A_: str = "ro_RO",**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
return super().prepare_seqaseq_batch(A_,A_,**A_ )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def snake_case_ ( self: str ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def snake_case_ ( self: str,A_: str ):
'''simple docstring'''
__UpperCamelCase = self.lang_code_to_id[src_lang]
__UpperCamelCase = [self.cur_lang_code_id]
__UpperCamelCase = [self.eos_token_id]
def snake_case_ ( self: Union[str, Any],A_: str ):
'''simple docstring'''
__UpperCamelCase = self.lang_code_to_id[tgt_lang]
__UpperCamelCase = [self.cur_lang_code_id]
__UpperCamelCase = [self.eos_token_id]
| 310
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
__snake_case = json.load(f)
@require_torch
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
return FSMTTokenizer.from_pretrained(A_ )
def snake_case_ ( self: Dict,A_: int ):
'''simple docstring'''
__UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 2_6.0],
['ru-en', 2_2.0],
['en-de', 2_2.0],
['de-en', 2_9.0],
] )
@slow
def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = F'''facebook/wmt19-{pair}'''
__UpperCamelCase = self.get_tokenizer(A_ )
__UpperCamelCase = self.get_model(A_ )
__UpperCamelCase = bleu_data[pair]['src']
__UpperCamelCase = bleu_data[pair]['tgt']
__UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids,num_beams=8,)
__UpperCamelCase = tokenizer.batch_decode(
A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ )
__UpperCamelCase = calculate_bleu(A_,A_ )
print(A_ )
self.assertGreaterEqual(scores['bleu'],A_ )
| 310
| 1
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__snake_case = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''],
'''tokenization_mvp''': ['''MvpTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''MvpTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MvpForCausalLM''',
'''MvpForConditionalGeneration''',
'''MvpForQuestionAnswering''',
'''MvpForSequenceClassification''',
'''MvpModel''',
'''MvpPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = MgpstrTokenizer
_lowercase = False
_lowercase = {}
_lowercase = False
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
def snake_case_ ( self: Dict,**A_: Tuple ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'tester'
__UpperCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ )
self.assertEqual(len(A_ ),1 )
__UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ )
__UpperCamelCase = tokenizer.tokenize(A_ )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertNotEqual(len(A_ ),0 )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertIsInstance(A_,A_ )
self.assertEqual(text_a.replace(' ','' ),A_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
| 310
| 1
|
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = CpmAntTokenizer
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
'<d>',
'</d>',
'<s>',
'</s>',
'</_>',
'<unk>',
'<pad>',
'</n>',
'我',
'是',
'C',
'P',
'M',
'A',
'n',
't',
]
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
@tooslow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' )
__UpperCamelCase = '今天天气真好!'
__UpperCamelCase = ['今天', '天气', '真', '好', '!']
__UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = '今天天气真好!'
__UpperCamelCase = [tokenizer.bos_token] + tokens
__UpperCamelCase = [6, 9802, 1_4962, 2082, 831, 244]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertEqual(A_,A_ )
| 310
|
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"""The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = RobertaEmbeddings(A_ )
self.init_weights()
@add_start_docstrings(
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Any,A_: int ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = config.num_labels
__UpperCamelCase = config.num_hidden_layers
__UpperCamelCase = DeeRobertaModel(A_ )
__UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels )
@add_start_docstrings_to_model_forward(A_ )
def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,):
'''simple docstring'''
__UpperCamelCase = self.num_layers
try:
__UpperCamelCase = self.roberta(
A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,)
__UpperCamelCase = outputs[1]
__UpperCamelCase = self.dropout(A_ )
__UpperCamelCase = self.classifier(A_ )
__UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCamelCase = e.message
__UpperCamelCase = e.exit_layer
__UpperCamelCase = outputs[0]
if not self.training:
__UpperCamelCase = entropy(A_ )
__UpperCamelCase = []
__UpperCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
__UpperCamelCase = []
for highway_exit in outputs[-1]:
__UpperCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(A_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(A_ )
if train_highway:
__UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCamelCase = (loss,) + outputs
if not self.training:
__UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
| 1
|
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = generate_pascal_triangle(_lowercase )
for row_idx in range(_lowercase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def _A ( _lowercase ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__UpperCamelCase = []
for current_row_idx in range(_lowercase ):
__UpperCamelCase = populate_current_row(_lowercase , _lowercase )
triangle.append(_lowercase )
return triangle
def _A ( _lowercase , _lowercase ) -> list[int]:
"""simple docstring"""
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase, __UpperCamelCase = 1, 1
for current_col_idx in range(1 , _lowercase ):
calculate_current_element(
_lowercase , _lowercase , _lowercase , _lowercase )
return current_row
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> None:
"""simple docstring"""
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def _A ( _lowercase ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__UpperCamelCase = [[1]]
for row_index in range(1 , _lowercase ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(_lowercase , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(_lowercase )
return result
def _A ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_lowercase , _lowercase ) -> None:
__UpperCamelCase = f'''{func.__name__}({value})'''
__UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(_lowercase , _lowercase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 310
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
| 1
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
| 1
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
| 1
|
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
__snake_case = 6_378_137.0
__snake_case = 6_356_752.314_245
__snake_case = 6_3_7_8_1_3_7
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> float:
"""simple docstring"""
__UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
__UpperCamelCase = atan((1 - flattening) * tan(radians(_lowercase ) ) )
__UpperCamelCase = atan((1 - flattening) * tan(radians(_lowercase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
__UpperCamelCase = haversine_distance(_lowercase , _lowercase , _lowercase , _lowercase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
__UpperCamelCase = (b_lata + b_lata) / 2
__UpperCamelCase = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
__UpperCamelCase = (sin(_lowercase ) ** 2) * (cos(_lowercase ) ** 2)
__UpperCamelCase = cos(sigma / 2 ) ** 2
__UpperCamelCase = (sigma - sin(_lowercase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
__UpperCamelCase = (cos(_lowercase ) ** 2) * (sin(_lowercase ) ** 2)
__UpperCamelCase = sin(sigma / 2 ) ** 2
__UpperCamelCase = (sigma + sin(_lowercase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ):
return False
return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule )
def _A ( _lowercase , _lowercase = True ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCamelCase = is_compiled_module(_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(_lowercase , _lowercase ):
__UpperCamelCase = model.module
if not keep_fpaa_wrapper:
__UpperCamelCase = getattr(_lowercase , 'forward' )
__UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase )
if original_forward is not None:
while hasattr(_lowercase , '__wrapped__' ):
__UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
__UpperCamelCase = forward
if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ):
convert_model(_lowercase , to_transformer_engine=_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = compiled_model
return model
def _A ( ) -> Any:
"""simple docstring"""
PartialState().wait_for_everyone()
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(_lowercase , _lowercase )
elif PartialState().local_process_index == 0:
torch.save(_lowercase , _lowercase )
@contextmanager
def _A ( **_lowercase ) -> Union[str, Any]:
"""simple docstring"""
for key, value in kwargs.items():
__UpperCamelCase = str(_lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ):
__UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase )
if hasattr(_lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(_lowercase , '__name__' ):
return obj.__name__
return str(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key, value in source.items():
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = destination.setdefault(_lowercase , {} )
merge_dicts(_lowercase , _lowercase )
else:
__UpperCamelCase = value
return destination
def _A ( _lowercase = None ) -> bool:
"""simple docstring"""
if port is None:
__UpperCamelCase = 2_95_00
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 310
| 1
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 310
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
| 1
|
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small',return_dict=A_ ).to(A_ )
__UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__UpperCamelCase = tokenizer('Hello there',return_tensors='pt' ).input_ids
__UpperCamelCase = tokenizer('Hi I am',return_tensors='pt' ).input_ids
__UpperCamelCase = model(input_ids.to(A_ ),labels=labels.to(A_ ) ).loss
__UpperCamelCase = -(labels.shape[-1] * loss.item())
__UpperCamelCase = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 310
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
| 1
|
from __future__ import annotations
from math import pi
def _A ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if inductance < 0:
raise ValueError('Inductance cannot be negative' )
if frequency < 0:
raise ValueError('Frequency cannot be negative' )
if reactance < 0:
raise ValueError('Inductive reactance cannot be negative' )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
from __future__ import annotations
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = str(_lowercase )
return n == n[::-1]
def _A ( _lowercase = 1_00_00_00 ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = 0
for i in range(1 , _lowercase ):
if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split('b' )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 310
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
| 1
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__snake_case = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
__snake_case = {
'''camembert-base''': 5_1_2,
}
__snake_case = '''▁'''
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ["""input_ids""", """attention_mask"""]
def __init__( self: Union[str, Any],A_: Optional[int],A_: Union[str, Any]="<s>",A_: List[Any]="</s>",A_: List[str]="</s>",A_: Union[str, Any]="<s>",A_: str="<unk>",A_: Dict="<pad>",A_: Union[str, Any]="<mask>",A_: int=["<s>NOTUSED", "</s>NOTUSED"],A_: Optional[Dict[str, Any]] = None,**A_: Any,):
'''simple docstring'''
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token
__UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,additional_special_tokens=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,)
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A_ ) )
__UpperCamelCase = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__UpperCamelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3}
__UpperCamelCase = len(self.fairseq_tokens_to_ids )
__UpperCamelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1]
def snake_case_ ( self: List[Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self: Dict,A_: str ):
'''simple docstring'''
return self.sp_model.encode(A_,out_type=A_ )
def snake_case_ ( self: str,A_: Tuple ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(A_ ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(A_ )
def snake_case_ ( self: str,A_: Any ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self: Optional[int],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = ''
__UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A_ ) + token
__UpperCamelCase = True
__UpperCamelCase = []
else:
current_sub_tokens.append(A_ )
__UpperCamelCase = False
out_string += self.sp_model.decode(A_ )
return out_string.strip()
def __getstate__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.__dict__.copy()
__UpperCamelCase = None
return state
def __setstate__( self: str,A_: str ):
'''simple docstring'''
__UpperCamelCase = d
# for backward compatibility
if not hasattr(self,'sp_model_kwargs' ):
__UpperCamelCase = {}
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case_ ( self: Tuple,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file,A_ )
elif not os.path.isfile(self.vocab_file ):
with open(A_,'wb' ) as fi:
__UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(A_ )
return (out_vocab_file,)
| 310
|
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
__snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ):
__UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip()
__UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 310
| 1
|
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__UpperCamelCase = 1_28
elif "12-12" in model_name:
__UpperCamelCase = 12
__UpperCamelCase = 12
elif "14-14" in model_name:
__UpperCamelCase = 14
__UpperCamelCase = 14
elif "16-16" in model_name:
__UpperCamelCase = 16
__UpperCamelCase = 16
else:
raise ValueError('Model not supported' )
__UpperCamelCase = 'huggingface/label-files'
if "speech-commands" in model_name:
__UpperCamelCase = 35
__UpperCamelCase = 'speech-commands-v2-id2label.json'
else:
__UpperCamelCase = 5_27
__UpperCamelCase = 'audioset-id2label.json'
__UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()}
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
return config
def _A ( _lowercase ) -> str:
"""simple docstring"""
if "module.v" in name:
__UpperCamelCase = name.replace('module.v' , 'audio_spectrogram_transformer' )
if "cls_token" in name:
__UpperCamelCase = name.replace('cls_token' , 'embeddings.cls_token' )
if "dist_token" in name:
__UpperCamelCase = name.replace('dist_token' , 'embeddings.distillation_token' )
if "pos_embed" in name:
__UpperCamelCase = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
__UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
# transformer blocks
if "blocks" in name:
__UpperCamelCase = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
__UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__UpperCamelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__UpperCamelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__UpperCamelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__UpperCamelCase = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' )
# classifier head
if "module.mlp_head.0" in name:
__UpperCamelCase = name.replace('module.mlp_head.0' , 'classifier.layernorm' )
if "module.mlp_head.1" in name:
__UpperCamelCase = name.replace('module.mlp_head.1' , 'classifier.dense' )
return name
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCamelCase = orig_state_dict.pop(_lowercase )
if "qkv" in key:
__UpperCamelCase = key.split('.' )
__UpperCamelCase = int(key_split[3] )
__UpperCamelCase = config.hidden_size
if "weight" in key:
__UpperCamelCase = val[:dim, :]
__UpperCamelCase = val[dim : dim * 2, :]
__UpperCamelCase = val[-dim:, :]
else:
__UpperCamelCase = val[:dim]
__UpperCamelCase = val[dim : dim * 2]
__UpperCamelCase = val[-dim:]
else:
__UpperCamelCase = val
return orig_state_dict
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = [
'module.v.head.weight',
'module.v.head.bias',
'module.v.head_dist.weight',
'module.v.head_dist.bias',
]
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase=False ) -> str:
"""simple docstring"""
__UpperCamelCase = get_audio_spectrogram_transformer_config(_lowercase )
__UpperCamelCase = {
'ast-finetuned-audioset-10-10-0.4593': (
'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.450': (
'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448': (
'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448-v2': (
'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'
),
'ast-finetuned-audioset-12-12-0.447': (
'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'
),
'ast-finetuned-audioset-14-14-0.443': (
'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'
),
'ast-finetuned-audioset-16-16-0.442': (
'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'
),
'ast-finetuned-speech-commands-v2': (
'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'
),
}
# load original state_dict
__UpperCamelCase = model_name_to_url[model_name]
__UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' )
# remove some keys
remove_keys(_lowercase )
# rename some keys
__UpperCamelCase = convert_state_dict(_lowercase , _lowercase )
# load 🤗 model
__UpperCamelCase = ASTForAudioClassification(_lowercase )
model.eval()
model.load_state_dict(_lowercase )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__UpperCamelCase = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78
__UpperCamelCase = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26
__UpperCamelCase = 10_24 if 'speech-commands' not in model_name else 1_28
__UpperCamelCase = ASTFeatureExtractor(mean=_lowercase , std=_lowercase , max_length=_lowercase )
if "speech-commands" in model_name:
__UpperCamelCase = load_dataset('speech_commands' , 'v0.02' , split='validation' )
__UpperCamelCase = dataset[0]['audio']['array']
else:
__UpperCamelCase = hf_hub_download(
repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , )
__UpperCamelCase, __UpperCamelCase = torchaudio.load(_lowercase )
__UpperCamelCase = waveform.squeeze().numpy()
__UpperCamelCase = feature_extractor(_lowercase , sampling_rate=1_60_00 , return_tensors='pt' )
# forward pass
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__UpperCamelCase = torch.tensor([-0.87_60, -7.00_42, -8.66_02] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__UpperCamelCase = torch.tensor([-1.19_86, -7.09_03, -8.27_18] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__UpperCamelCase = torch.tensor([-2.61_28, -8.00_80, -9.43_44] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__UpperCamelCase = torch.tensor([-1.50_80, -7.45_34, -8.89_17] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__UpperCamelCase = torch.tensor([-0.50_50, -6.58_33, -8.08_43] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__UpperCamelCase = torch.tensor([-0.38_26, -7.03_36, -8.24_13] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__UpperCamelCase = torch.tensor([-1.21_13, -6.91_01, -8.34_70] )
elif model_name == "ast-finetuned-speech-commands-v2":
__UpperCamelCase = torch.tensor([6.15_89, -8.05_66, -8.79_84] )
else:
raise ValueError('Unknown model name' )
if not torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ):
raise ValueError('Logits don\'t match' )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' )
feature_extractor.save_pretrained(_lowercase )
if push_to_hub:
print('Pushing model and feature extractor to the hub...' )
model.push_to_hub(f'''MIT/{model_name}''' )
feature_extractor.push_to_hub(f'''MIT/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''ast-finetuned-audioset-10-10-0.4593''',
type=str,
help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 310
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
def merge(_lowercase , _lowercase ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowercase ) <= 1:
return collection
__UpperCamelCase = len(_lowercase ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 310
| 1
|
from __future__ import annotations
class __lowerCamelCase :
def __init__( self: Tuple,A_: str,A_: str ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = text, pattern
__UpperCamelCase, __UpperCamelCase = len(A_ ), len(A_ )
def snake_case_ ( self: List[Any],A_: str ):
'''simple docstring'''
for i in range(self.patLen - 1,-1,-1 ):
if char == self.pattern[i]:
return i
return -1
def snake_case_ ( self: Optional[Any],A_: int ):
'''simple docstring'''
for i in range(self.patLen - 1,-1,-1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCamelCase = self.mismatch_in_text(A_ )
if mismatch_index == -1:
positions.append(A_ )
else:
__UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCamelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
__snake_case = '''ABAABA'''
__snake_case = '''AB'''
__snake_case = BoyerMooreSearch(text, pattern)
__snake_case = bms.bad_character_heuristic()
if len(positions) == 0:
print('''No match found''')
else:
print('''Pattern found in following positions: ''')
print(positions)
| 310
|
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 0
_lowercase = False
_lowercase = 3.0
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs(),{} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} )
self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} )
@require_cuda
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale,1_0_2_4.0 )
self.assertEqual(scaler._growth_factor,2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor,0.5 )
self.assertEqual(scaler._growth_interval,2000 )
self.assertEqual(scaler._enabled,A_ )
@require_multi_gpu
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_,env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
__snake_case = Accelerator(kwargs_handlers=[ddp_scaler])
__snake_case = torch.nn.Linear(1_0_0, 2_0_0)
__snake_case = accelerator.prepare(model)
# Check the values changed in kwargs
__snake_case = ''''''
__snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 310
| 1
|
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __lowerCamelCase (_a ):
_lowercase = """wav2vec2"""
def __init__( self: Dict,A_: Any=32,A_: Tuple=768,A_: Dict=12,A_: List[str]=12,A_: int=3072,A_: List[Any]="gelu",A_: Dict=0.1,A_: Any=0.1,A_: Optional[int]=0.1,A_: Tuple=0.0,A_: Optional[Any]=0.0,A_: int=0.1,A_: Union[str, Any]=0.1,A_: Union[str, Any]=0.0_2,A_: Optional[int]=1E-5,A_: Tuple="group",A_: Any="gelu",A_: List[str]=(512, 512, 512, 512, 512, 512, 512),A_: Optional[Any]=(5, 2, 2, 2, 2, 2, 2),A_: Union[str, Any]=(10, 3, 3, 3, 3, 2, 2),A_: Dict=False,A_: str=128,A_: Dict=16,A_: Dict=False,A_: Union[str, Any]=True,A_: Any=0.0_5,A_: Tuple=10,A_: List[str]=2,A_: Any=0.0,A_: Any=10,A_: Dict=0,A_: List[str]=320,A_: Union[str, Any]=2,A_: Optional[int]=0.1,A_: int=100,A_: Tuple=256,A_: Any=256,A_: List[Any]=0.1,A_: str="sum",A_: Optional[Any]=False,A_: List[str]=False,A_: Optional[int]=256,A_: Dict=(512, 512, 512, 512, 1500),A_: Optional[int]=(5, 3, 3, 1, 1),A_: List[str]=(1, 2, 3, 1, 1),A_: int=512,A_: List[Any]=0,A_: Tuple=1,A_: Any=2,A_: Optional[int]=False,A_: Tuple=3,A_: List[str]=2,A_: Any=3,A_: Optional[int]=None,A_: Union[str, Any]=None,**A_: Any,):
'''simple docstring'''
super().__init__(**A_,pad_token_id=A_,bos_token_id=A_,eos_token_id=A_ )
__UpperCamelCase = hidden_size
__UpperCamelCase = feat_extract_norm
__UpperCamelCase = feat_extract_activation
__UpperCamelCase = list(A_ )
__UpperCamelCase = list(A_ )
__UpperCamelCase = list(A_ )
__UpperCamelCase = conv_bias
__UpperCamelCase = num_conv_pos_embeddings
__UpperCamelCase = num_conv_pos_embedding_groups
__UpperCamelCase = len(self.conv_dim )
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = feat_proj_dropout
__UpperCamelCase = final_dropout
__UpperCamelCase = layerdrop
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = initializer_range
__UpperCamelCase = vocab_size
__UpperCamelCase = do_stable_layer_norm
__UpperCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCamelCase = num_codevectors_per_group
__UpperCamelCase = num_codevector_groups
__UpperCamelCase = contrastive_logits_temperature
__UpperCamelCase = feat_quantizer_dropout
__UpperCamelCase = num_negatives
__UpperCamelCase = codevector_dim
__UpperCamelCase = proj_codevector_dim
__UpperCamelCase = diversity_loss_weight
# ctc loss
__UpperCamelCase = ctc_loss_reduction
__UpperCamelCase = ctc_zero_infinity
# adapter
__UpperCamelCase = add_adapter
__UpperCamelCase = adapter_kernel_size
__UpperCamelCase = adapter_stride
__UpperCamelCase = num_adapter_layers
__UpperCamelCase = output_hidden_size or hidden_size
__UpperCamelCase = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = list(A_ )
__UpperCamelCase = list(A_ )
__UpperCamelCase = list(A_ )
__UpperCamelCase = xvector_output_dim
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return functools.reduce(operator.mul,self.conv_stride,1 )
| 310
|
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCamelCase (_a ):
_lowercase = ["""image_processor""", """tokenizer"""]
_lowercase = """OwlViTImageProcessor"""
_lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.',A_,)
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_,A_ )
def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )):
__UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )]
elif isinstance(A_,A_ ) and isinstance(text[0],A_ ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(A_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A_ ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(A_ ))
__UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )
encodings.append(A_ )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
A_,return_tensors=A_,**A_ ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ),tensor_type=A_ )
def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process(*A_,**A_ )
def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*A_,**A_ )
def snake_case_ ( self: str,*A_: Tuple,**A_: int ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*A_,**A_ )
def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*A_,**A_ )
def snake_case_ ( self: int,*A_: Any,**A_: Tuple ):
'''simple docstring'''
return self.tokenizer.decode(*A_,**A_ )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,)
return self.image_processor_class
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,)
return self.image_processor
| 310
| 1
|
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase (_a ):
_lowercase = (KDPMaDiscreteScheduler,)
_lowercase = 10
def snake_case_ ( self: Optional[int],**A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = {
'num_train_timesteps': 1100,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
}
config.update(**A_ )
return config
def snake_case_ ( self: Dict ):
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1],[0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=A_,beta_end=A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCamelCase = sample.to(A_ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3
def snake_case_ ( self: int ):
'''simple docstring'''
if torch_device == "mps":
return
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCamelCase = sample.to(A_ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
def snake_case_ ( self: Dict ):
'''simple docstring'''
if torch_device == "mps":
return
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps,device=A_ )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if str(A_ ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
| 310
|
import math
def _A ( _lowercase ) -> int:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
__UpperCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 1:
__UpperCamelCase = f'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowercase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2
__UpperCamelCase = [3, 5]
__UpperCamelCase = 2
__UpperCamelCase = 3
for block in range(1 , _lowercase ):
for _ in range(_lowercase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(1_1):
__snake_case = 0
try:
__snake_case = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 310
| 1
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
|
import torch
from transformers import AutoModel
class __lowerCamelCase (torch.nn.Module ):
def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(A_,self ).__init__()
__UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ )
__UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 )
__UpperCamelCase = torch.nn.Softmax(dim=1 )
def snake_case_ ( self: Tuple,**A_: Union[str, Any] ):
'''simple docstring'''
return self.bert(**A_ ).last_hidden_state
def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
return token_embeddings.sum(2,keepdim=A_ )
def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(A_,A_ ) )
def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = W_supports['sizes'].tolist()
__UpperCamelCase = W_supports['start_token_id'].item()
__UpperCamelCase = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = W_supports['input_ids'] == start_token_id
__UpperCamelCase = W_supports['input_ids'] == end_token_id
for i, size in enumerate(A_ ):
if i == 0:
__UpperCamelCase = 0
else:
__UpperCamelCase = support_sizes[i - 1]
__UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]]
__UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]]
__UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 )
__UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
__UpperCamelCase = torch.vstack((p_starts, p_start) )
__UpperCamelCase = torch.vstack((p_ends, p_end) )
else:
__UpperCamelCase = p_start
__UpperCamelCase = p_end
return p_starts, p_ends
| 310
| 1
|
import random
class __lowerCamelCase :
@staticmethod
def snake_case_ ( A_: str ):
'''simple docstring'''
__UpperCamelCase = [ord(A_ ) for i in text]
__UpperCamelCase = []
__UpperCamelCase = []
for i in plain:
__UpperCamelCase = random.randint(1,300 )
__UpperCamelCase = (i + k) * k
cipher.append(A_ )
key.append(A_ )
return cipher, key
@staticmethod
def snake_case_ ( A_: list[int],A_: list[int] ):
'''simple docstring'''
__UpperCamelCase = []
for i in range(len(A_ ) ):
__UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(A_ ) )
return "".join(A_ )
if __name__ == "__main__":
__snake_case , __snake_case = Onepad().encrypt('''Hello''')
print(c, k)
print(Onepad().decrypt(c, k))
| 310
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = BioGptTokenizer
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w' ) as fp:
fp.write(json.dumps(A_ ) )
with open(self.merges_file,'w' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: Optional[int],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'lower newer'
__UpperCamelCase = 'lower newer'
return input_text, output_text
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file )
__UpperCamelCase = 'lower'
__UpperCamelCase = ['low', 'er</w>']
__UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokens + ['<unk>']
__UpperCamelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
__UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 310
| 1
|
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
__snake_case = True
except ImportError:
__snake_case = False
try:
from torch.hub import _get_torch_home
__snake_case = _get_torch_home()
except ImportError:
__snake_case = os.path.expanduser(
os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch'''))
)
__snake_case = os.path.join(torch_cache_home, '''transformers''')
__snake_case = '''https://cdn.huggingface.co'''
__snake_case = '''https://s3.amazonaws.com/models.huggingface.co/bert'''
__snake_case = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1])
__snake_case = os.path.join(PATH, '''config.yaml''')
__snake_case = os.path.join(PATH, '''attributes.txt''')
__snake_case = os.path.join(PATH, '''objects.txt''')
__snake_case = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path)
__snake_case = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE)
__snake_case = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE)
__snake_case = '''pytorch_model.bin'''
__snake_case = '''config.yaml'''
def _A ( _lowercase=OBJECTS , _lowercase=ATTRIBUTES ) -> Any:
"""simple docstring"""
__UpperCamelCase = []
with open(_lowercase ) as f:
for object in f.readlines():
vg_classes.append(object.split(',' )[0].lower().strip() )
__UpperCamelCase = []
with open(_lowercase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(',' )[0].lower().strip() )
return vg_classes, vg_attrs
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = OrderedDict()
with open(_lowercase , 'rb' ) as f:
__UpperCamelCase = pkl.load(_lowercase )['model']
for k in copy.deepcopy(list(ckp.keys() ) ):
__UpperCamelCase = ckp.pop(_lowercase )
if isinstance(_lowercase , np.ndarray ):
__UpperCamelCase = torch.tensor(_lowercase )
else:
assert isinstance(_lowercase , torch.tensor ), type(_lowercase )
__UpperCamelCase = v
return r
class __lowerCamelCase :
_lowercase = {}
def __init__( self: int,A_: dict,A_: str = "root",A_: Union[str, Any]=0 ):
'''simple docstring'''
__UpperCamelCase = name
__UpperCamelCase = level
__UpperCamelCase = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__UpperCamelCase = copy.deepcopy(A_ )
__UpperCamelCase = copy.deepcopy(A_ )
if isinstance(A_,A_ ):
__UpperCamelCase = Config(A_,name=A_,level=level + 1 )
__UpperCamelCase = v
setattr(self,A_,A_ )
__UpperCamelCase = d
def __repr__( self: Any ):
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self: Dict,A_: str,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = val
__UpperCamelCase = val
__UpperCamelCase = key.split('.' )
__UpperCamelCase = len(A_ ) - 1
__UpperCamelCase = self._pointer
if len(A_ ) > 1:
for i, l in enumerate(A_ ):
if hasattr(self,A_ ) and isinstance(getattr(self,A_ ),A_ ):
setattr(getattr(self,A_ ),'.'.join(levels[i:] ),A_ )
if l == last_level:
__UpperCamelCase = val
else:
__UpperCamelCase = pointer[l]
def snake_case_ ( self: int ):
'''simple docstring'''
return self._pointer
def snake_case_ ( self: str,A_: Tuple,A_: List[str] ):
'''simple docstring'''
with open(F'''{file_name}''','w' ) as stream:
dump(A_,A_ )
def snake_case_ ( self: List[str],A_: Optional[Any],A_: List[str] ):
'''simple docstring'''
with open(F'''{file_name}''','w' ) as stream:
json.dump(A_,A_ )
@staticmethod
def snake_case_ ( A_: int ):
'''simple docstring'''
with open(A_ ) as stream:
__UpperCamelCase = load(A_,Loader=A_ )
return data
def __str__( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = ' '
if self._name != "root":
__UpperCamelCase = F'''{t * (self._level-1)}{self._name}:\n'''
else:
__UpperCamelCase = ''
__UpperCamelCase = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(A_,A_ ):
r += F'''{t * (self._level)}{v}\n'''
self._level += 1
else:
r += F'''{t * (self._level)}{k}: {v} ({type(A_ ).__name__})\n'''
__UpperCamelCase = level
return r[:-1]
@classmethod
def snake_case_ ( cls: List[Any],A_: str,**A_: Dict ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ )
return cls(A_ )
@classmethod
def snake_case_ ( cls: Any,A_: str,**A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = kwargs.pop('cache_dir',A_ )
__UpperCamelCase = kwargs.pop('force_download',A_ )
__UpperCamelCase = kwargs.pop('resume_download',A_ )
__UpperCamelCase = kwargs.pop('proxies',A_ )
__UpperCamelCase = kwargs.pop('local_files_only',A_ )
if os.path.isdir(A_ ):
__UpperCamelCase = os.path.join(A_,A_ )
elif os.path.isfile(A_ ) or is_remote_url(A_ ):
__UpperCamelCase = pretrained_model_name_or_path
else:
__UpperCamelCase = hf_bucket_url(A_,filename=A_,use_cdn=A_ )
try:
# Load from URL or cache if already cached
__UpperCamelCase = cached_path(
A_,cache_dir=A_,force_download=A_,proxies=A_,resume_download=A_,local_files_only=A_,)
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__UpperCamelCase = Config.load_yaml(A_ )
except EnvironmentError:
__UpperCamelCase = 'Can\'t load config for'
raise EnvironmentError(A_ )
if resolved_config_file == config_file:
print('loading configuration file from path' )
else:
print('loading configuration file cache' )
return Config.load_yaml(A_ ), kwargs
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = torch.load('dump.pt' , map_location=in_tensor.device )
__UpperCamelCase = in_tensor.numpy()
__UpperCamelCase = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ), (
f'''{sum([1 for x in np.isclose(_lowercase , _lowercase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %'''
" element-wise mismatch"
)
raise Exception('tensors are all good' )
# Hugging face functions below
def _A ( _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = urlparse(_lowercase )
return parsed.scheme in ("http", "https")
def _A ( _lowercase , _lowercase , _lowercase=True ) -> str:
"""simple docstring"""
__UpperCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__UpperCamelCase = '/' not in model_id
if legacy_format:
return f'''{endpoint}/{model_id}-{filename}'''
else:
return f'''{endpoint}/{model_id}/{filename}'''
def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=0 , _lowercase=None , ) -> Any:
"""simple docstring"""
__UpperCamelCase = 'python/{}'.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(_lowercase , _lowercase ):
ua += "; " + "; ".join('{}/{}'.format(_lowercase , _lowercase ) for k, v in user_agent.items() )
elif isinstance(_lowercase , _lowercase ):
ua += "; " + user_agent
__UpperCamelCase = {'user-agent': ua}
if resume_size > 0:
__UpperCamelCase = 'bytes=%d-' % (resume_size,)
__UpperCamelCase = requests.get(_lowercase , stream=_lowercase , proxies=_lowercase , headers=_lowercase )
if response.status_code == 4_16: # Range not satisfiable
return
__UpperCamelCase = response.headers.get('Content-Length' )
__UpperCamelCase = resume_size + int(_lowercase ) if content_length is not None else None
__UpperCamelCase = tqdm(
unit='B' , unit_scale=_lowercase , total=_lowercase , initial=_lowercase , desc='Downloading' , )
for chunk in response.iter_content(chunk_size=10_24 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(_lowercase ) )
temp_file.write(_lowercase )
progress.close()
def _A ( _lowercase , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=10 , _lowercase=False , _lowercase=None , _lowercase=False , ) -> Tuple:
"""simple docstring"""
if cache_dir is None:
__UpperCamelCase = TRANSFORMERS_CACHE
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = str(_lowercase )
os.makedirs(_lowercase , exist_ok=_lowercase )
__UpperCamelCase = None
if not local_files_only:
try:
__UpperCamelCase = requests.head(_lowercase , allow_redirects=_lowercase , proxies=_lowercase , timeout=_lowercase )
if response.status_code == 2_00:
__UpperCamelCase = response.headers.get('ETag' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__UpperCamelCase = url_to_filename(_lowercase , _lowercase )
# get cache path to put the file
__UpperCamelCase = os.path.join(_lowercase , _lowercase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(_lowercase ):
return cache_path
else:
__UpperCamelCase = [
file
for file in fnmatch.filter(os.listdir(_lowercase ) , filename + '.*' )
if not file.endswith('.json' ) and not file.endswith('.lock' )
]
if len(_lowercase ) > 0:
return os.path.join(_lowercase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'Cannot find the requested files in the cached path and outgoing traffic has been'
' disabled. To enable model look-ups and downloads online, set \'local_files_only\''
' to False.' )
return None
# From now on, etag is not None.
if os.path.exists(_lowercase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__UpperCamelCase = cache_path + '.lock'
with FileLock(_lowercase ):
# If the download just completed while the lock was activated.
if os.path.exists(_lowercase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__UpperCamelCase = cache_path + '.incomplete'
@contextmanager
def _resumable_file_manager():
with open(_lowercase , 'a+b' ) as f:
yield f
__UpperCamelCase = _resumable_file_manager
if os.path.exists(_lowercase ):
__UpperCamelCase = os.stat(_lowercase ).st_size
else:
__UpperCamelCase = 0
else:
__UpperCamelCase = partial(tempfile.NamedTemporaryFile , dir=_lowercase , delete=_lowercase )
__UpperCamelCase = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'%s not found in cache or force_download set to True, downloading to %s' , _lowercase , temp_file.name , )
http_get(
_lowercase , _lowercase , proxies=_lowercase , resume_size=_lowercase , user_agent=_lowercase , )
os.replace(temp_file.name , _lowercase )
__UpperCamelCase = {'url': url, 'etag': etag}
__UpperCamelCase = cache_path + '.json'
with open(_lowercase , 'w' ) as meta_file:
json.dump(_lowercase , _lowercase )
return cache_path
def _A ( _lowercase , _lowercase=None ) -> Any:
"""simple docstring"""
__UpperCamelCase = url.encode('utf-8' )
__UpperCamelCase = shaaaa(_lowercase )
__UpperCamelCase = url_hash.hexdigest()
if etag:
__UpperCamelCase = etag.encode('utf-8' )
__UpperCamelCase = shaaaa(_lowercase )
filename += "." + etag_hash.hexdigest()
if url.endswith('.h5' ):
filename += ".h5"
return filename
def _A ( _lowercase , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=False , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ) -> Optional[int]:
"""simple docstring"""
if cache_dir is None:
__UpperCamelCase = TRANSFORMERS_CACHE
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = str(_lowercase )
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = str(_lowercase )
if is_remote_url(_lowercase ):
# URL, so get it from the cache (downloading if necessary)
__UpperCamelCase = get_from_cache(
_lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , user_agent=_lowercase , local_files_only=_lowercase , )
elif os.path.exists(_lowercase ):
