code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _lowercase : def __init__( self : Optional[Any] , snake_case : Any , snake_case : Optional[int]=1_3 , snake_case : str=7 , snake_case : Any=True , snake_case : Tuple=True , snake_case : Tuple=True , snake_case : Dict=True , snake_case : List[Any]=9_9 , snake_case : Dict=3_2 , snake_case : List[Any]=2 , snake_case : Dict=4 , snake_case : Optional[Any]=3_7 , snake_case : Optional[Any]="gelu" , snake_case : Dict=0.1 , snake_case : List[Any]=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : Union[str, Any]=1_6 , snake_case : Union[str, Any]=2 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=4 , snake_case : str=None , snake_case : int=1_0_0_0 , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Any = parent UpperCamelCase_ : List[str] = batch_size UpperCamelCase_ : Any = seq_length UpperCamelCase_ : Dict = is_training UpperCamelCase_ : Dict = use_input_mask UpperCamelCase_ : Any = use_token_type_ids UpperCamelCase_ : List[str] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : List[Any] = hidden_size UpperCamelCase_ : int = num_hidden_layers UpperCamelCase_ : Optional[Any] = num_attention_heads UpperCamelCase_ : int = intermediate_size UpperCamelCase_ : int = hidden_act UpperCamelCase_ : Optional[int] = hidden_dropout_prob UpperCamelCase_ : Any = attention_probs_dropout_prob UpperCamelCase_ : str = max_position_embeddings UpperCamelCase_ : Any = type_vocab_size UpperCamelCase_ : Dict = type_sequence_label_size UpperCamelCase_ : Optional[Any] = initializer_range UpperCamelCase_ : List[str] = num_labels UpperCamelCase_ : Optional[int] = num_choices UpperCamelCase_ : Any = scope UpperCamelCase_ : int = range_bbox def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase_ : List[Any] = bbox[i, j, 3] UpperCamelCase_ : List[str] = bbox[i, j, 1] UpperCamelCase_ : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase_ : str = bbox[i, j, 2] UpperCamelCase_ : int = bbox[i, j, 0] UpperCamelCase_ : int = t UpperCamelCase_ : Optional[int] = tf.convert_to_tensor(snake_case_ ) UpperCamelCase_ : Any = None if self.use_input_mask: UpperCamelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : int = None if self.use_token_type_ids: UpperCamelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Dict = None UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Optional[Any] = None if self.use_labels: UpperCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple , snake_case : str , snake_case : int , snake_case : str , snake_case : Any , snake_case : Any , snake_case : Dict , snake_case : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = TFLayoutLMModel(config=snake_case_ ) UpperCamelCase_ : Any = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_ : Optional[Any] = model(snake_case_ , snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_ : List[str] = model(snake_case_ , snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[str] , snake_case : int , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : List[Any] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = TFLayoutLMForMaskedLM(config=snake_case_ ) UpperCamelCase_ : int = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : str , snake_case : Dict , snake_case : Any , snake_case : str , snake_case : List[str] , snake_case : str , snake_case : Dict , snake_case : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.num_labels UpperCamelCase_ : int = TFLayoutLMForSequenceClassification(config=snake_case_ ) UpperCamelCase_ : Any = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Any , snake_case : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Any = self.num_labels UpperCamelCase_ : Optional[int] = TFLayoutLMForTokenClassification(config=snake_case_ ) UpperCamelCase_ : Optional[int] = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Any , snake_case : Tuple , snake_case : Dict , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : Tuple = TFLayoutLMForQuestionAnswering(config=snake_case_ ) UpperCamelCase_ : Any = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = self.prepare_config_and_inputs() ( UpperCamelCase_ ) : Dict = config_and_inputs UpperCamelCase_ : Tuple = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _lowercase ( _a , _a , unittest.TestCase ): lowercase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = True lowercase = 1_0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = TFLayoutLMModelTester(self ) UpperCamelCase_ : int = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Optional[Any] = TFLayoutLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: """simple docstring""" pass def __lowercase ( ): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off UpperCamelCase_ : Dict = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 UpperCamelCase_ : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCamelCase_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 UpperCamelCase_ : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCamelCase_ : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCamelCase_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ : Optional[Any] = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the sequence output on [0, :3, :3] UpperCamelCase_ : Optional[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCamelCase_ : Dict = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case_ , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) UpperCamelCase_ : int = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ : List[Any] = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar UpperCamelCase_ : Tuple = outputs.loss UpperCamelCase_ : Optional[Any] = (2,) self.assertEqual(loss.shape , snake_case_ ) # test the shape of the logits UpperCamelCase_ : Optional[Any] = outputs.logits UpperCamelCase_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) UpperCamelCase_ : int = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ : Any = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) # test the shape of the logits UpperCamelCase_ : str = outputs.logits UpperCamelCase_ : Dict = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : List[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCamelCase_ : Dict = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ : List[Any] = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the shape of the logits UpperCamelCase_ : int = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , snake_case_ ) self.assertEqual(outputs.end_logits.shape , snake_case_ )