# File, and it exists.
__UpperCamelCase = url_or_filename
elif urlparse(_lowercase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('file {} not found'.format(_lowercase ) )
else:
# Something unknown
raise ValueError('unable to parse {} as a URL or as a local path'.format(_lowercase ) )
if extract_compressed_file:
if not is_zipfile(_lowercase ) and not tarfile.is_tarfile(_lowercase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__UpperCamelCase, __UpperCamelCase = os.path.split(_lowercase )
__UpperCamelCase = output_file.replace('.' , '-' ) + '-extracted'
__UpperCamelCase = os.path.join(_lowercase , _lowercase )
if os.path.isdir(_lowercase ) and os.listdir(_lowercase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__UpperCamelCase = output_path + '.lock'
with FileLock(_lowercase ):
shutil.rmtree(_lowercase , ignore_errors=_lowercase )
os.makedirs(_lowercase )
if is_zipfile(_lowercase ):
with ZipFile(_lowercase , 'r' ) as zip_file:
zip_file.extractall(_lowercase )
zip_file.close()
elif tarfile.is_tarfile(_lowercase ):
__UpperCamelCase = tarfile.open(_lowercase )
tar_file.extractall(_lowercase )
tar_file.close()
else:
raise EnvironmentError('Archive format of {} could not be identified'.format(_lowercase ) )
return output_path_extracted
return output_path
def _A ( _lowercase , _lowercase="," ) -> List[Any]:
"""simple docstring"""
assert isinstance(_lowercase , _lowercase )
if os.path.isfile(_lowercase ):
with open(_lowercase ) as f:
__UpperCamelCase = eval(f.read() )
else:
__UpperCamelCase = requests.get(_lowercase )
try:
__UpperCamelCase = requests.json()
except Exception:
__UpperCamelCase = req.content.decode()
assert data is not None, "could not connect"
try:
__UpperCamelCase = eval(_lowercase )
except Exception:
__UpperCamelCase = data.split('\n' )
req.close()
return data
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = requests.get(_lowercase )
__UpperCamelCase = np.array(Image.open(BytesIO(response.content ) ) )
return img
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = url.split('/' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(_lowercase )
with open(_lowercase , 'rb' ) as stream:
__UpperCamelCase = pkl.load(_lowercase )
__UpperCamelCase = weights.pop('model' )
__UpperCamelCase = {}
for k, v in model.items():
__UpperCamelCase = torch.from_numpy(_lowercase )
if "running_var" in k:
__UpperCamelCase = torch.tensor([0] )
__UpperCamelCase = k.replace('running_var' , 'num_batches_tracked' )
__UpperCamelCase = zero
return new
def _A ( ) -> Union[str, Any]:
"""simple docstring"""
print(f'''{os.path.abspath(os.path.join(_lowercase , os.pardir ) )}/demo.ipynb''' )
def _A ( _lowercase , _lowercase="RGB" ) -> str:
"""simple docstring"""
assert isinstance(_lowercase , _lowercase )
if os.path.isfile(_lowercase ):
__UpperCamelCase = cva.imread(_lowercase )
else:
__UpperCamelCase = get_image_from_url(_lowercase )
assert img is not None, f'''could not connect to: {im}'''
__UpperCamelCase = cva.cvtColor(_lowercase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__UpperCamelCase = img[:, :, ::-1]
return img
def _A ( _lowercase , _lowercase=1 ) -> Any:
"""simple docstring"""
return (images[i : i + batch] for i in range(0 , len(_lowercase ) , _lowercase ))
| 310
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__snake_case = r'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(_a )
class __lowerCamelCase (_a ):
_lowercase = """rag"""
_lowercase = True
def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],):
'''simple docstring'''
super().__init__(
bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__UpperCamelCase = kwargs.pop('question_encoder' )
__UpperCamelCase = question_encoder_config.pop('model_type' )
__UpperCamelCase = kwargs.pop('generator' )
__UpperCamelCase = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = reduce_loss
__UpperCamelCase = label_smoothing
__UpperCamelCase = exclude_bos_score
__UpperCamelCase = do_marginalize
__UpperCamelCase = title_sep
__UpperCamelCase = doc_sep
__UpperCamelCase = n_docs
__UpperCamelCase = max_combined_length
__UpperCamelCase = dataset
__UpperCamelCase = dataset_split
__UpperCamelCase = index_name
__UpperCamelCase = retrieval_vector_size
__UpperCamelCase = retrieval_batch_size
__UpperCamelCase = passages_path
__UpperCamelCase = index_path
__UpperCamelCase = use_dummy_dataset
__UpperCamelCase = output_retrieved
__UpperCamelCase = do_deduplication
__UpperCamelCase = use_cache
if self.forced_eos_token_id is None:
__UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ )
@classmethod
def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ):
'''simple docstring'''
return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = self.question_encoder.to_dict()
__UpperCamelCase = self.generator.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
| 310
| 1
|
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 0
_lowercase = False
_lowercase = 3.0
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs(),{} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} )
self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} )
@require_cuda
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale,1_0_2_4.0 )
self.assertEqual(scaler._growth_factor,2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor,0.5 )
self.assertEqual(scaler._growth_interval,2000 )
self.assertEqual(scaler._enabled,A_ )
@require_multi_gpu
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_,env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
__snake_case = Accelerator(kwargs_handlers=[ddp_scaler])
__snake_case = torch.nn.Linear(1_0_0, 2_0_0)
__snake_case = accelerator.prepare(model)
# Check the values changed in kwargs
__snake_case = ''''''
__snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 310
|
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase (_a ):
_lowercase = """M-CLIP"""
def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ):
'''simple docstring'''
__UpperCamelCase = transformerDimSize
__UpperCamelCase = imageDimSize
super().__init__(**A_ )
class __lowerCamelCase (_a ):
_lowercase = MCLIPConfig
def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ):
'''simple docstring'''
super().__init__(A_,*A_,**A_ )
__UpperCamelCase = XLMRobertaModel(A_ )
__UpperCamelCase = torch.nn.Linear(
in_features=config.transformerDimensions,out_features=config.numDims )
def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0]
__UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(A_ ), embs
| 310
| 1
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCamelCase :
_lowercase = XGLMConfig
_lowercase = {}
_lowercase = """gelu"""
def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = ffn_dim
__UpperCamelCase = activation_function
__UpperCamelCase = activation_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 2
__UpperCamelCase = 1
def snake_case_ ( self: Dict ):
'''simple docstring'''
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = self.get_config()
__UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,)
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowercase = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Optional[Any],A_: int=True ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(),A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' )
__UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] )
__UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ )
__UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = 'left'
# use different length sentences to test batching
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_,A_ )
self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
| 310
| 1
|
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = AlbertConfig.from_json_file(_lowercase )
print(f'''Building PyTorch model from configuration: {config}''' )
__UpperCamelCase = AlbertForPreTraining(_lowercase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_lowercase , _lowercase , _lowercase )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 310
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
__snake_case = json.load(f)
@require_torch
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
return FSMTTokenizer.from_pretrained(A_ )
def snake_case_ ( self: Dict,A_: int ):
'''simple docstring'''
__UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 2_6.0],
['ru-en', 2_2.0],
['en-de', 2_2.0],
['de-en', 2_9.0],
] )
@slow
def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = F'''facebook/wmt19-{pair}'''
__UpperCamelCase = self.get_tokenizer(A_ )
__UpperCamelCase = self.get_model(A_ )
__UpperCamelCase = bleu_data[pair]['src']
__UpperCamelCase = bleu_data[pair]['tgt']
__UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids,num_beams=8,)
__UpperCamelCase = tokenizer.batch_decode(
A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ )
__UpperCamelCase = calculate_bleu(A_,A_ )
print(A_ )
self.assertGreaterEqual(scores['bleu'],A_ )
| 310
| 1
|
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 10_24,
'hidden_size': 7_68,
'max_length': 5_12,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 10_24,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__UpperCamelCase = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__UpperCamelCase = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=_lowercase , output_all_encodings=_lowercase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , _lowercase ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__UpperCamelCase = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__UpperCamelCase = os.path.join(get_home_dir() , 'models' )
__UpperCamelCase = _load_vocab(_lowercase , _lowercase , _lowercase , cls=_lowercase )
__UpperCamelCase = nlp.model.BERTModel(
_lowercase , len(_lowercase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=_lowercase , use_token_type_embed=_lowercase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=_lowercase , use_decoder=_lowercase , )
original_bort.load_parameters(_lowercase , cast_dtype=_lowercase , ignore_extra=_lowercase )
__UpperCamelCase = original_bort._collect_params_with_prefix()
# Build our config 🤗
__UpperCamelCase = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(_lowercase ),
}
__UpperCamelCase = BertConfig.from_dict(_lowercase )
__UpperCamelCase = BertForMaskedLM(_lowercase )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(_lowercase ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(_lowercase , _lowercase ):
__UpperCamelCase = hf_param.shape
__UpperCamelCase = to_torch(params[gluon_param] )
__UpperCamelCase = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__UpperCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__UpperCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__UpperCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__UpperCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__UpperCamelCase = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__UpperCamelCase = hf_bort_model.bert.encoder.layer[i]
# self attention
__UpperCamelCase = layer.attention.self
__UpperCamelCase = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__UpperCamelCase = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__UpperCamelCase = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__UpperCamelCase = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__UpperCamelCase = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__UpperCamelCase = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__UpperCamelCase = layer.attention.output
__UpperCamelCase = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__UpperCamelCase = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__UpperCamelCase = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__UpperCamelCase = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__UpperCamelCase = layer.intermediate
__UpperCamelCase = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__UpperCamelCase = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__UpperCamelCase = layer.output
__UpperCamelCase = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__UpperCamelCase = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__UpperCamelCase = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__UpperCamelCase = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__UpperCamelCase = RobertaTokenizer.from_pretrained('roberta-base' )
__UpperCamelCase = tokenizer.encode_plus(_lowercase )['input_ids']
# Get gluon output
__UpperCamelCase = mx.nd.array([input_ids] )
__UpperCamelCase = original_bort(inputs=_lowercase , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(_lowercase )
__UpperCamelCase = BertModel.from_pretrained(_lowercase )
hf_bort_model.eval()
__UpperCamelCase = tokenizer.encode_plus(_lowercase , return_tensors='pt' )
__UpperCamelCase = hf_bort_model(**_lowercase )[0]
__UpperCamelCase = output_gluon[0].asnumpy()
__UpperCamelCase = output_hf[0].detach().numpy()
__UpperCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__UpperCamelCase = np.allclose(_lowercase , _lowercase , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , _lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 310
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
| 1
|
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = GPTaTokenizer
_lowercase = GPTaTokenizerFast
_lowercase = True
_lowercase = {"""add_prefix_space""": True}
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
'<|endoftext|>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__UpperCamelCase = {'unk_token': '<unk>'}
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
with open(self.merges_file,'w',encoding='utf-8' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: List[Any],**A_: List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: Any,**A_: List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: Union[str, Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'lower newer'
__UpperCamelCase = 'lower newer'
return input_text, output_text
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = GPTaTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map )
__UpperCamelCase = 'lower newer'
__UpperCamelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er']
__UpperCamelCase = tokenizer.tokenize(A_,add_prefix_space=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokens + [tokenizer.unk_token]
__UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
def snake_case_ ( self: int ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__UpperCamelCase = self.get_tokenizer()
__UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=A_ )
__UpperCamelCase = 'lower newer'
# Testing tokenization
__UpperCamelCase = tokenizer.tokenize(A_,add_prefix_space=A_ )
__UpperCamelCase = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
# Testing conversion to ids without special tokens
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_,add_prefix_space=A_ )
__UpperCamelCase = rust_tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
# Testing conversion to ids with special tokens
__UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=A_ )
__UpperCamelCase = tokenizer.encode(A_,add_prefix_space=A_ )
__UpperCamelCase = rust_tokenizer.encode(A_ )
self.assertListEqual(A_,A_ )
# Testing the unknown token
__UpperCamelCase = tokens + [rust_tokenizer.unk_token]
__UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ),A_ )
def snake_case_ ( self: int,*A_: Tuple,**A_: List[Any] ):
'''simple docstring'''
pass
def snake_case_ ( self: List[str],A_: Tuple=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ )
# Simple input
__UpperCamelCase = 'This is a simple input'
__UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2']
__UpperCamelCase = ('This is a simple input', 'This is a pair')
__UpperCamelCase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(A_,tokenizer_r.encode,A_,max_length=A_,padding='max_length' )
# Simple input
self.assertRaises(A_,tokenizer_r.encode_plus,A_,max_length=A_,padding='max_length' )
# Simple input
self.assertRaises(
A_,tokenizer_r.batch_encode_plus,A_,max_length=A_,padding='max_length',)
# Pair input
self.assertRaises(A_,tokenizer_r.encode,A_,max_length=A_,padding='max_length' )
# Pair input
self.assertRaises(A_,tokenizer_r.encode_plus,A_,max_length=A_,padding='max_length' )
# Pair input
self.assertRaises(
A_,tokenizer_r.batch_encode_plus,A_,max_length=A_,padding='max_length',)
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname,pad_token='<pad>' )
# Simple input
__UpperCamelCase = 'This is a simple input'
__UpperCamelCase = ['This is a simple input looooooooong', 'This is a simple input']
__UpperCamelCase = ('This is a simple input', 'This is a pair')
__UpperCamelCase = [
('This is a simple input loooooong', 'This is a simple input'),
('This is a simple pair loooooong', 'This is a simple pair'),
]
__UpperCamelCase = tokenizer.pad_token_id
__UpperCamelCase = tokenizer(A_,padding='max_length',max_length=30,return_tensors='np' )
__UpperCamelCase = tokenizer(A_,padding=A_,truncate=A_,return_tensors='np' )
__UpperCamelCase = tokenizer(*A_,padding='max_length',max_length=60,return_tensors='np' )
__UpperCamelCase = tokenizer(A_,padding=A_,truncate=A_,return_tensors='np' )
# s
# test single string max_length padding
self.assertEqual(out_s['input_ids'].shape[-1],30 )
self.assertTrue(pad_token_id in out_s['input_ids'] )
self.assertTrue(0 in out_s['attention_mask'] )
# s2
# test automatic padding
self.assertEqual(out_sa['input_ids'].shape[-1],33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa['input_ids'][0] )
self.assertFalse(0 in out_sa['attention_mask'][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa['input_ids'][1] )
self.assertTrue(0 in out_sa['attention_mask'][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p['input_ids'].shape[-1],60 )
self.assertTrue(pad_token_id in out_p['input_ids'] )
self.assertTrue(0 in out_p['attention_mask'] )
# p2
# test automatic padding pair
self.assertEqual(out_pa['input_ids'].shape[-1],52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa['input_ids'][0] )
self.assertFalse(0 in out_pa['attention_mask'][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa['input_ids'][1] )
self.assertTrue(0 in out_pa['attention_mask'][1] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = '$$$'
__UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname,bos_token=A_,add_bos_token=A_ )
__UpperCamelCase = 'This is a simple input'
__UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2']
__UpperCamelCase = tokenizer.bos_token_id
__UpperCamelCase = tokenizer(A_ )
__UpperCamelCase = tokenizer(A_ )
self.assertEqual(out_s.input_ids[0],A_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__UpperCamelCase = tokenizer.decode(out_s.input_ids )
__UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0],A_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = [self.get_tokenizer(do_lower_case=A_,add_bos_token=A_ )]
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = 'Encode this.'