175
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __snake_case ( _a ): def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =tempfile.mkdtemp() UpperCAmelCase : List[Any] =8 # DPR tok UpperCAmelCase : List[str] =[ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Dict =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase : str =os.path.join(snake_case_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : Dict =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : List[str] =dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCAmelCase : Optional[int] =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : List[str] ={"""unk_token""": """<unk>"""} UpperCAmelCase : int =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase : str =os.path.join(snake_case_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Any =os.path.join(snake_case_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.get_dummy_dataset() UpperCAmelCase : Optional[Any] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : str =dataset UpperCAmelCase : Optional[Any] =RagRetriever( snake_case_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : str =self.get_dummy_dataset() UpperCAmelCase : Optional[int] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : Tuple =os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : Optional[Any] =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : Tuple =RagRetriever( snake_case_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case_ ) , ) return retriever def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : Union[str, Any] =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : List[str] ={sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(snake_case_ , open(snake_case_ , '''wb''' ) ) UpperCAmelCase : Any =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : List[Any] =RagRetriever( snake_case_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =1 UpperCAmelCase : Any =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[Any] =retriever.retrieve(snake_case_ , n_docs=snake_case_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Dict =self.get_dummy_dataset() retriever.save_pretrained(snake_case_ ) UpperCAmelCase : Optional[int] =RagRetriever.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCAmelCase : Optional[Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] =retriever.retrieve(snake_case_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict =1 UpperCAmelCase : Dict =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case_ ) UpperCAmelCase : int =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[str] =retriever.retrieve(snake_case_ , n_docs=snake_case_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case_ ) UpperCAmelCase : Any =RagRetriever.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCAmelCase : int =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] =retriever.retrieve(snake_case_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : str =1 UpperCAmelCase : List[Any] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case_ ) UpperCAmelCase : Optional[Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[Any] =retriever.retrieve(snake_case_ , n_docs=snake_case_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case_ ) UpperCAmelCase : str =RagRetriever.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[str] =retriever.retrieve(snake_case_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] =1 UpperCAmelCase : Tuple =self.get_dummy_legacy_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Any =retriever.retrieve(snake_case_ , n_docs=snake_case_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , snake_case_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case_ ) UpperCAmelCase : str =RagRetriever.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[Any] =retriever.retrieve(snake_case_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' import torch UpperCAmelCase : Tuple =1 UpperCAmelCase : Any =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : int =[[5, 7], [10, 11]] UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[str] =retriever(snake_case_ , snake_case_ , prefix=retriever.config.generator.prefix , n_docs=snake_case_ ) UpperCAmelCase : Tuple =( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(snake_case_ , np.ndarray ) UpperCAmelCase : Tuple =retriever( snake_case_ , snake_case_ , prefix=retriever.config.generator.prefix , n_docs=snake_case_ , return_tensors='''pt''' , ) UpperCAmelCase : Tuple =( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case_ , torch.Tensor ) self.assertIsInstance(snake_case_ , torch.Tensor ) self.assertIsInstance(snake_case_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : Any =1 UpperCAmelCase : Dict =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case_ ) retriever.set_ctx_encoder_tokenizer(snake_case_ ) UpperCAmelCase : Optional[int] =[[5, 7], [10, 11]] UpperCAmelCase : List[Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Tuple =retriever(snake_case_ , snake_case_ , prefix=retriever.config.generator.prefix , n_docs=snake_case_ ) self.assertEqual( len(snake_case_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , snake_case_ ) # check for doc token related keys in dictionary.