__UpperCamelCase = 'This one too please.'
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
encoded_sequence += tokenizer.encode(A_,add_special_tokens=A_ )
__UpperCamelCase = tokenizer.encode_plus(
A_,A_,add_special_tokens=A_,return_special_tokens_mask=A_,)
__UpperCamelCase = encoded_sequence_dict['input_ids']
__UpperCamelCase = encoded_sequence_dict['special_tokens_mask']
self.assertEqual(len(A_ ),len(A_ ) )
__UpperCamelCase = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ )
]
__UpperCamelCase = [x for x in filtered_sequence if x is not None]
self.assertEqual(A_,A_ )
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',from_slow=A_ )
__UpperCamelCase = 'A photo of a cat'
__UpperCamelCase = tokenizer.encode(
A_,)
self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained('test_opt' )
__UpperCamelCase = AutoTokenizer.from_pretrained('./test_opt' )
__UpperCamelCase = tokenizer.encode(
A_,)
self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',use_slow=A_ )
__UpperCamelCase = 'A photo of a cat'
__UpperCamelCase = tokenizer.encode(
A_,)
# Same as above
self.assertEqual(A_,[2, 250, 1345, 9, 10, 4758] )
@unittest.skip('This test is failing because of a bug in the fast tokenizer' )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m',from_slow=A_ )
__UpperCamelCase = 'bos'
__UpperCamelCase = tokenizer.get_vocab()['bos']
__UpperCamelCase = 'A photo of a cat'
__UpperCamelCase = tokenizer.encode(
A_,)
# We changed the bos token
self.assertEqual(A_,[3_1957, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained('./tok' )
__UpperCamelCase = AutoTokenizer.from_pretrained('./tok' )
self.assertTrue(tokenizer.is_fast )
__UpperCamelCase = tokenizer.encode(
A_,)
self.assertEqual(A_,[3_1957, 250, 1345, 9, 10, 4758] )
| 310
|
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = MgpstrTokenizer
_lowercase = False
_lowercase = {}
_lowercase = False
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
def snake_case_ ( self: Dict,**A_: Tuple ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'tester'
__UpperCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ )
self.assertEqual(len(A_ ),1 )
__UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ )
__UpperCamelCase = tokenizer.tokenize(A_ )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertNotEqual(len(A_ ),0 )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertIsInstance(A_,A_ )
self.assertEqual(text_a.replace(' ','' ),A_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
| 310
| 1
|
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def _A ( ) -> None:
"""simple docstring"""
print('Making key files...' )
make_key_files('rsa' , 10_24 )
print('Key files generation successful.' )
def _A ( _lowercase ) -> tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print('Generating prime p...' )
__UpperCamelCase = rabinMiller.generate_large_prime(_lowercase )
print('Generating prime q...' )
__UpperCamelCase = rabinMiller.generate_large_prime(_lowercase )
__UpperCamelCase = p * q
print('Generating e that is relatively prime to (p - 1) * (q - 1)...' )
while True:
__UpperCamelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowercase , (p - 1) * (q - 1) ) == 1:
break
print('Calculating d that is mod inverse of e...' )
__UpperCamelCase = cryptoMath.find_mod_inverse(_lowercase , (p - 1) * (q - 1) )
__UpperCamelCase = (n, e)
__UpperCamelCase = (n, d)
return (public_key, private_key)
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print('\nWARNING:' )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'Use a different name or delete these files and re-run this program.' )
sys.exit()
__UpperCamelCase, __UpperCamelCase = generate_key(_lowercase )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' , 'w' ) as out_file:
out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' , 'w' ) as out_file:
out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main()
| 310
|
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"""The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = RobertaEmbeddings(A_ )
self.init_weights()
@add_start_docstrings(
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Any,A_: int ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = config.num_labels
__UpperCamelCase = config.num_hidden_layers
__UpperCamelCase = DeeRobertaModel(A_ )
__UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels )
@add_start_docstrings_to_model_forward(A_ )
def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,):
'''simple docstring'''
__UpperCamelCase = self.num_layers
try:
__UpperCamelCase = self.roberta(
A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,)
__UpperCamelCase = outputs[1]
__UpperCamelCase = self.dropout(A_ )
__UpperCamelCase = self.classifier(A_ )
__UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCamelCase = e.message
__UpperCamelCase = e.exit_layer
__UpperCamelCase = outputs[0]
if not self.training:
__UpperCamelCase = entropy(A_ )
__UpperCamelCase = []
__UpperCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
__UpperCamelCase = []
for highway_exit in outputs[-1]:
__UpperCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(A_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(A_ )
if train_highway:
__UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCamelCase = (loss,) + outputs
if not self.training:
__UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
| 1
|
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
__snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s
__snake_case = 3e8 # unit of c : m * s^-1
def _A ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]:
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__UpperCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__UpperCamelCase = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__UpperCamelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
| 1
|
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
__snake_case = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''DPTFeatureExtractor''']
__snake_case = ['''DPTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DPTForDepthEstimation''',
'''DPTForSemanticSegmentation''',
'''DPTModel''',
'''DPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
| 1
|
import os
from pathlib import Path
def _A ( ) -> List[Any]:
"""simple docstring"""
from torch.utils.cpp_extension import load
__UpperCamelCase = Path(_lowercase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr'
__UpperCamelCase = [
root / filename
for filename in [
'vision.cpp',
os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ),
os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ),
]
]
load(
'MultiScaleDeformableAttention' , _lowercase , with_cuda=_lowercase , extra_include_paths=[str(_lowercase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[
'-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 310
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
| 1
|
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
__snake_case = TypeVar('''T''')
class __lowerCamelCase (Generic[T] ):
_lowercase = 42 # Cache store of keys
_lowercase = 42 # References of the keys in cache
_lowercase = 10 # Maximum capacity of cache
def __init__( self: List[str],A_: int ):
'''simple docstring'''
__UpperCamelCase = deque()
__UpperCamelCase = set()
if not n:
__UpperCamelCase = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
__UpperCamelCase = n
def snake_case_ ( self: Optional[Any],A_: T ):
'''simple docstring'''
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
__UpperCamelCase = self.dq_store.pop()
self.key_reference.remove(A_ )
else:
self.dq_store.remove(A_ )
self.dq_store.appendleft(A_ )
self.key_reference.add(A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
for k in self.dq_store:
print(A_ )
def __repr__( self: List[Any] ):
'''simple docstring'''
return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = LRUCache(4)
lru_cache.refer('''A''')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('''A''')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 310
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ):
return False
return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule )
def _A ( _lowercase , _lowercase = True ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCamelCase = is_compiled_module(_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(_lowercase , _lowercase ):
__UpperCamelCase = model.module
if not keep_fpaa_wrapper:
__UpperCamelCase = getattr(_lowercase , 'forward' )
__UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase )
if original_forward is not None:
while hasattr(_lowercase , '__wrapped__' ):
__UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
__UpperCamelCase = forward
if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ):
convert_model(_lowercase , to_transformer_engine=_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = compiled_model
return model
def _A ( ) -> Any:
"""simple docstring"""
PartialState().wait_for_everyone()
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(_lowercase , _lowercase )
elif PartialState().local_process_index == 0:
torch.save(_lowercase , _lowercase )
@contextmanager
def _A ( **_lowercase ) -> Union[str, Any]:
"""simple docstring"""
for key, value in kwargs.items():
__UpperCamelCase = str(_lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ):
__UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase )
if hasattr(_lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(_lowercase , '__name__' ):
return obj.__name__
return str(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key, value in source.items():
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = destination.setdefault(_lowercase , {} )
merge_dicts(_lowercase , _lowercase )
else:
__UpperCamelCase = value
return destination
def _A ( _lowercase = None ) -> bool:
"""simple docstring"""
if port is None:
__UpperCamelCase = 2_95_00
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 310
| 1
|
from math import sqrt
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
for i in range(1 , int(sqrt(_lowercase ) + 1 ) ):
if n % i == 0 and i != sqrt(_lowercase ):
total += i + n // i
elif i == sqrt(_lowercase ):
total += i
return total - n
def _A ( _lowercase = 1_00_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = sum(
i
for i in range(1 , _lowercase )
if sum_of_divisors(sum_of_divisors(_lowercase ) ) == i and sum_of_divisors(_lowercase ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 310
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """swinv2"""
_lowercase = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self: Optional[Any],A_: Tuple=224,A_: Tuple=4,A_: Dict=3,A_: Tuple=96,A_: int=[2, 2, 6, 2],A_: Optional[int]=[3, 6, 12, 24],A_: Any=7,A_: Union[str, Any]=4.0,A_: Dict=True,A_: Tuple=0.0,A_: List[Any]=0.0,A_: List[str]=0.1,A_: Dict="gelu",A_: str=False,A_: Optional[int]=0.0_2,A_: Any=1E-5,A_: Dict=32,**A_: List[Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = embed_dim
__UpperCamelCase = depths
__UpperCamelCase = len(A_ )
__UpperCamelCase = num_heads
__UpperCamelCase = window_size
__UpperCamelCase = mlp_ratio
__UpperCamelCase = qkv_bias
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = drop_path_rate
__UpperCamelCase = hidden_act
__UpperCamelCase = use_absolute_embeddings
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = initializer_range
__UpperCamelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) )
__UpperCamelCase = (0, 0, 0, 0)
| 310
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
| 1
|
import copy
import random
from transformers import CLIPTokenizer
class __lowerCamelCase (_a ):
def __init__( self: int,*A_: Optional[int],**A_: str ):
'''simple docstring'''
super().__init__(*A_,**A_ )
__UpperCamelCase = {}
def snake_case_ ( self: int,A_: Dict,*A_: List[str],**A_: Any ):
'''simple docstring'''
__UpperCamelCase = super().add_tokens(A_,*A_,**A_ )
if num_added_tokens == 0:
raise ValueError(
F'''The tokenizer already contains the token {placeholder_token}. Please pass a different'''
' `placeholder_token` that is not already in the tokenizer.' )
def snake_case_ ( self: int,A_: Dict,*A_: Optional[int],A_: Optional[Any]=1,**A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = []
if num_vec_per_token == 1:
self.try_adding_tokens(A_,*A_,**A_ )
output.append(A_ )
else:
__UpperCamelCase = []
for i in range(A_ ):
__UpperCamelCase = placeholder_token + F'''_{i}'''
self.try_adding_tokens(A_,*A_,**A_ )
output.append(A_ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F'''The tokenizer already has placeholder token {token} that can get confused with'''
F''' {placeholder_token}keep placeholder tokens independent''' )
__UpperCamelCase = output
def snake_case_ ( self: Tuple,A_: str,A_: Union[str, Any]=False,A_: Optional[Any]=1.0 ):
'''simple docstring'''
if isinstance(A_,A_ ):
__UpperCamelCase = []
for i in range(len(A_ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=A_ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
__UpperCamelCase = self.token_map[placeholder_token]
__UpperCamelCase = tokens[: 1 + int(len(A_ ) * prop_tokens_to_load )]
if vector_shuffle:
__UpperCamelCase = copy.copy(A_ )
random.shuffle(A_ )
__UpperCamelCase = text.replace(A_,' '.join(A_ ) )
return text
def __call__( self: Any,A_: Optional[Any],*A_: Optional[int],A_: List[str]=False,A_: List[Any]=1.0,**A_: str ):
'''simple docstring'''
return super().__call__(
self.replace_placeholder_tokens_in_text(
A_,vector_shuffle=A_,prop_tokens_to_load=A_ ),*A_,**A_,)
def snake_case_ ( self: Any,A_: str,*A_: Tuple,A_: List[str]=False,A_: Any=1.0,**A_: Any ):
'''simple docstring'''
return super().encode(
self.replace_placeholder_tokens_in_text(
A_,vector_shuffle=A_,prop_tokens_to_load=A_ ),*A_,**A_,)
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __lowerCamelCase (_a ):
_lowercase = """biogpt"""
def __init__( self: str,A_: List[Any]=4_2384,A_: Union[str, Any]=1024,A_: List[str]=24,A_: Union[str, Any]=16,A_: Any=4096,A_: Optional[Any]="gelu",A_: Dict=0.1,A_: Optional[Any]=0.1,A_: Dict=1024,A_: List[str]=0.0_2,A_: Optional[int]=1E-12,A_: Any=True,A_: Dict=True,A_: List[Any]=0.0,A_: int=0.0,A_: int=1,A_: List[Any]=0,A_: Union[str, Any]=2,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = scale_embedding
__UpperCamelCase = use_cache
__UpperCamelCase = layerdrop
__UpperCamelCase = activation_dropout
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
| 310
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
| 1
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
|
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
__snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ):
__UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip()
__UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 310
| 1
|
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCamelCase (unittest.TestCase ):
def __init__( self: Any,A_: Union[str, Any],A_: Union[str, Any]=13,A_: List[Any]=7,A_: Tuple=True,A_: Optional[Any]=True,A_: Dict=True,A_: Union[str, Any]=True,A_: List[Any]=99,A_: str=32,A_: List[str]=5,A_: Optional[int]=4,A_: List[Any]=37,A_: List[str]="gelu",A_: Any=0.1,A_: List[Any]=0.1,A_: Dict=512,A_: Optional[int]=16,A_: List[str]=2,A_: Optional[Any]=0.0_2,A_: Optional[Any]=4,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_attention_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_choices
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
__UpperCamelCase = None
if self.use_attention_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size )
__UpperCamelCase = RobertaConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=A_,initializer_range=self.initializer_range,)
return config, input_ids, token_type_ids, attention_mask
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs
__UpperCamelCase = True
__UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = True
_lowercase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = FlaxRobertaModelTester(self )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained('roberta-base',from_pt=A_ )
__UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(A_ )
| 310
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
def merge(_lowercase , _lowercase ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowercase ) <= 1:
return collection
__UpperCamelCase = len(_lowercase ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 310
| 1
|
__snake_case = {
'''Pillow''': '''Pillow''',
'''accelerate''': '''accelerate>=0.11.0''',
'''compel''': '''compel==0.1.8''',
'''black''': '''black~=23.1''',
'''datasets''': '''datasets''',
'''filelock''': '''filelock''',
'''flax''': '''flax>=0.4.1''',
'''hf-doc-builder''': '''hf-doc-builder>=0.3.0''',
'''huggingface-hub''': '''huggingface-hub>=0.13.2''',
'''requests-mock''': '''requests-mock==1.10.0''',
'''importlib_metadata''': '''importlib_metadata''',
'''invisible-watermark''': '''invisible-watermark''',
'''isort''': '''isort>=5.5.4''',
'''jax''': '''jax>=0.2.8,!=0.3.2''',
'''jaxlib''': '''jaxlib>=0.1.65''',
'''Jinja2''': '''Jinja2''',
'''k-diffusion''': '''k-diffusion>=0.0.12''',
'''torchsde''': '''torchsde''',
'''note_seq''': '''note_seq''',
'''librosa''': '''librosa''',
'''numpy''': '''numpy''',
'''omegaconf''': '''omegaconf''',
'''parameterized''': '''parameterized''',
'''protobuf''': '''protobuf>=3.20.3,<4''',
'''pytest''': '''pytest''',
'''pytest-timeout''': '''pytest-timeout''',
'''pytest-xdist''': '''pytest-xdist''',
'''ruff''': '''ruff>=0.0.241''',
'''safetensors''': '''safetensors''',
'''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''',
'''scipy''': '''scipy''',
'''onnx''': '''onnx''',
'''regex''': '''regex!=2019.12.17''',
'''requests''': '''requests''',
'''tensorboard''': '''tensorboard''',
'''torch''': '''torch>=1.4''',
'''torchvision''': '''torchvision''',
'''transformers''': '''transformers>=4.25.1''',
'''urllib3''': '''urllib3<=2.0.0''',
}
| 310
|
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 0
_lowercase = False
_lowercase = 3.0
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs(),{} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} )
self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} )
@require_cuda
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale,1_0_2_4.0 )
self.assertEqual(scaler._growth_factor,2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor,0.5 )
self.assertEqual(scaler._growth_interval,2000 )
self.assertEqual(scaler._enabled,A_ )
@require_multi_gpu
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_,env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
__snake_case = Accelerator(kwargs_handlers=[ddp_scaler])
__snake_case = torch.nn.Linear(1_0_0, 2_0_0)
__snake_case = accelerator.prepare(model)
# Check the values changed in kwargs
__snake_case = ''''''
__snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 310
| 1
|
def _A ( _lowercase ) -> str:
"""simple docstring"""
if number > 0:
raise ValueError('input must be a negative integer' )
__UpperCamelCase = len(bin(_lowercase )[3:] )
__UpperCamelCase = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:]
__UpperCamelCase = (
(
'1'
+ '0' * (binary_number_length - len(_lowercase ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCamelCase (_a ):
_lowercase = ["""image_processor""", """tokenizer"""]
_lowercase = """OwlViTImageProcessor"""
_lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.',A_,)
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_,A_ )
def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )):
__UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )]
elif isinstance(A_,A_ ) and isinstance(text[0],A_ ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(A_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A_ ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(A_ ))
__UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )
encodings.append(A_ )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
A_,return_tensors=A_,**A_ ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ),tensor_type=A_ )
def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process(*A_,**A_ )
def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*A_,**A_ )
def snake_case_ ( self: str,*A_: Tuple,**A_: int ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*A_,**A_ )
def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*A_,**A_ )
def snake_case_ ( self: int,*A_: Any,**A_: Tuple ):
'''simple docstring'''
return self.tokenizer.decode(*A_,**A_ )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,)
return self.image_processor_class
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,)
return self.image_processor
| 310
| 1
|
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def _A ( _lowercase , _lowercase , _lowercase = 10**-10 ) -> float:
"""simple docstring"""
__UpperCamelCase = a
while True:
__UpperCamelCase = Decimal(_lowercase ) - (
Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(_lowercase ) ) < precision: # noqa: S307
return float(_lowercase )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""")
# Find root of polynomial
print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""")
# Find Square Root of 5
print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""")
# Exponential Roots
print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
| 310
|
import math
def _A ( _lowercase ) -> int:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
__UpperCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 1:
__UpperCamelCase = f'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowercase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2
__UpperCamelCase = [3, 5]
__UpperCamelCase = 2
__UpperCamelCase = 3
for block in range(1 , _lowercase ):
for _ in range(_lowercase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(1_1):
__snake_case = 0
try:
__snake_case = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 310
| 1
|
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = DownBlockaD # noqa F405
_lowercase = """down"""
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ResnetDownsampleBlockaD # noqa F405
_lowercase = """down"""
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnDownBlockaD # noqa F405
_lowercase = """down"""
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = CrossAttnDownBlockaD # noqa F405
_lowercase = """down"""
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = SimpleCrossAttnDownBlockaD # noqa F405
_lowercase = """down"""
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == 'mps','MPS result is not consistent' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = SkipDownBlockaD # noqa F405
_lowercase = """down"""
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=A_ )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnSkipDownBlockaD # noqa F405
_lowercase = """down"""
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = DownEncoderBlockaD # noqa F405
_lowercase = """down"""
@property
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = {
'in_channels': 32,
'out_channels': 32,
}
__UpperCamelCase = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnDownEncoderBlockaD # noqa F405
_lowercase = """down"""
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = {
'in_channels': 32,
'out_channels': 32,
}
__UpperCamelCase = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = UNetMidBlockaD # noqa F405
_lowercase = """mid"""
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = {
'in_channels': 32,
'temb_channels': 128,
}
__UpperCamelCase = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = UNetMidBlockaDCrossAttn # noqa F405
_lowercase = """mid"""
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405
_lowercase = """mid"""
@property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = UpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ResnetUpsampleBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = CrossAttnUpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = SimpleCrossAttnUpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_,include_encoder_hidden_states=A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = super().prepare_init_args_and_inputs_for_common()
__UpperCamelCase = 32
return init_dict, inputs_dict
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnUpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
@unittest.skipIf(torch_device == 'mps','MPS result is not consistent' )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = SkipUpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnSkipUpBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = UpDecoderBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = {'in_channels': 32, 'out_channels': 32}
__UpperCamelCase = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7]
super().test_output(A_ )
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = AttnUpDecoderBlockaD # noqa F405
_lowercase = """up"""
@property
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = {'in_channels': 32, 'out_channels': 32}
__UpperCamelCase = self.dummy_input
return init_dict, inputs_dict
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8]
super().test_output(A_ )
| 310
|
import torch
from transformers import AutoModel
class __lowerCamelCase (torch.nn.Module ):
def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(A_,self ).__init__()
__UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ )
__UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 )
__UpperCamelCase = torch.nn.Softmax(dim=1 )
def snake_case_ ( self: Tuple,**A_: Union[str, Any] ):