348
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : Optional[Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = ['''ChineseCLIPFeatureExtractor'''] snake_case : Optional[Any] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCAmelCase_ ( snake_case_=None ): if subparsers is not None: _A : Tuple = subparsers.add_parser("""env""" ) else: _A : Optional[int] = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""",default=_lowerCamelCase,help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCAmelCase_ ( snake_case_ ): _A : int = torch.__version__ _A : Optional[Any] = torch.cuda.is_available() _A : Union[str, Any] = is_xpu_available() _A : Optional[int] = is_npu_available() _A : Optional[Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowerCamelCase ): _A : List[str] = load_config_from_file(args.config_file ).to_dict() _A : Optional[int] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(_lowerCamelCase ), """PyTorch NPU available""": str(_lowerCamelCase ), """System RAM""": f'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: _A : List[Any] = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) _A : List[str] = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase,_lowerCamelCase ) else f'''\t{accelerate_config}''' ) print(_lowerCamelCase ) _A : List[Any] = accelerate_config return info def lowerCAmelCase_ ( ): _A : Any = env_command_parser() _A : Any = parser.parse_args() env_command(_lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
26
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case ( _a ,unittest.TestCase ): '''simple docstring''' snake_case_ : List[Any] = MobileBertTokenizer snake_case_ : List[str] = MobileBertTokenizerFast snake_case_ : List[Any] = True snake_case_ : Dict = True snake_case_ : str = filter_non_english snake_case_ : List[str] = """google/mobilebert-uncased""" def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" super().setUp() _snake_case : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) _snake_case : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = """UNwant\u00E9d,running""" _snake_case : Dict = """unwanted, running""" return input_text, output_text def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" _snake_case : List[Any] = self.tokenizer_class(self.vocab_file) _snake_case : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""") self.assertListEqual(snake_case_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_) , [9, 6, 7, 12, 10, 11]) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return _snake_case : Any = self.get_tokenizer() _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : List[str] = """UNwant\u00E9d,running""" _snake_case : Dict = tokenizer.tokenize(snake_case_) _snake_case : Dict = rust_tokenizer.tokenize(snake_case_) self.assertListEqual(snake_case_ , snake_case_) _snake_case : Any = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_) self.assertListEqual(snake_case_ , snake_case_) _snake_case : Optional[int] = self.get_rust_tokenizer() _snake_case : Any = tokenizer.encode(snake_case_) _snake_case : Any = rust_tokenizer.encode(snake_case_) self.assertListEqual(snake_case_ , snake_case_) # With lower casing _snake_case : List[Any] = self.get_tokenizer(do_lower_case=snake_case_) _snake_case : List[str] = self.get_rust_tokenizer(do_lower_case=snake_case_) _snake_case : List[Any] = """UNwant\u00E9d,running""" _snake_case : int = tokenizer.tokenize(snake_case_) _snake_case : List[str] = rust_tokenizer.tokenize(snake_case_) self.assertListEqual(snake_case_ , snake_case_) _snake_case : Optional[Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : List[Any] = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_) self.assertListEqual(snake_case_ , snake_case_) _snake_case : str = self.get_rust_tokenizer() _snake_case : Dict = tokenizer.encode(snake_case_) _snake_case : Dict = rust_tokenizer.encode(snake_case_) self.assertListEqual(snake_case_ , snake_case_) def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> int: """simple docstring""" _snake_case : str = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def UpperCamelCase_ ( self : int) -> Tuple: """simple docstring""" _snake_case : Any = BasicTokenizer(do_lower_case=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def UpperCamelCase_ ( self : Optional[int]) -> Any: """simple docstring""" _snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def UpperCamelCase_ ( self : Tuple) -> List[Any]: """simple docstring""" _snake_case : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _snake_case : Dict = {} for i, token in enumerate(snake_case_): _snake_case : Any = i _snake_case : int = WordpieceTokenizer(vocab=snake_case_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def UpperCamelCase_ ( self : int) -> int: """simple docstring""" self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def UpperCamelCase_ ( self : Any) -> Dict: """simple docstring""" self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : List[str] = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) self.assertListEqual( [rust_tokenizer.tokenize(snake_case_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) @slow def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : Dict = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""") _snake_case : str = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_) _snake_case : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case_) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCamelCase_ ( self : Optional[int]) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _snake_case : str = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_) _snake_case : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case : Optional[Any] = tokenizer_r.encode_plus( snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , return_offsets_mapping=snake_case_ , add_special_tokens=snake_case_ , ) _snake_case : List[str] = tokenizer_r.do_lower_case if hasattr(snake_case_ , """do_lower_case""") else