'''simple docstring'''
return self.bert(**A_ ).last_hidden_state
def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
return token_embeddings.sum(2,keepdim=A_ )
def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(A_,A_ ) )
def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = W_supports['sizes'].tolist()
__UpperCamelCase = W_supports['start_token_id'].item()
__UpperCamelCase = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = W_supports['input_ids'] == start_token_id
__UpperCamelCase = W_supports['input_ids'] == end_token_id
for i, size in enumerate(A_ ):
if i == 0:
__UpperCamelCase = 0
else:
__UpperCamelCase = support_sizes[i - 1]
__UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]]
__UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]]
__UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 )
__UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
__UpperCamelCase = torch.vstack((p_starts, p_start) )
__UpperCamelCase = torch.vstack((p_ends, p_end) )
else:
__UpperCamelCase = p_start
__UpperCamelCase = p_end
return p_starts, p_ends
| 310
| 1
|
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class __lowerCamelCase (_a ):
_lowercase = """informer"""
_lowercase = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__( self: Dict,A_: Optional[int] = None,A_: Optional[int] = None,A_: str = "student_t",A_: str = "nll",A_: int = 1,A_: List[int] = None,A_: Optional[Union[str, bool]] = "mean",A_: int = 0,A_: int = 0,A_: int = 0,A_: int = 0,A_: Optional[List[int]] = None,A_: Optional[List[int]] = None,A_: int = 64,A_: int = 32,A_: int = 32,A_: int = 2,A_: int = 2,A_: int = 2,A_: int = 2,A_: bool = True,A_: str = "gelu",A_: float = 0.0_5,A_: float = 0.1,A_: float = 0.1,A_: float = 0.1,A_: float = 0.1,A_: int = 100,A_: float = 0.0_2,A_: int=True,A_: str = "prob",A_: int = 5,A_: bool = True,**A_: Any,):
'''simple docstring'''
__UpperCamelCase = prediction_length
__UpperCamelCase = context_length or prediction_length
__UpperCamelCase = distribution_output
__UpperCamelCase = loss
__UpperCamelCase = input_size
__UpperCamelCase = num_time_features
__UpperCamelCase = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
__UpperCamelCase = scaling
__UpperCamelCase = num_dynamic_real_features
__UpperCamelCase = num_static_real_features
__UpperCamelCase = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__UpperCamelCase = cardinality
else:
__UpperCamelCase = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__UpperCamelCase = embedding_dimension
else:
__UpperCamelCase = [min(50,(cat + 1) // 2 ) for cat in self.cardinality]
__UpperCamelCase = num_parallel_samples
# Transformer architecture configuration
__UpperCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features
__UpperCamelCase = d_model
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_layers
__UpperCamelCase = decoder_layers
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = use_cache
# Informer
__UpperCamelCase = attention_type
__UpperCamelCase = sampling_factor
__UpperCamelCase = distil
super().__init__(is_encoder_decoder=A_,**A_ )
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 310
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = BioGptTokenizer
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w' ) as fp:
fp.write(json.dumps(A_ ) )
with open(self.merges_file,'w' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: Optional[int],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'lower newer'
__UpperCamelCase = 'lower newer'
return input_text, output_text
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file )
__UpperCamelCase = 'lower'
__UpperCamelCase = ['low', 'er</w>']
__UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokens + ['<unk>']
__UpperCamelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
__UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 310
| 1
|
class __lowerCamelCase :
def __init__( self: List[str],A_: Any ):
'''simple docstring'''
__UpperCamelCase = arr.split(',' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = [int(self.array[0] )] * len(self.array )
__UpperCamelCase = [int(self.array[0] )] * len(self.array )
for i in range(1,len(self.array ) ):
__UpperCamelCase = max(
int(self.array[i] ) + sum_value[i - 1],int(self.array[i] ) )
__UpperCamelCase = max(sum_value[i],rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__snake_case = input('''please input some numbers:''')
__snake_case = SubArray(whole_array)
__snake_case = array.solve_sub_array()
print(('''the results is:''', re))
| 310
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__snake_case = r'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(_a )
class __lowerCamelCase (_a ):
_lowercase = """rag"""
_lowercase = True
def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],):
'''simple docstring'''
super().__init__(
bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__UpperCamelCase = kwargs.pop('question_encoder' )
__UpperCamelCase = question_encoder_config.pop('model_type' )
__UpperCamelCase = kwargs.pop('generator' )
__UpperCamelCase = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = reduce_loss
__UpperCamelCase = label_smoothing
__UpperCamelCase = exclude_bos_score
__UpperCamelCase = do_marginalize
__UpperCamelCase = title_sep
__UpperCamelCase = doc_sep
__UpperCamelCase = n_docs
__UpperCamelCase = max_combined_length
__UpperCamelCase = dataset
__UpperCamelCase = dataset_split
__UpperCamelCase = index_name
__UpperCamelCase = retrieval_vector_size
__UpperCamelCase = retrieval_batch_size
__UpperCamelCase = passages_path
__UpperCamelCase = index_path
__UpperCamelCase = use_dummy_dataset
__UpperCamelCase = output_retrieved
__UpperCamelCase = do_deduplication
__UpperCamelCase = use_cache
if self.forced_eos_token_id is None:
__UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ )
@classmethod
def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ):
'''simple docstring'''
return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = self.question_encoder.to_dict()
__UpperCamelCase = self.generator.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
| 310
| 1
|
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCamelCase (_a ):
_lowercase = 42
_lowercase = 42
def __init__( self: Tuple,A_: UNetaDModel,A_: ScoreSdeVeScheduler ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=A_,scheduler=A_ )
@torch.no_grad()
def __call__( self: str,A_: int = 1,A_: int = 2000,A_: Optional[Union[torch.Generator, List[torch.Generator]]] = None,A_: Optional[str] = "pil",A_: bool = True,**A_: Optional[int],):
'''simple docstring'''
__UpperCamelCase = self.unet.config.sample_size
__UpperCamelCase = (batch_size, 3, img_size, img_size)
__UpperCamelCase = self.unet
__UpperCamelCase = randn_tensor(A_,generator=A_ ) * self.scheduler.init_noise_sigma
__UpperCamelCase = sample.to(self.device )
self.scheduler.set_timesteps(A_ )
self.scheduler.set_sigmas(A_ )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0],device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__UpperCamelCase = self.unet(A_,A_ ).sample
__UpperCamelCase = self.scheduler.step_correct(A_,A_,generator=A_ ).prev_sample
# prediction step
__UpperCamelCase = model(A_,A_ ).sample
__UpperCamelCase = self.scheduler.step_pred(A_,A_,A_,generator=A_ )
__UpperCamelCase, __UpperCamelCase = output.prev_sample, output.prev_sample_mean
__UpperCamelCase = sample_mean.clamp(0,1 )
__UpperCamelCase = sample.cpu().permute(0,2,3,1 ).numpy()
if output_type == "pil":
__UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=A_ )
| 310
|
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase (_a ):
_lowercase = """M-CLIP"""
def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ):
'''simple docstring'''
__UpperCamelCase = transformerDimSize
__UpperCamelCase = imageDimSize
super().__init__(**A_ )
class __lowerCamelCase (_a ):
_lowercase = MCLIPConfig
def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ):
'''simple docstring'''
super().__init__(A_,*A_,**A_ )
__UpperCamelCase = XLMRobertaModel(A_ )
__UpperCamelCase = torch.nn.Linear(
in_features=config.transformerDimensions,out_features=config.numDims )
def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0]
__UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(A_ ), embs
| 310
| 1
|
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = analyze_text(_lowercase )
__UpperCamelCase = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
__UpperCamelCase = sum(single_char_strings.values() )
# one length string
__UpperCamelCase = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
__UpperCamelCase = single_char_strings[ch]
__UpperCamelCase = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
__UpperCamelCase = sum(two_char_strings.values() )
__UpperCamelCase = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
__UpperCamelCase = cha + cha
if sequence in two_char_strings:
__UpperCamelCase = two_char_strings[sequence]
__UpperCamelCase = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def _A ( _lowercase ) -> tuple[dict, dict]:
"""simple docstring"""
__UpperCamelCase = Counter() # type: ignore
__UpperCamelCase = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def _A ( ) -> Optional[Any]:
"""simple docstring"""
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 310
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCamelCase :
_lowercase = XGLMConfig
_lowercase = {}
_lowercase = """gelu"""
def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = ffn_dim
__UpperCamelCase = activation_function
__UpperCamelCase = activation_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 2
__UpperCamelCase = 1
def snake_case_ ( self: Dict ):
'''simple docstring'''
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = self.get_config()
__UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,)
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowercase = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Optional[Any],A_: int=True ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(),A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' )
__UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] )
__UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ )
__UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = 'left'
# use different length sentences to test batching
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_,A_ )
self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
| 310
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {
'''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''],
'''convert_funnel_original_tf_checkpoint_to_pytorch''': [],
'''tokenization_funnel''': ['''FunnelTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''FunnelTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FunnelBaseModel''',
'''FunnelForMaskedLM''',
'''FunnelForMultipleChoice''',
'''FunnelForPreTraining''',
'''FunnelForQuestionAnswering''',
'''FunnelForSequenceClassification''',
'''FunnelForTokenClassification''',
'''FunnelModel''',
'''FunnelPreTrainedModel''',
'''load_tf_weights_in_funnel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFFunnelBaseModel''',
'''TFFunnelForMaskedLM''',
'''TFFunnelForMultipleChoice''',
'''TFFunnelForPreTraining''',
'''TFFunnelForQuestionAnswering''',
'''TFFunnelForSequenceClassification''',
'''TFFunnelForTokenClassification''',
'''TFFunnelModel''',
'''TFFunnelPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
__snake_case = json.load(f)
@require_torch
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
return FSMTTokenizer.from_pretrained(A_ )
def snake_case_ ( self: Dict,A_: int ):
'''simple docstring'''
__UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 2_6.0],
['ru-en', 2_2.0],
['en-de', 2_2.0],
['de-en', 2_9.0],
] )
@slow
def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = F'''facebook/wmt19-{pair}'''
__UpperCamelCase = self.get_tokenizer(A_ )
__UpperCamelCase = self.get_model(A_ )
__UpperCamelCase = bleu_data[pair]['src']
__UpperCamelCase = bleu_data[pair]['tgt']
__UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids,num_beams=8,)
__UpperCamelCase = tokenizer.batch_decode(
A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ )
__UpperCamelCase = calculate_bleu(A_,A_ )
print(A_ )
self.assertGreaterEqual(scores['bleu'],A_ )
| 310
| 1
|
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase=None , _lowercase=None ) -> List[str]:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=_lowercase )
@dataclass
class __lowerCamelCase :
_lowercase = list_field(
default=[] , metadata={
"""help""": (
"""Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"""
""" of all available models"""
)
} , )
_lowercase = list_field(
default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} )
_lowercase = list_field(
default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} )
_lowercase = field(default=_a , metadata={"""help""": """Use FP16 to accelerate inference."""} )
_lowercase = field(default=_a , metadata={"""help""": """Benchmark training of model"""} )
_lowercase = field(default=_a , metadata={"""help""": """Verbose memory tracing"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"""
} , )
_lowercase = field(default=_a , metadata={"""help""": """Trace memory line by line"""} )
_lowercase = field(default=_a , metadata={"""help""": """Save result to a CSV file"""} )
_lowercase = field(default=_a , metadata={"""help""": """Save all print statements in a log file"""} )
_lowercase = field(default=_a , metadata={"""help""": """Whether to print environment information"""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"""
""" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"""
""" for debugging / testing and on TPU."""
)
} , )
_lowercase = field(
default=f"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , )
_lowercase = field(
default=f"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , )
_lowercase = field(
default=f"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , )
_lowercase = field(
default=f"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , )
_lowercase = field(
default=f"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , )
_lowercase = field(
default=f"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , )
_lowercase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"""
""" model weights."""
)
} , )
def snake_case_ ( self: Dict ):
'''simple docstring'''
warnings.warn(
F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'''
' are deprecated in general and it is advised to use external Benchmarking libraries '
' to benchmark Transformer models.',A_,)
def snake_case_ ( self: Any ):
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ),indent=2 )
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
'Please make sure you provide at least one model name / model identifier, *e.g.* `--models'
' bert-base-cased` or `args.models = [\'bert-base-cased\'].' )
return self.models
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('Multiprocessing is currently not possible on TPU.' )
return False
else:
return True
| 310
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
| 1
|
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
return [
int(10_00 * (box[0] / width) ),
int(10_00 * (box[1] / height) ),
int(10_00 * (box[2] / width) ),
int(10_00 * (box[3] / height) ),
]
def _A ( _lowercase , _lowercase , _lowercase = None ) -> Any:
"""simple docstring"""
__UpperCamelCase = tesseract_config if tesseract_config is not None else ''
# apply OCR
__UpperCamelCase = to_pil_image(_lowercase )
__UpperCamelCase, __UpperCamelCase = pil_image.size
__UpperCamelCase = pytesseract.image_to_data(_lowercase , lang=_lowercase , output_type='dict' , config=_lowercase )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
__UpperCamelCase = [idx for idx, word in enumerate(_lowercase ) if not word.strip()]
__UpperCamelCase = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices]
__UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices]
__UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices]
__UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices]
__UpperCamelCase = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__UpperCamelCase = []
for x, y, w, h in zip(_lowercase , _lowercase , _lowercase , _lowercase ):
__UpperCamelCase = [x, y, x + w, y + h]
actual_boxes.append(_lowercase )
# finally, normalize the bounding boxes
__UpperCamelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(_lowercase , _lowercase , _lowercase ) )
assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: int,A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BILINEAR,A_: bool = True,A_: Optional[str] = None,A_: Optional[str] = "",**A_: List[Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = apply_ocr
__UpperCamelCase = ocr_lang
__UpperCamelCase = tesseract_config
def snake_case_ ( self: Union[str, Any],A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BILINEAR,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
__UpperCamelCase = (size['height'], size['width'])
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: str,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: Optional[str] = None,A_: Optional[str] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: Tuple,):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if apply_ocr:
requires_backends(self,'pytesseract' )
__UpperCamelCase = []
__UpperCamelCase = []
for image in images:
__UpperCamelCase, __UpperCamelCase = apply_tesseract(A_,A_,A_ )
words_batch.append(A_ )
boxes_batch.append(A_ )
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__UpperCamelCase = [flip_channel_order(A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = BatchFeature(data={'pixel_values': images},tensor_type=A_ )
if apply_ocr:
__UpperCamelCase = words_batch
__UpperCamelCase = boxes_batch
return data
| 310
|
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = MgpstrTokenizer
_lowercase = False
_lowercase = {}
_lowercase = False
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
def snake_case_ ( self: Dict,**A_: Tuple ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'tester'
__UpperCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ )
self.assertEqual(len(A_ ),1 )
__UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ )
__UpperCamelCase = tokenizer.tokenize(A_ )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertNotEqual(len(A_ ),0 )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertIsInstance(A_,A_ )
self.assertEqual(text_a.replace(' ','' ),A_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
| 310
| 1
|
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __lowerCamelCase (_a ):
@staticmethod
@abstractmethod
def snake_case_ ( A_: ArgumentParser ):
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def snake_case_ ( self: str ):
'''simple docstring'''
raise NotImplementedError()
| 310
|
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"""The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = RobertaEmbeddings(A_ )
self.init_weights()
@add_start_docstrings(
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Any,A_: int ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = config.num_labels
__UpperCamelCase = config.num_hidden_layers
__UpperCamelCase = DeeRobertaModel(A_ )
__UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels )
@add_start_docstrings_to_model_forward(A_ )
def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,):
'''simple docstring'''
__UpperCamelCase = self.num_layers
try:
__UpperCamelCase = self.roberta(
A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,)
__UpperCamelCase = outputs[1]
__UpperCamelCase = self.dropout(A_ )
__UpperCamelCase = self.classifier(A_ )
__UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCamelCase = e.message
__UpperCamelCase = e.exit_layer
__UpperCamelCase = outputs[0]
if not self.training:
__UpperCamelCase = entropy(A_ )
__UpperCamelCase = []
__UpperCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
__UpperCamelCase = []
for highway_exit in outputs[-1]:
__UpperCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(A_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(A_ )
if train_highway:
__UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCamelCase = (loss,) + outputs
if not self.training:
__UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
| 1
|
def _A ( _lowercase = 2_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
__UpperCamelCase = [0] * (pence + 1)
__UpperCamelCase = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(_lowercase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_0_0) == 7_3_6_8_2
| 310
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
| 1
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
def merge(_lowercase , _lowercase ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowercase ) <= 1:
return collection
__UpperCamelCase = len(_lowercase ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 310
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
| 1
|
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__snake_case = False
__snake_case = True
__snake_case = False
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--repo_path''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
__snake_case = parser.parse_args()
__snake_case = {
'''image_size''': '''sample_size''',
'''num_res_blocks''': '''layers_per_block''',
'''block_channels''': '''block_out_channels''',
'''down_blocks''': '''down_block_types''',
'''up_blocks''': '''up_block_types''',
'''downscale_freq_shift''': '''freq_shift''',
'''resnet_num_groups''': '''norm_num_groups''',
'''resnet_act_fn''': '''act_fn''',
'''resnet_eps''': '''norm_eps''',
'''num_head_channels''': '''attention_head_dim''',
}
__snake_case = {
'''time_steps''': '''time_proj''',
'''mid''': '''mid_block''',
'''downsample_blocks''': '''down_blocks''',
'''upsample_blocks''': '''up_blocks''',
}
__snake_case = '''''' if has_file(args.repo_path, '''config.json''') else '''unet'''
with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader:
__snake_case = reader.read()
__snake_case = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, '''config.json'''):
__snake_case = UNetaDModel(**config)
else:
__snake_case = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel
__snake_case = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__snake_case = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__snake_case = config[key]
del config[key]
__snake_case = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']]
__snake_case = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']]
if do_only_weights:
__snake_case = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin'''))
__snake_case = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''):
continue
__snake_case = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('''.''')[0] == key:
__snake_case = param_value
__snake_case = True
if not has_changed:
__snake_case = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 310
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
| 1
|
from functools import reduce
__snake_case = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def _A ( _lowercase = N ) -> int:
"""simple docstring"""
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) )
for i in range(len(_lowercase ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 310
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ):
return False
return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule )
def _A ( _lowercase , _lowercase = True ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCamelCase = is_compiled_module(_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(_lowercase , _lowercase ):
__UpperCamelCase = model.module
if not keep_fpaa_wrapper:
__UpperCamelCase = getattr(_lowercase , 'forward' )
__UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase )
if original_forward is not None:
while hasattr(_lowercase , '__wrapped__' ):
__UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
__UpperCamelCase = forward
if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ):
convert_model(_lowercase , to_transformer_engine=_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = compiled_model
return model
def _A ( ) -> Any:
"""simple docstring"""
PartialState().wait_for_everyone()
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(_lowercase , _lowercase )
elif PartialState().local_process_index == 0:
torch.save(_lowercase , _lowercase )
@contextmanager
def _A ( **_lowercase ) -> Union[str, Any]:
"""simple docstring"""
for key, value in kwargs.items():
__UpperCamelCase = str(_lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ):
__UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase )
if hasattr(_lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(_lowercase , '__name__' ):
return obj.__name__
return str(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key, value in source.items():
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = destination.setdefault(_lowercase , {} )
merge_dicts(_lowercase , _lowercase )
else:
__UpperCamelCase = value
return destination
def _A ( _lowercase = None ) -> bool:
"""simple docstring"""
if port is None:
__UpperCamelCase = 2_95_00
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 310
| 1
|
import math
def _A ( _lowercase ) -> bool:
"""simple docstring"""
return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
| 1
|
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = BertConfig.from_json_file(_lowercase )
print(f'''Building PyTorch model from configuration: {config}''' )