False _snake_case : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = ["""的""", """人""", """有"""] _snake_case : Union[str, Any] = """""".join(snake_case_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _snake_case : List[Any] = True _snake_case : str = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_) _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_) _snake_case : Dict = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : Optional[int] = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(snake_case_) _snake_case : Any = tokenizer_p.convert_ids_to_tokens(snake_case_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case_ , snake_case_) self.assertListEqual(snake_case_ , snake_case_) _snake_case : str = False _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_) _snake_case : Tuple = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_) _snake_case : Union[str, Any] = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : List[str] = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_) _snake_case : Dict = tokenizer_r.convert_ids_to_tokens(snake_case_) _snake_case : str = tokenizer_p.convert_ids_to_tokens(snake_case_) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : Optional[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(snake_case_) ] self.assertListEqual(snake_case_ , snake_case_) self.assertListEqual(snake_case_ , snake_case_)
317
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowercase__ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1_024 ) print('Key files generation successful.' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' print('Generating prime p...' ) UpperCAmelCase_ : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) print('Generating prime q...' ) UpperCAmelCase_ : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: UpperCAmelCase_ : List[str] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) UpperCAmelCase_ : Tuple = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) UpperCAmelCase_ : Optional[Any] = (n, e) UpperCAmelCase_ : int = (n, d) return (public_key, private_key) def lowercase__ ( __snake_case : str , __snake_case : int ): '''simple docstring''' if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print('\nWARNING:' ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase_ : int = generate_key(_lowerCamelCase ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , 'w' ) as out_file: out_file.write(F"{key_size},{public_key[0]},{public_key[1]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , 'w' ) as out_file: out_file.write(F"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
29
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Dict = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase = logging.getLogger() def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = argparse.ArgumentParser() parser.add_argument('-f' ) _a : List[Any] = parser.parse_args() return args.f class UpperCAmelCase__ ( _a ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) def __lowercase ( self : Tuple ,_a : Tuple ): '''simple docstring''' _a : Optional[Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(snake_case_ ,'argv' ,snake_case_ ): _a : List[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case_ ,0.666 ) @slow @require_torch_non_multi_gpu def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[int] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(snake_case_ ) _a : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case_ ) _a : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case_ )
271
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
__UpperCamelCase : List[Any] = { 'joule': 1.0, 'kilojoule': 1000, 'megajoule': 100_0000, 'gigajoule': 10_0000_0000, 'wattsecond': 1.0, 'watthour': 3600, 'kilowatthour': 360_0000, 'newtonmeter': 1.0, 'calorie_nutr': 4186.8, 'kilocalorie_nutr': 418_6800.00, 'electronvolt': 1.6_0_2_1_7_6_6_3_4e-1_9, 'britishthermalunit_it': 1055.0_5585, 'footpound': 1.35_5818, } def A ( _lowercase , _lowercase , _lowercase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE : Dict = ( f"""Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
'''simple docstring''' import re def __lowerCamelCase ( __snake_case : str ) -> bool: """simple docstring""" A__ : List[Any] =re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(_lowerCamelCase, _lowerCamelCase ) ) if __name__ == "__main__": __snake_case : Tuple = '0094702343221' print(is_sri_lankan_phone_number(phone))
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCAmelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
175
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
import os from collections.abc import Iterator def lowerCAmelCase_ ( __lowerCAmelCase = "." )-> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(_lowerCamelCase ): UpperCAmelCase : List[str] =[d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(_lowerCamelCase , _lowerCamelCase ).lstrip('''./''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' return f'''{i * ' '}*''' if i else "\n##" def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : List[Any] =old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowerCamelCase )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def lowerCAmelCase_ ( __lowerCAmelCase = "." )-> None: '''simple docstring''' UpperCAmelCase : Tuple ="""""" for filepath in sorted(good_file_paths(_lowerCamelCase ) ): UpperCAmelCase : Optional[Any] =os.path.split(_lowerCamelCase ) if filepath != old_path: UpperCAmelCase : Any =print_path(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase : Any =(filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase : Dict =f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) UpperCAmelCase : Tuple =os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(_lowerCamelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
348