__UpperCamelCase = BertForPreTraining(_lowercase )
# Load weights from tf checkpoint
load_tf_weights_in_bert(_lowercase , _lowercase , _lowercase )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 310
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
| 1
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """pytorch""",
"""script""": """run_ddp.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf_dist.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7},
},
] )
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(),encoding='utf-8',check=A_,)
assert hasattr(self,'env' )
def snake_case_ ( self: Union[str, Any],A_: int ):
'''simple docstring'''
__UpperCamelCase = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}'''
# distributed data settings
__UpperCamelCase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None
# creates estimator
return HuggingFace(
entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=A_,instance_count=A_,instance_type=self.instance_type,debugger_hook_config=A_,hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path},metric_definitions=self.env.metric_definitions,distribution=A_,py_version='py36',)
def snake_case_ ( self: int,A_: Any ):
'''simple docstring'''
TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def snake_case_ ( self: Any,A_: Any ):
'''simple docstring'''
__UpperCamelCase = self.create_estimator(A_ )
# run training
estimator.fit()
# result dataframe
__UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
__UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds',99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''','w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss},A_ )
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
def _A ( _lowercase , _lowercase , _lowercase ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(_lowercase ) )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool:
"""simple docstring"""
if index == len(_lowercase ):
return True
# Recursive Step
for i in range(_lowercase ):
if valid_coloring(graph[index] , _lowercase , _lowercase ):
# Color current vertex
__UpperCamelCase = i
# Validate coloring
if util_color(_lowercase , _lowercase , _lowercase , index + 1 ):
return True
# Backtrack
__UpperCamelCase = -1
return False
def _A ( _lowercase , _lowercase ) -> list[int]:
"""simple docstring"""
__UpperCamelCase = [-1] * len(_lowercase )
if util_color(_lowercase , _lowercase , _lowercase , 0 ):
return colored_vertices
return []
| 310
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class __lowerCamelCase (_a ):
_lowercase = """vit_msn"""
def __init__( self: str,A_: List[str]=768,A_: List[str]=12,A_: Tuple=12,A_: Optional[int]=3072,A_: Tuple="gelu",A_: int=0.0,A_: Any=0.0,A_: Any=0.0_2,A_: Optional[int]=1E-06,A_: Dict=224,A_: List[Any]=16,A_: List[Any]=3,A_: Dict=True,**A_: List[Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = qkv_bias
| 310
|
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
__snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ):
__UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip()
__UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 310
| 1
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
if len(_lowercase ) <= 1:
return [tuple(_lowercase )]
__UpperCamelCase = []
def generate(_lowercase , _lowercase ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , _lowercase )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__UpperCamelCase, __UpperCamelCase = arr[k - 1], arr[i]
else: # k is odd
__UpperCamelCase, __UpperCamelCase = arr[k - 1], arr[0]
generate(k - 1 , _lowercase )
generate(len(_lowercase ) , _lowercase )
return res
if __name__ == "__main__":
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(heaps(arr))
| 310
|
def _A ( _lowercase ) -> list:
"""simple docstring"""
def merge(_lowercase , _lowercase ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowercase ) <= 1:
return collection
__UpperCamelCase = len(_lowercase ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 310
| 1
|
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCamelCase = set()
return any(
node not in visited and depth_first_search(_lowercase , _lowercase , _lowercase , _lowercase )
for node in graph )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool:
"""simple docstring"""
visited.add(_lowercase )
rec_stk.add(_lowercase )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(_lowercase , _lowercase , _lowercase , _lowercase ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(_lowercase )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 310
|
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 0
_lowercase = False
_lowercase = 3.0
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs(),{} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs(),{'a': 2} )
self.assertDictEqual(MockClass(a=2,b=A_ ).to_kwargs(),{'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2,c=2.2_5 ).to_kwargs(),{'a': 2, 'c': 2.2_5} )
@require_cuda
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024,growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='fp16',kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale,1_0_2_4.0 )
self.assertEqual(scaler._growth_factor,2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor,0.5 )
self.assertEqual(scaler._growth_interval,2000 )
self.assertEqual(scaler._enabled,A_ )
@require_multi_gpu
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(A_,env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
__snake_case = Accelerator(kwargs_handlers=[ddp_scaler])
__snake_case = torch.nn.Linear(1_0_0, 2_0_0)
__snake_case = accelerator.prepare(model)
# Check the values changed in kwargs
__snake_case = ''''''
__snake_case = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 310
| 1
|
from math import sqrt
def _A ( _lowercase = 1_00_00_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 42
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_lowercase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(f"""{solution() = }""")
| 310
|
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCamelCase (_a ):
_lowercase = ["""image_processor""", """tokenizer"""]
_lowercase = """OwlViTImageProcessor"""
_lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self: int,A_: Tuple=None,A_: int=None,**A_: int ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.',A_,)
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_,A_ )
def __call__( self: str,A_: Dict=None,A_: Optional[int]=None,A_: Any=None,A_: Tuple="max_length",A_: int="np",**A_: Optional[Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(A_,A_ ) or (isinstance(A_,A_ ) and not isinstance(text[0],A_ )):
__UpperCamelCase = [self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )]
elif isinstance(A_,A_ ) and isinstance(text[0],A_ ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(A_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A_ ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(A_ ))
__UpperCamelCase = self.tokenizer(A_,padding=A_,return_tensors=A_,**A_ )
encodings.append(A_ )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings],axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings],dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings],dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings],axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings],axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
A_,return_tensors=A_,**A_ ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ),tensor_type=A_ )
def snake_case_ ( self: Optional[int],*A_: int,**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process(*A_,**A_ )
def snake_case_ ( self: str,*A_: Optional[int],**A_: List[Any] ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*A_,**A_ )
def snake_case_ ( self: str,*A_: Tuple,**A_: int ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*A_,**A_ )
def snake_case_ ( self: List[str],*A_: str,**A_: List[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*A_,**A_ )
def snake_case_ ( self: int,*A_: Any,**A_: Tuple ):
'''simple docstring'''
return self.tokenizer.decode(*A_,**A_ )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.',A_,)
return self.image_processor_class
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.',A_,)
return self.image_processor
| 310
| 1
|
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''',
},
}
# TODO(PVP) - this should be removed in Transformers v5
__snake_case = {
'''t5-small''': 5_1_2,
'''t5-base''': 5_1_2,
'''t5-large''': 5_1_2,
'''t5-3b''': 5_1_2,
'''t5-11b''': 5_1_2,
}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ["""input_ids""", """attention_mask"""]
_lowercase = TaTokenizer
_lowercase = []
def __init__( self: List[str],A_: List[str]=None,A_: int=None,A_: int="</s>",A_: Tuple="<unk>",A_: Dict="<pad>",A_: Union[str, Any]=100,A_: Optional[Any]=None,**A_: List[str],):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
__UpperCamelCase = [F'''<extra_id_{i}>''' for i in range(A_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
__UpperCamelCase = len(set(filter(lambda A_ : bool('extra_id_' in str(A_ ) ),A_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
super().__init__(
A_,tokenizer_file=A_,eos_token=A_,unk_token=A_,pad_token=A_,extra_ids=A_,additional_special_tokens=A_,**A_,)
__UpperCamelCase = vocab_file
__UpperCamelCase = False if not self.vocab_file else True
__UpperCamelCase = extra_ids
@staticmethod
def snake_case_ ( A_: str,A_: Union[str, Any],A_: Dict ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
__UpperCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F''' {pretrained_model_name_or_path} automatically truncating your input to'''
F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.',A_,)
return max_model_length
def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file,A_ )
logger.info(F'''Copy vocab file to {out_vocab_file}''' )
return (out_vocab_file,)
def snake_case_ ( self: Dict,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
__UpperCamelCase = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def snake_case_ ( self: str ):
'''simple docstring'''
return list(
set(filter(lambda A_ : bool(re.search(r'<extra_id_\d+>',A_ ) ) is not None,self.additional_special_tokens ) ) )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(A_ ) for token in self.get_sentinel_tokens()]
| 310
|
import math
def _A ( _lowercase ) -> int:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
__UpperCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 1:
__UpperCamelCase = f'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowercase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2
__UpperCamelCase = [3, 5]
__UpperCamelCase = 2
__UpperCamelCase = 3
for block in range(1 , _lowercase ):
for _ in range(_lowercase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(1_1):
__snake_case = 0
try:
__snake_case = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 310
| 1
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
|
import torch
from transformers import AutoModel
class __lowerCamelCase (torch.nn.Module ):
def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(A_,self ).__init__()
__UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ )
__UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 )
__UpperCamelCase = torch.nn.Softmax(dim=1 )
def snake_case_ ( self: Tuple,**A_: Union[str, Any] ):
'''simple docstring'''
return self.bert(**A_ ).last_hidden_state
def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
return token_embeddings.sum(2,keepdim=A_ )
def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(A_,A_ ) )
def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = W_supports['sizes'].tolist()
__UpperCamelCase = W_supports['start_token_id'].item()
__UpperCamelCase = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = self.BERT(**A_ )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = W_supports['input_ids'] == start_token_id
__UpperCamelCase = W_supports['input_ids'] == end_token_id
for i, size in enumerate(A_ ):
if i == 0:
__UpperCamelCase = 0
else:
__UpperCamelCase = support_sizes[i - 1]
__UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]]
__UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]]
__UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 )
__UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
__UpperCamelCase = torch.vstack((p_starts, p_start) )
__UpperCamelCase = torch.vstack((p_ends, p_end) )
else:
__UpperCamelCase = p_start
__UpperCamelCase = p_end
return p_starts, p_ends
| 310
| 1
|
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__snake_case = 2_0_0
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__snake_case = 5_0
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__snake_case = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_0_0_0))
def _A ( _lowercase , _lowercase ) -> tuple[str, float]:
"""simple docstring"""
__UpperCamelCase = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] )
return (item, float(_lowercase ))
def _A ( _lowercase , _lowercase ) -> tuple[str, str]:
"""simple docstring"""
__UpperCamelCase = random.randint(0 , len(_lowercase ) - 1 )
__UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:]
__UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = list(_lowercase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
__UpperCamelCase = random.choice(_lowercase )
return "".join(_lowercase )
def _A ( _lowercase , _lowercase , _lowercase , ) -> list[str]:
"""simple docstring"""
__UpperCamelCase = []
# Generate more children proportionally to the fitness score.
__UpperCamelCase = int(parent_a[1] * 1_00 ) + 1
__UpperCamelCase = 10 if child_n >= 10 else child_n
for _ in range(_lowercase ):
__UpperCamelCase = population_score[random.randint(0 , _lowercase )][0]
__UpperCamelCase, __UpperCamelCase = crossover(parent_a[0] , _lowercase )
# Append new string to the population list.
pop.append(mutate(_lowercase , _lowercase ) )
pop.append(mutate(_lowercase , _lowercase ) )
return pop
def _A ( _lowercase , _lowercase , _lowercase = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
__UpperCamelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(_lowercase )
# Verify that the target contains no genes besides the ones inside genes variable.
__UpperCamelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
__UpperCamelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(_lowercase )
# Generate random starting population.
__UpperCamelCase = []
for _ in range(_lowercase ):
population.append(''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) )
# Just some logs to know what the algorithms is doing.
__UpperCamelCase, __UpperCamelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_lowercase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
__UpperCamelCase = [evaluate(_lowercase , _lowercase ) for item in population]
# Check if there is a matching evolution.
__UpperCamelCase = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'''\nGeneration: {generation}'''
f'''\nTotal Population:{total_population}'''
f'''\nBest score: {population_score[0][1]}'''
f'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
__UpperCamelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_lowercase )
# Normalize population score to be between 0 and 1.
__UpperCamelCase = [
(item, score / len(_lowercase )) for item, score in population_score
]
# This is selection
for i in range(_lowercase ):
population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_lowercase ) > N_POPULATION:
break
if __name__ == "__main__":
__snake_case = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__snake_case = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__snake_case , __snake_case , __snake_case = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 310
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = BioGptTokenizer
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w' ) as fp:
fp.write(json.dumps(A_ ) )
with open(self.merges_file,'w' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: Optional[int],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'lower newer'
__UpperCamelCase = 'lower newer'
return input_text, output_text
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer(self.vocab_file,self.merges_file )
__UpperCamelCase = 'lower'
__UpperCamelCase = ['low', 'er</w>']
__UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokens + ['<unk>']
__UpperCamelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),A_ )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
__UpperCamelCase = tokenizer.encode('sequence builders',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.encode('multi-sequence build',add_special_tokens=A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
__UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_,A_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 310
| 1
|
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class __lowerCamelCase :
_lowercase = 42
# setable values
_lowercase = 42
_lowercase = 42
_lowercase = None
@classmethod
def snake_case_ ( cls: Optional[int],A_: CommonSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray ):
'''simple docstring'''
return cls(common=A_,init_noise_sigma=A_,timesteps=A_ )
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 42
class __lowerCamelCase (_a , _a ):
_lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers]
_lowercase = 42
@property
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self: Tuple,A_: int = 1000,A_: float = 0.0_0_0_1,A_: float = 0.0_2,A_: str = "linear",A_: Optional[jnp.ndarray] = None,A_: str = "fixed_small",A_: bool = True,A_: str = "epsilon",A_: jnp.dtype = jnp.floataa,):
'''simple docstring'''
__UpperCamelCase = dtype
def snake_case_ ( self: str,A_: Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
__UpperCamelCase = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
__UpperCamelCase = jnp.array(1.0,dtype=self.dtype )
__UpperCamelCase = jnp.arange(0,self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=A_,init_noise_sigma=A_,timesteps=A_,)
def snake_case_ ( self: Dict,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: Optional[int] = None ):
'''simple docstring'''
return sample
def snake_case_ ( self: int,A_: DDPMSchedulerState,A_: int,A_: Tuple = () ):
'''simple docstring'''
__UpperCamelCase = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
__UpperCamelCase = (jnp.arange(0,A_ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=A_,timesteps=A_,)
def snake_case_ ( self: str,A_: DDPMSchedulerState,A_: List[str],A_: str=None,A_: Union[str, Any]=None ):
'''simple docstring'''
__UpperCamelCase = state.common.alphas_cumprod[t]
__UpperCamelCase = jnp.where(t > 0,state.common.alphas_cumprod[t - 1],jnp.array(1.0,dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__UpperCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
__UpperCamelCase = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
__UpperCamelCase = jnp.clip(A_,a_min=1E-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
__UpperCamelCase = jnp.log(jnp.clip(A_,a_min=1E-20 ) )
elif variance_type == "fixed_large":
__UpperCamelCase = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
__UpperCamelCase = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
__UpperCamelCase = variance
__UpperCamelCase = state.common.betas[t]
__UpperCamelCase = (predicted_variance + 1) / 2
__UpperCamelCase = frac * max_log + (1 - frac) * min_log
return variance
def snake_case_ ( self: Optional[int],A_: DDPMSchedulerState,A_: jnp.ndarray,A_: int,A_: jnp.ndarray,A_: Optional[jax.random.KeyArray] = None,A_: bool = True,):
'''simple docstring'''
__UpperCamelCase = timestep
if key is None:
__UpperCamelCase = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
__UpperCamelCase, __UpperCamelCase = jnp.split(A_,sample.shape[1],axis=1 )
else:
__UpperCamelCase = None
# 1. compute alphas, betas
__UpperCamelCase = state.common.alphas_cumprod[t]
__UpperCamelCase = jnp.where(t > 0,state.common.alphas_cumprod[t - 1],jnp.array(1.0,dtype=self.dtype ) )
__UpperCamelCase = 1 - alpha_prod_t
__UpperCamelCase = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__UpperCamelCase = model_output
elif self.config.prediction_type == "v_prediction":
__UpperCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
' for the FlaxDDPMScheduler.' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__UpperCamelCase = jnp.clip(A_,-1,1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
__UpperCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
__UpperCamelCase = jax.random.split(A_,num=1 )
__UpperCamelCase = jax.random.normal(A_,shape=model_output.shape,dtype=self.dtype )
return (self._get_variance(A_,A_,predicted_variance=A_ ) ** 0.5) * noise
__UpperCamelCase = jnp.where(t > 0,random_variance(),jnp.zeros(model_output.shape,dtype=self.dtype ) )
__UpperCamelCase = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=A_,state=A_ )
def snake_case_ ( self: int,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray,A_: jnp.ndarray,):
'''simple docstring'''
return add_noise_common(state.common,A_,A_,A_ )
def snake_case_ ( self: Tuple,A_: DDPMSchedulerState,A_: jnp.ndarray,A_: jnp.ndarray,A_: jnp.ndarray,):
'''simple docstring'''
return get_velocity_common(state.common,A_,A_,A_ )
def __len__( self: List[str] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 310
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__snake_case = r'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(_a )
class __lowerCamelCase (_a ):
_lowercase = """rag"""
_lowercase = True
def __init__( self: Tuple,A_: Any=None,A_: Any=True,A_: List[Any]=None,A_: Optional[int]=None,A_: List[Any]=None,A_: str=None,A_: Union[str, Any]=None,A_: List[Any]=" / ",A_: Union[str, Any]=" // ",A_: List[Any]=5,A_: Optional[int]=300,A_: Tuple=768,A_: Tuple=8,A_: Optional[Any]="wiki_dpr",A_: int="train",A_: Union[str, Any]="compressed",A_: Optional[int]=None,A_: List[Any]=None,A_: List[str]=False,A_: List[str]=False,A_: str=0.0,A_: List[Any]=True,A_: Tuple=False,A_: int=False,A_: Dict=False,A_: Tuple=True,A_: int=None,**A_: Optional[int],):
'''simple docstring'''
super().__init__(
bos_token_id=A_,pad_token_id=A_,eos_token_id=A_,decoder_start_token_id=A_,forced_eos_token_id=A_,is_encoder_decoder=A_,prefix=A_,vocab_size=A_,**A_,)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__UpperCamelCase = kwargs.pop('question_encoder' )
__UpperCamelCase = question_encoder_config.pop('model_type' )
__UpperCamelCase = kwargs.pop('generator' )
__UpperCamelCase = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = AutoConfig.for_model(A_,**A_ )
__UpperCamelCase = reduce_loss
__UpperCamelCase = label_smoothing
__UpperCamelCase = exclude_bos_score
__UpperCamelCase = do_marginalize
__UpperCamelCase = title_sep
__UpperCamelCase = doc_sep
__UpperCamelCase = n_docs
__UpperCamelCase = max_combined_length
__UpperCamelCase = dataset
__UpperCamelCase = dataset_split
__UpperCamelCase = index_name
__UpperCamelCase = retrieval_vector_size
__UpperCamelCase = retrieval_batch_size
__UpperCamelCase = passages_path
__UpperCamelCase = index_path
__UpperCamelCase = use_dummy_dataset
__UpperCamelCase = output_retrieved
__UpperCamelCase = do_deduplication
__UpperCamelCase = use_cache
if self.forced_eos_token_id is None:
__UpperCamelCase = getattr(self.generator,'forced_eos_token_id',A_ )
@classmethod
def snake_case_ ( cls: Any,A_: PretrainedConfig,A_: PretrainedConfig,**A_: int ):
'''simple docstring'''
return cls(question_encoder=question_encoder_config.to_dict(),generator=generator_config.to_dict(),**A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = self.question_encoder.to_dict()
__UpperCamelCase = self.generator.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
| 310
| 1
|
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
__snake_case = importlib.util.find_spec('''s3fs''') is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
__snake_case = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""")
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def _A ( _lowercase ) -> str:
"""simple docstring"""
if "://" in dataset_path:
__UpperCamelCase = dataset_path.split('://' )[1]
return dataset_path
def _A ( _lowercase ) -> bool:
"""simple docstring"""
if fs is not None and fs.protocol != "file":
return True
else:
return False
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = not is_remote_filesystem(_lowercase )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) )
else:
fs.mv(_lowercase , _lowercase , recursive=_lowercase )
def _A ( ) -> None:
"""simple docstring"""
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = threading.Lock()
| 310
|
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase (_a ):
_lowercase = """M-CLIP"""
def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ):
'''simple docstring'''
__UpperCamelCase = transformerDimSize
__UpperCamelCase = imageDimSize
super().__init__(**A_ )
class __lowerCamelCase (_a ):
_lowercase = MCLIPConfig
def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ):
'''simple docstring'''
super().__init__(A_,*A_,**A_ )
__UpperCamelCase = XLMRobertaModel(A_ )
__UpperCamelCase = torch.nn.Linear(
in_features=config.transformerDimensions,out_features=config.numDims )
def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0]
__UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(A_ ), embs
| 310
| 1
|
import math
import sys
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
try:
with open(_lowercase , 'rb' ) as binary_file:
__UpperCamelCase = binary_file.read()
for dat in data:
__UpperCamelCase = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = {'0': '0', '1': '1'}
__UpperCamelCase, __UpperCamelCase = '', ''
__UpperCamelCase = len(_lowercase )
for i in range(len(_lowercase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__UpperCamelCase = lexicon[curr_string]
result += last_match_id
__UpperCamelCase = last_match_id + '0'
if math.loga(_lowercase ).is_integer():
__UpperCamelCase = {}
for curr_key in list(_lowercase ):
__UpperCamelCase = lexicon.pop(_lowercase )
__UpperCamelCase = new_lex
__UpperCamelCase = last_match_id + '1'
index += 1
__UpperCamelCase = ''
return result
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = 8
try:
with open(_lowercase , 'wb' ) as opened_file:
__UpperCamelCase = [
to_write[i : i + byte_length]
for i in range(0 , len(_lowercase ) , _lowercase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_lowercase , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
__UpperCamelCase = data_bits[counter:]
__UpperCamelCase = data_bits[counter + 1 :]
return data_bits
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = read_file_binary(_lowercase )
__UpperCamelCase = remove_prefix(_lowercase )
__UpperCamelCase = decompress_data(_lowercase )
write_file_binary(_lowercase , _lowercase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 310
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCamelCase :
_lowercase = XGLMConfig
_lowercase = {}
_lowercase = """gelu"""
def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = ffn_dim
__UpperCamelCase = activation_function
__UpperCamelCase = activation_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 2
__UpperCamelCase = 1
def snake_case_ ( self: Dict ):
'''simple docstring'''
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = self.get_config()
__UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,)
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowercase = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Optional[Any],A_: int=True ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(),A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' )
__UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] )
__UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ )
__UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = 'left'
# use different length sentences to test batching
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_,A_ )
self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
| 310
| 1
|
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = FunnelTokenizer
_lowercase = FunnelTokenizerFast
_lowercase = True
_lowercase = True
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
'<unk>',
'<cls>',
'<sep>',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def snake_case_ ( self: Optional[Any],**A_: int ):
'''simple docstring'''
return FunnelTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],**A_: List[Any] ):
'''simple docstring'''
return FunnelTokenizerFast.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: Tuple,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'UNwant\u00E9d,running'
__UpperCamelCase = 'unwanted, running'
return input_text, output_text
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer_class(self.vocab_file )
__UpperCamelCase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(A_,['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ),[7, 4, 5, 10, 8, 9] )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
__UpperCamelCase = tokenizer('UNwant\u00E9d,running' )
__UpperCamelCase = len(inputs['input_ids'] ) - 1
self.assertListEqual(inputs['token_type_ids'],[2] + [0] * sentence_len )
__UpperCamelCase = tokenizer('UNwant\u00E9d,running','UNwant\u00E9d,running' )
self.assertListEqual(inputs['token_type_ids'],[2] + [0] * sentence_len + [1] * sentence_len )
| 310
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
__snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
__snake_case = json.load(f)
@require_torch
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
return FSMTTokenizer.from_pretrained(A_ )
def snake_case_ ( self: Dict,A_: int ):
'''simple docstring'''
__UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 2_6.0],
['ru-en', 2_2.0],
['en-de', 2_2.0],
['de-en', 2_9.0],
] )
@slow
def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = F'''facebook/wmt19-{pair}'''
__UpperCamelCase = self.get_tokenizer(A_ )
__UpperCamelCase = self.get_model(A_ )
__UpperCamelCase = bleu_data[pair]['src']
__UpperCamelCase = bleu_data[pair]['tgt']
__UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids,num_beams=8,)
__UpperCamelCase = tokenizer.batch_decode(
A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ )
__UpperCamelCase = calculate_bleu(A_,A_ )
print(A_ )
self.assertGreaterEqual(scores['bleu'],A_ )
| 310
| 1
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCamelCase :
_lowercase = XGLMConfig
_lowercase = {}
_lowercase = """gelu"""
def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = ffn_dim
__UpperCamelCase = activation_function
__UpperCamelCase = activation_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 2
__UpperCamelCase = 1
def snake_case_ ( self: Dict ):
'''simple docstring'''
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = self.get_config()
__UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,)
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowercase = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Optional[Any],A_: int=True ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
__UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(),A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' )
__UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] )
__UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ )
__UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__UpperCamelCase = 'left'
# use different length sentences to test batching
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids
__UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ )
__UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_,A_ )
self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
| 310
|
def _A ( _lowercase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowercase , _lowercase ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(_lowercase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=1_0))
| 310
| 1
|
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __lowerCamelCase (unittest.TestCase , _a ):
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = load_tool('text-to-speech' )
self.tool.setup()
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = self.tool('hey' )
__UpperCamelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3],torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ),) )
def snake_case_ ( self: Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = self.tool('hey' )
__UpperCamelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3],torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ),) )
| 310
|
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = MgpstrTokenizer
_lowercase = False
_lowercase = {}
_lowercase = False
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# fmt: off
__UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
def snake_case_ ( self: Dict,**A_: Tuple ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'tester'
__UpperCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__UpperCamelCase = tokenizer.encode([special_token],add_special_tokens=A_ )
self.assertEqual(len(A_ ),1 )
__UpperCamelCase = tokenizer.decode(A_,skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase, __UpperCamelCase = self.get_input_output_texts(A_ )
__UpperCamelCase = tokenizer.tokenize(A_ )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertNotEqual(len(A_ ),0 )
__UpperCamelCase = tokenizer.decode(A_ )
self.assertIsInstance(A_,A_ )
self.assertEqual(text_a.replace(' ','' ),A_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
| 310
| 1
|
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_CAUSAL_LM_MAPPING
_lowercase = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = pipeline(task='text-generation',model='sshleifer/tiny-ctrl',framework='pt' )
# Using `do_sample=False` to force deterministic output
__UpperCamelCase = text_generator('This is a test',do_sample=A_ )
self.assertEqual(
A_,[
{
'generated_text': (
'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'
' oscope. FiliFili@@'
)
}
],)
__UpperCamelCase = text_generator(['This is a test', 'This is a second test'] )
self.assertEqual(
A_,[
[
{
'generated_text': (
'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'
' oscope. FiliFili@@'
)
}
],
[
{
'generated_text': (
'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'
' oscope. oscope. FiliFili@@'
)
}
],
],)
__UpperCamelCase = text_generator('This is a test',do_sample=A_,num_return_sequences=2,return_tensors=A_ )
self.assertEqual(
A_,[
{'generated_token_ids': ANY(A_ )},
{'generated_token_ids': ANY(A_ )},
],)
__UpperCamelCase = text_generator.model.config.eos_token_id
__UpperCamelCase = '<pad>'
__UpperCamelCase = text_generator(
['This is a test', 'This is a second test'],do_sample=A_,num_return_sequences=2,batch_size=2,return_tensors=A_,)
self.assertEqual(
A_,[
[
{'generated_token_ids': ANY(A_ )},
{'generated_token_ids': ANY(A_ )},
],
[
{'generated_token_ids': ANY(A_ )},
{'generated_token_ids': ANY(A_ )},
],
],)
@require_tf
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = pipeline(task='text-generation',model='sshleifer/tiny-ctrl',framework='tf' )
# Using `do_sample=False` to force deterministic output
__UpperCamelCase = text_generator('This is a test',do_sample=A_ )
self.assertEqual(
A_,[
{
'generated_text': (
'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'
' please,'
)
}
],)
__UpperCamelCase = text_generator(['This is a test', 'This is a second test'],do_sample=A_ )
self.assertEqual(
A_,[
[
{
'generated_text': (
'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'
' please,'
)
}
],
[
{
'generated_text': (
'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'
' Cannes 閲閲Cannes Cannes Cannes 攵 please,'
)
}
],
],)
def snake_case_ ( self: Dict,A_: List[Any],A_: int,A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = TextGenerationPipeline(model=A_,tokenizer=A_ )
return text_generator, ["This is a test", "Another test"]
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'Hello I believe in'
__UpperCamelCase = pipeline('text-generation',model='hf-internal-testing/tiny-random-gpt2' )
__UpperCamelCase = text_generator(A_ )
self.assertEqual(
A_,[{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}],)
__UpperCamelCase = text_generator(A_,stop_sequence=' fe' )
self.assertEqual(A_,[{'generated_text': 'Hello I believe in fe'}] )
def snake_case_ ( self: int,A_: List[str],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = text_generator.model
__UpperCamelCase = text_generator.tokenizer
__UpperCamelCase = text_generator('This is a test' )
self.assertEqual(A_,[{'generated_text': ANY(A_ )}] )
self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) )
__UpperCamelCase = text_generator('This is a test',return_full_text=A_ )
self.assertEqual(A_,[{'generated_text': ANY(A_ )}] )
self.assertNotIn('This is a test',outputs[0]['generated_text'] )
__UpperCamelCase = pipeline(task='text-generation',model=A_,tokenizer=A_,return_full_text=A_ )
__UpperCamelCase = text_generator('This is a test' )
self.assertEqual(A_,[{'generated_text': ANY(A_ )}] )
self.assertNotIn('This is a test',outputs[0]['generated_text'] )
__UpperCamelCase = text_generator('This is a test',return_full_text=A_ )
self.assertEqual(A_,[{'generated_text': ANY(A_ )}] )
self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) )
__UpperCamelCase = text_generator(['This is great !', 'Something else'],num_return_sequences=2,do_sample=A_ )
self.assertEqual(
A_,[
[{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}],
[{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}],
],)
if text_generator.tokenizer.pad_token is not None:
__UpperCamelCase = text_generator(
['This is great !', 'Something else'],num_return_sequences=2,batch_size=2,do_sample=A_ )
self.assertEqual(
A_,[
[{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}],
[{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}],
],)
with self.assertRaises(A_ ):
__UpperCamelCase = text_generator('test',return_full_text=A_,return_text=A_ )
with self.assertRaises(A_ ):
__UpperCamelCase = text_generator('test',return_full_text=A_,return_tensors=A_ )
with self.assertRaises(A_ ):
__UpperCamelCase = text_generator('test',return_text=A_,return_tensors=A_ )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__UpperCamelCase = text_generator('' )
self.assertEqual(A_,[{'generated_text': ANY(A_ )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__UpperCamelCase = text_generator('' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__UpperCamelCase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM']
if (
tokenizer.model_max_length < 1_0000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('This is a test' * 500,max_new_tokens=20 )
__UpperCamelCase = text_generator('This is a test' * 500,handle_long_generation='hole',max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(A_ ):
text_generator(
'This is a test' * 500,handle_long_generation='hole',max_new_tokens=tokenizer.model_max_length + 10,)
@require_torch
@require_accelerate
@require_torch_gpu
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
import torch
# Classic `model_kwargs`
__UpperCamelCase = pipeline(
model='hf-internal-testing/tiny-random-bloom',model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa},)
self.assertEqual(pipe.model.device,torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype,torch.bfloataa )
__UpperCamelCase = pipe('This is a test' )
self.assertEqual(
A_,[
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
],)
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto',torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device,torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype,torch.bfloataa )
__UpperCamelCase = pipe('This is a test' )
self.assertEqual(
A_,[
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
],)
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto' )
self.assertEqual(pipe.model.device,torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype,torch.floataa )
__UpperCamelCase = pipe('This is a test' )
self.assertEqual(
A_,[
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
],)
@require_torch
@require_torch_gpu
def snake_case_ ( self: List[str] ):
'''simple docstring'''
import torch
__UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device=0,torch_dtype=torch.floataa )
pipe('This is a test' )
@require_torch
@require_accelerate
@require_torch_gpu
def snake_case_ ( self: int ):
'''simple docstring'''
import torch
__UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom',device_map='auto',torch_dtype=torch.floataa )
pipe('This is a test',do_sample=A_,top_p=0.5 )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = 'Hello world'
__UpperCamelCase = pipeline('text-generation',model='hf-internal-testing/tiny-random-gpt2' )
if text_generator.model.framework == "tf":
__UpperCamelCase = logging.get_logger('transformers.generation.tf_utils' )
else:
__UpperCamelCase = logging.get_logger('transformers.generation.utils' )
__UpperCamelCase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(A_ ) as cl:
__UpperCamelCase = text_generator(A_,max_length=10,max_new_tokens=1 )
self.assertIn(A_,cl.out )
# The user only sets one -> no warning
with CaptureLogger(A_ ) as cl:
__UpperCamelCase = text_generator(A_,max_new_tokens=1 )
self.assertNotIn(A_,cl.out )
with CaptureLogger(A_ ) as cl:
__UpperCamelCase = text_generator(A_,max_length=10 )
self.assertNotIn(A_,cl.out )
| 310
|
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"""The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = RobertaEmbeddings(A_ )
self.init_weights()
@add_start_docstrings(
"""RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. """ , _a , )
class __lowerCamelCase (_a ):
_lowercase = RobertaConfig
_lowercase = """roberta"""
def __init__( self: Any,A_: int ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = config.num_labels
__UpperCamelCase = config.num_hidden_layers
__UpperCamelCase = DeeRobertaModel(A_ )
__UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels )
@add_start_docstrings_to_model_forward(A_ )
def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,):
'''simple docstring'''
__UpperCamelCase = self.num_layers
try:
__UpperCamelCase = self.roberta(
A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,)
__UpperCamelCase = outputs[1]
__UpperCamelCase = self.dropout(A_ )
__UpperCamelCase = self.classifier(A_ )
__UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCamelCase = e.message
__UpperCamelCase = e.exit_layer
__UpperCamelCase = outputs[0]
if not self.training:
__UpperCamelCase = entropy(A_ )
__UpperCamelCase = []
__UpperCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
__UpperCamelCase = []
for highway_exit in outputs[-1]:
__UpperCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(A_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCamelCase = MSELoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
__UpperCamelCase = CrossEntropyLoss()
__UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(A_ )
if train_highway:
__UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCamelCase = (loss,) + outputs
if not self.training:
__UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
| 1
|
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/conditional-detr-resnet-50''': (
'''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """conditional_detr"""
_lowercase = ["""past_key_values"""]
_lowercase = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self: Any,A_: List[str]=True,A_: Tuple=None,A_: str=3,A_: List[str]=300,A_: Tuple=6,A_: Tuple=2048,A_: List[Any]=8,A_: List[Any]=6,A_: str=2048,A_: Optional[Any]=8,A_: Any=0.0,A_: Any=0.0,A_: List[str]=True,A_: Optional[Any]="relu",A_: List[str]=256,A_: str=0.1,A_: Tuple=0.0,A_: Dict=0.0,A_: Tuple=0.0_2,A_: str=1.0,A_: Optional[Any]=False,A_: List[str]="sine",A_: List[str]="resnet50",A_: Tuple=True,A_: str=False,A_: Tuple=2,A_: Any=5,A_: int=2,A_: Any=1,A_: str=1,A_: List[Any]=2,A_: Optional[Any]=5,A_: Optional[int]=2,A_: Tuple=0.2_5,**A_: Optional[int],):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
__UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(A_,A_ ):
__UpperCamelCase = backbone_config.get('model_type' )
__UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
__UpperCamelCase = config_class.from_dict(A_ )
__UpperCamelCase = use_timm_backbone
__UpperCamelCase = backbone_config
__UpperCamelCase = num_channels
__UpperCamelCase = num_queries
__UpperCamelCase = d_model
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = init_xavier_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = encoder_layers
__UpperCamelCase = auxiliary_loss
__UpperCamelCase = position_embedding_type
__UpperCamelCase = backbone
__UpperCamelCase = use_pretrained_backbone
__UpperCamelCase = dilation
# Hungarian matcher
__UpperCamelCase = class_cost
__UpperCamelCase = bbox_cost
__UpperCamelCase = giou_cost
# Loss coefficients
__UpperCamelCase = mask_loss_coefficient
__UpperCamelCase = dice_loss_coefficient
__UpperCamelCase = cls_loss_coefficient
__UpperCamelCase = bbox_loss_coefficient
__UpperCamelCase = giou_loss_coefficient
__UpperCamelCase = focal_alpha
super().__init__(is_encoder_decoder=A_,**A_ )
@property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.d_model
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__UpperCamelCase = self.backbone_config.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
class __lowerCamelCase (_a ):
_lowercase = version.parse("""1.11""" )
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
] )
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return 1E-5
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 12
| 310
|
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Optional[Any],**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 )
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
import datasets
__UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' )
__UpperCamelCase = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__UpperCamelCase = object_detector(A_,threshold=0.0 )
self.assertEqual(len(A_ ),len(A_ ) )
for outputs in batch_outputs:
self.assertGreater(len(A_ ),0 )
for detected_object in outputs:
self.assertEqual(
A_,{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
},)
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
],threshold=0.0,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
],)
@require_torch
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ )
__UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
__UpperCamelCase = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
],)
@require_torch
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 0.9_9_8_5
__UpperCamelCase = 'facebook/detr-resnet-50'
__UpperCamelCase = pipeline('object-detection',model=A_ )
__UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],)
@require_torch
@require_pytesseract
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd'
__UpperCamelCase = 0.9_9_9_3
__UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ )
__UpperCamelCase = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
],)
| 310
| 1
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = torch.device('''cpu''')
def _A ( ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
def _A ( _lowercase ) -> Any:
"""simple docstring"""
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] )
def _A ( _lowercase , _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = []
for k in state_dict.keys():
__UpperCamelCase = k
if ".pwconv" in k:
__UpperCamelCase = k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
__UpperCamelCase = k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
__UpperCamelCase = k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
__UpperCamelCase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
__UpperCamelCase = k_new.split('.' )
if ls[2].isdigit():
__UpperCamelCase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] )
else:
__UpperCamelCase = k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__UpperCamelCase = 10_00
__UpperCamelCase = 'huggingface/label-files'
__UpperCamelCase = 'imagenet-1k-id2label.json'
__UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()}
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__UpperCamelCase = [3, 3, 6, 4]
__UpperCamelCase = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
__UpperCamelCase = [3, 3, 9, 6]
__UpperCamelCase = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
__UpperCamelCase = [4, 3, 10, 5]
__UpperCamelCase = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
__UpperCamelCase = [4, 4, 12, 6]
__UpperCamelCase = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
__UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' , check_hash=_lowercase )
else:
__UpperCamelCase = torch.load(_lowercase , map_location='cpu' )
__UpperCamelCase = checkpoint
__UpperCamelCase = create_rename_keys(_lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# load HuggingFace model
__UpperCamelCase = SwiftFormerForImageClassification(_lowercase ).eval()
hf_model.load_state_dict(_lowercase )
# prepare test inputs
__UpperCamelCase = prepare_img()
__UpperCamelCase = ViTImageProcessor.from_pretrained('preprocessor_config' )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' )
# compare outputs from both models
__UpperCamelCase = get_expected_output(_lowercase )
__UpperCamelCase = hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
__snake_case = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 310
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0522,A_: Dict=768,A_: Union[str, Any]=12,A_: Any=12,A_: str=3072,A_: Union[str, Any]="gelu",A_: str=0.1,A_: Optional[int]=0.1,A_: List[Any]=512,A_: Optional[Any]=2,A_: Dict=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=1,A_: str=0,A_: str=2,A_: Optional[Any]="absolute",A_: Union[str, Any]=True,A_: int=None,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 310
| 1
|
def _A ( _lowercase ) -> bool:
"""simple docstring"""
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
|
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase (_a ):
_lowercase = field(default=_a , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_lowercase = field(
default=_a , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(A_,A_ ):
__UpperCamelCase = v.to_dict()
return d
| 310
| 1
|
import comet # From: unbabel-comet
import torch
import datasets
__snake_case = datasets.logging.get_logger(__name__)
__snake_case = '''\
@inproceedings{rei-EtAl:2020:WMT,
author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},
title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
month = {November},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
pages = {909--918},
}
@inproceedings{rei-etal-2020-comet,
title = "{COMET}: A Neural Framework for {MT} Evaluation",
author = "Rei, Ricardo and
Stewart, Craig and
Farinha, Ana C and
Lavie, Alon",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",
pages = "2685--2702",
}
'''
__snake_case = '''\
Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).
With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.
See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.
'''
__snake_case = '''
COMET score.
Args:
`sources` (list of str): Source sentences
`predictions` (list of str): candidate translations
`references` (list of str): reference translations
`cuda` (bool): If set to True, runs COMET using GPU
`show_progress` (bool): Shows progress
`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.
Returns:
`samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.
`scores`: List of scores.
Examples:
>>> comet_metric = datasets.load_metric(\'comet\')
>>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use
>>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]
>>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]
>>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]
>>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)
>>> print([round(v, 2) for v in results["scores"]])
[0.19, 0.92]
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: int ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,homepage='https://unbabel.github.io/COMET/html/index.html',inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'sources': datasets.Value('string',id='sequence' ),
'predictions': datasets.Value('string',id='sequence' ),
'references': datasets.Value('string',id='sequence' ),
} ),codebase_urls=['https://github.com/Unbabel/COMET'],reference_urls=[
'https://github.com/Unbabel/COMET',
'https://www.aclweb.org/anthology/2020.emnlp-main.213/',
'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6',
],)
def snake_case_ ( self: Tuple,A_: str ):
'''simple docstring'''
if self.config_name == "default":
__UpperCamelCase = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) )
else:
__UpperCamelCase = comet.load_from_checkpoint(comet.download_model(self.config_name ) )
def snake_case_ ( self: List[str],A_: Any,A_: Optional[Any],A_: List[str],A_: Optional[Any]=None,A_: str=False ):
'''simple docstring'''
if gpus is None:
__UpperCamelCase = 1 if torch.cuda.is_available() else 0
__UpperCamelCase = {'src': sources, 'mt': predictions, 'ref': references}
__UpperCamelCase = [dict(zip(A_,A_ ) ) for t in zip(*data.values() )]
__UpperCamelCase, __UpperCamelCase = self.scorer.predict(A_,gpus=A_,progress_bar=A_ )
return {"mean_score": mean_score, "scores": scores}
| 310
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ):
return False
return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule )
def _A ( _lowercase , _lowercase = True ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__UpperCamelCase = is_compiled_module(_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(_lowercase , _lowercase ):
__UpperCamelCase = model.module
if not keep_fpaa_wrapper:
__UpperCamelCase = getattr(_lowercase , 'forward' )
__UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase )
if original_forward is not None:
while hasattr(_lowercase , '__wrapped__' ):
__UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
__UpperCamelCase = forward
if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ):
convert_model(_lowercase , to_transformer_engine=_lowercase )
if is_compiled:
__UpperCamelCase = model
__UpperCamelCase = compiled_model
return model
def _A ( ) -> Any:
"""simple docstring"""
PartialState().wait_for_everyone()
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(_lowercase , _lowercase )
elif PartialState().local_process_index == 0:
torch.save(_lowercase , _lowercase )
@contextmanager
def _A ( **_lowercase ) -> Union[str, Any]:
"""simple docstring"""
for key, value in kwargs.items():
__UpperCamelCase = str(_lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ):
__UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase )
if hasattr(_lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(_lowercase , '__name__' ):
return obj.__name__
return str(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for key, value in source.items():
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = destination.setdefault(_lowercase , {} )
merge_dicts(_lowercase , _lowercase )
else:
__UpperCamelCase = value
return destination
def _A ( _lowercase = None ) -> bool:
"""simple docstring"""
if port is None:
__UpperCamelCase = 2_95_00
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 310
| 1
|
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def snake_case_ ( *A_: Dict,**A_: Tuple ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase (unittest.TestCase ):
_lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def snake_case_ ( self: Optional[Any],A_: List[str],A_: str,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'zero-shot-object-detection',model='hf-internal-testing/tiny-random-owlvit-object-detection' )
__UpperCamelCase = [
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
]
return object_detector, examples
def snake_case_ ( self: List[str],A_: List[str],A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = object_detector(examples[0],threshold=0.0 )
__UpperCamelCase = len(A_ )
self.assertGreater(A_,0 )
self.assertEqual(
A_,[
{
'score': ANY(A_ ),
'label': ANY(A_ ),
'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )},
}
for i in range(A_ )
],)
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def snake_case_ ( self: Any ):
'''simple docstring'''
pass
@require_torch
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'zero-shot-object-detection',model='hf-internal-testing/tiny-random-owlvit-object-detection' )
__UpperCamelCase = object_detector(
'./tests/fixtures/tests_samples/COCO/000000039769.png',candidate_labels=['cat', 'remote', 'couch'],threshold=0.6_4,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
{'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}},
{'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
],)
__UpperCamelCase = object_detector(
[
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
],threshold=0.6_4,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
{'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}},
{'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
]
],)
@require_torch
@slow
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = pipeline('zero-shot-object-detection' )
__UpperCamelCase = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
],)
__UpperCamelCase = object_detector(
[
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
],)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
[
{'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
],
[
{'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
],
],)
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
pass
@require_torch
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = 0.2
__UpperCamelCase = pipeline('zero-shot-object-detection' )
__UpperCamelCase = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],threshold=A_,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
],)
@require_torch
@slow
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 2
__UpperCamelCase = pipeline('zero-shot-object-detection' )
__UpperCamelCase = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg',candidate_labels=['cat', 'remote', 'couch'],top_k=A_,)
self.assertEqual(
nested_simplify(A_,decimals=4 ),[
{'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
],)
| 310
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
_lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
try:
__UpperCamelCase = processors[data_args.task_name]()
__UpperCamelCase = processor.get_labels()
__UpperCamelCase = len(_lowercase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_lowercase , p.label_ids )}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
return results
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 310
| 1
|
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCamelCase :
def __init__( self: Any,A_: Tuple,A_: List[str]=13,A_: Dict=30,A_: int=2,A_: Tuple=3,A_: Optional[int]=True,A_: str=True,A_: Optional[Any]=32,A_: Optional[int]=5,A_: Any=4,A_: Optional[int]=37,A_: int="gelu",A_: Dict=0.1,A_: Tuple=0.1,A_: List[str]=10,A_: Optional[int]=0.0_2,A_: List[Any]=None,A_: Optional[int]=2,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = scope
__UpperCamelCase = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCamelCase = (image_size // patch_size) ** 2
__UpperCamelCase = num_patches + 1
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case_ ( self: str ):
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=A_,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,)
def snake_case_ ( self: Optional[int],A_: Tuple,A_: str,A_: str ):
'''simple docstring'''
__UpperCamelCase = ViTModel(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ ( self: Optional[Any],A_: Any,A_: Union[str, Any],A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ViTForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCamelCase = 1
__UpperCamelCase = ViTForMaskedImageModeling(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCamelCase = model(A_ )
self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) )
def snake_case_ ( self: str,A_: List[Any],A_: List[Any],A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.type_sequence_label_size
__UpperCamelCase = ViTForImageClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCamelCase = 1
__UpperCamelCase = ViTForImageClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
_lowercase = (
{"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification}
if is_torch_available()
else {}
)
_lowercase = True
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ViTModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,has_text_modality=A_,hidden_size=37 )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
pass
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings(),(nn.Module) )
__UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_,nn.Linear ) )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(A_ )
__UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1],A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = ViTModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def _A ( ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCamelCase (unittest.TestCase ):
@cached_property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(A_ )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=A_,return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**A_ )
# verify the logits
__UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape,A_ )
__UpperCamelCase = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(A_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3],A_,atol=1E-4 ) )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = ViTModel.from_pretrained('facebook/dino-vits8' ).to(A_ )
__UpperCamelCase = ViTImageProcessor.from_pretrained('facebook/dino-vits8',size=480 )
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=A_,return_tensors='pt' )
__UpperCamelCase = inputs.pixel_values.to(A_ )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(A_,interpolate_pos_encoding=A_ )
# verify the logits
__UpperCamelCase = torch.Size((1, 3601, 384) )
self.assertEqual(outputs.last_hidden_state.shape,A_ )
__UpperCamelCase = torch.tensor(
[[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(A_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3],A_,atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = ViTModel.from_pretrained('facebook/dino-vits8',torch_dtype=torch.floataa,device_map='auto' )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=A_,return_tensors='pt' )
__UpperCamelCase = inputs.pixel_values.to(A_ )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__UpperCamelCase = model(A_ )
| 310
|
import os
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(_lowercase ) + '/p022_names.txt' ) as file:
__UpperCamelCase = str(file.readlines()[0] )
__UpperCamelCase = names.replace('"' , '' ).split(',' )
names.sort()
__UpperCamelCase = 0
__UpperCamelCase = 0
for i, name in enumerate(_lowercase ):
for letter in name:
name_score += ord(_lowercase ) - 64
total_score += (i + 1) * name_score
__UpperCamelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 310
| 1
|
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
__snake_case = '''hf-internal-testing/tiny-random-bert'''
__snake_case = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
__snake_case = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = cached_file(A_,A_ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(A_ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(A_,A_ ) ) )
with open(os.path.join(A_,'refs','main' ) ) as f:
__UpperCamelCase = f.read()
self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) )
self.assertTrue(os.path.isfile(A_ ) )
# File is cached at the same place the second time.
__UpperCamelCase = cached_file(A_,A_ )
self.assertEqual(A_,A_ )
# Using a specific revision to test the full commit hash.
__UpperCamelCase = cached_file(A_,A_,revision='9b8c223' )
self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
with self.assertRaisesRegex(A_,'is not a valid model identifier' ):
__UpperCamelCase = cached_file('tiny-random-bert',A_ )
with self.assertRaisesRegex(A_,'is not a valid git identifier' ):
__UpperCamelCase = cached_file(A_,A_,revision='aaaa' )
with self.assertRaisesRegex(A_,'does not appear to have a file named' ):
__UpperCamelCase = cached_file(A_,'conf' )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
with self.assertRaisesRegex(A_,'does not appear to have a file named' ):
__UpperCamelCase = cached_file(A_,'conf' )
with open(os.path.join(A_,'refs','main' ) ) as f:
__UpperCamelCase = f.read()
self.assertTrue(os.path.isfile(os.path.join(A_,'.no_exist',A_,'conf' ) ) )
__UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_missing_entries=A_ )
self.assertIsNone(A_ )
__UpperCamelCase = cached_file(A_,'conf',local_files_only=A_,_raise_exceptions_for_missing_entries=A_ )
self.assertIsNone(A_ )
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_connection_errors=A_ )
self.assertIsNone(A_ )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) )
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) )
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) )
def snake_case_ ( self: Any ):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('bert-base-cased','ahah.txt' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(A_,'is not a valid model identifier' ):
get_file_from_repo('bert-base-case',A_ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(A_,'is not a valid git identifier' ):
get_file_from_repo('bert-base-cased',A_,revision='ahaha' )
__UpperCamelCase = get_file_from_repo('bert-base-cased',A_ )
# The name is the cached name which is not very easy to test, so instead we load the content.
__UpperCamelCase = json.loads(open(A_,'r' ).read() )
self.assertEqual(config['hidden_size'],768 )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCamelCase = Path(A_ ) / 'a.txt'
filename.touch()
self.assertEqual(get_file_from_repo(A_,'a.txt' ),str(A_ ) )
self.assertIsNone(get_file_from_repo(A_,'b.txt' ) )
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__snake_case = logging.get_logger(__name__)
@add_end_docstrings(_a )
class __lowerCamelCase (_a ):
def __init__( self: Dict,**A_: str ):
'''simple docstring'''
super().__init__(**A_ )
if self.framework != "pt":
raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self: List[Any],A_: Union[np.ndarray, bytes, str],**A_: Any ):
'''simple docstring'''
return super().__call__(A_,**A_ )
def snake_case_ ( self: int,**A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = {}
if "candidate_labels" in kwargs:
__UpperCamelCase = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__UpperCamelCase = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def snake_case_ ( self: Dict,A_: List[Any],A_: Optional[int]=None,A_: Any="This is a sound of {}." ):
'''simple docstring'''
if isinstance(A_,A_ ):
if audio.startswith('http://' ) or audio.startswith('https://' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__UpperCamelCase = requests.get(A_ ).content
else:
with open(A_,'rb' ) as f:
__UpperCamelCase = f.read()
if isinstance(A_,A_ ):
__UpperCamelCase = ffmpeg_read(A_,self.feature_extractor.sampling_rate )
if not isinstance(A_,np.ndarray ):
raise ValueError('We expect a numpy ndarray as input' )
if len(audio.shape ) != 1:
raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' )
__UpperCamelCase = self.feature_extractor(
[audio],sampling_rate=self.feature_extractor.sampling_rate,return_tensors='pt' )
__UpperCamelCase = candidate_labels
__UpperCamelCase = [hypothesis_template.format(A_ ) for x in candidate_labels]
__UpperCamelCase = self.tokenizer(A_,return_tensors=self.framework,padding=A_ )
__UpperCamelCase = [text_inputs]
return inputs
def snake_case_ ( self: int,A_: Dict ):
'''simple docstring'''
__UpperCamelCase = model_inputs.pop('candidate_labels' )
__UpperCamelCase = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0],A_ ):
__UpperCamelCase = text_inputs[0]
else:
# Batching case.
__UpperCamelCase = text_inputs[0][0]
__UpperCamelCase = self.model(**A_,**A_ )
__UpperCamelCase = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_audio,
}
return model_outputs
def snake_case_ ( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = model_outputs.pop('candidate_labels' )
__UpperCamelCase = model_outputs['logits'][0]
if self.framework == "pt":
__UpperCamelCase = logits.softmax(dim=0 )
__UpperCamelCase = probs.tolist()
else:
raise ValueError('`tf` framework not supported.' )
__UpperCamelCase = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(A_,A_ ),key=lambda A_ : -x[0] )
]
return result
| 310
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 310
| 1
|
import warnings
from .generation import TFGenerationMixin
class __lowerCamelCase (_a ):
# warning at import time
warnings.warn(
"""Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """
"""be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , _a , )
| 310
|
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
__snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def _A ( _lowercase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ):
__UpperCamelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip()
__UpperCamelCase = job.find('span' , {'class': 'company'} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 310
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.