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) snake_case : List[Any] = logging.getLogger(__name__) snake_case : str = {'''facebook/bart-base''': BartForConditionalGeneration} snake_case : List[str] = {'''facebook/bart-base''': BartTokenizer} def __lowercase ( ): a__ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_lowerCamelCase , default=_lowerCamelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_lowerCamelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_lowerCamelCase , default=_lowerCamelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_lowerCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCamelCase , ) parser.add_argument( '--config_name' , type=_lowerCamelCase , default=_lowerCamelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_lowerCamelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_lowerCamelCase , default=_lowerCamelCase , help='Where to store the final ONNX file.' ) a__ = parser.parse_args() return args def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int]="cpu" ): a__ = model_dict[model_name].from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) a__ = tokenizer_dict[model_name].from_pretrained(_lowerCamelCase ) if model_name in ["facebook/bart-base"]: a__ = 0 a__ = None a__ = 0 return huggingface_model, tokenizer def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): model.eval() a__ = None a__ = torch.jit.script(BARTBeamSearchGenerator(_lowerCamelCase ) ) with torch.no_grad(): a__ = """My friends are cool but they eat too many carbs.""" a__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='pt' ).to(model.device ) a__ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_lowerCamelCase , max_length=_lowerCamelCase , early_stopping=_lowerCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowerCamelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowerCamelCase , opset_version=1_4 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_lowerCamelCase , ) logger.info('Model exported to {}'.format(_lowerCamelCase ) ) a__ = remove_dup_initializers(os.path.abspath(_lowerCamelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_lowerCamelCase ) ) a__ = onnxruntime.InferenceSession(_lowerCamelCase ) a__ = ort_sess.run( _lowerCamelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_lowerCamelCase ), 'max_length': np.array(_lowerCamelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __lowercase ( ): a__ = parse_args() a__ = 5 a__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a__ = torch.device(args.device ) a__ = load_model_tokenizer(args.model_name_or_path , _lowerCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_lowerCamelCase ) if args.max_length: a__ = args.max_length if args.num_beams: a__ = args.num_beams if args.output_file_path: a__ = args.output_file_path else: a__ = """BART.onnx""" logger.info('Exporting model to ONNX' ) export_and_validate_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
from __future__ import annotations from PIL import Image # Define glider example _snake_case = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _snake_case = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase_ ( snake_case_ ): _A : int = [] for i in range(len(_lowerCamelCase ) ): _A : Tuple = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _A : Dict = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_lowerCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_lowerCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_lowerCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _A : List[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_lowerCamelCase ) return next_generation def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = [] for _ in range(_lowerCamelCase ): # Create output image _A : Union[str, Any] = Image.new("""RGB""",(len(cells[0] ), len(_lowerCamelCase )) ) _A : Dict = img.load() # Save cells to image for x in range(len(_lowerCamelCase ) ): for y in range(len(cells[0] ) ): _A : Optional[int] = 255 - cells[y][x] * 255 _A : Any = (colour, colour, colour) # Save image images.append(_lowerCamelCase ) _A : List[str] = new_generation(_lowerCamelCase ) return images if __name__ == "__main__": _snake_case = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : SplitDict ) -> str: _snake_case : Optional[Any] = split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _snake_case : int = SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _snake_case : Tuple = None # the split name of split_dict takes over the name of the split info object _snake_case : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _snake_case : List[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_a ): '''simple docstring''' _snake_case : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_5_5 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: super().__init__(**snake_case_ ) UpperCAmelCase_ : Tuple = size if size is not None else {"""shortest_edge""": 3_8_4} UpperCAmelCase_ : Dict = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCAmelCase_ : List[str] = do_resize UpperCAmelCase_ : Dict = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ : str = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 UpperCAmelCase_ : List[str] = resample UpperCAmelCase_ : int = do_rescale UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ) -> int: UpperCAmelCase_ : Union[str, Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}" ) UpperCAmelCase_ : List[Any] = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ : Dict = int(shortest_edge / crop_pct ) UpperCAmelCase_ : int = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) UpperCAmelCase_ : Optional[Any] = resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=snake_case_ , size=(shortest_edge, shortest_edge) , data_format=snake_case_ , **snake_case_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( snake_case_ , size=(shortest_edge, shortest_edge) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Dict: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Tuple: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> Dict: UpperCAmelCase_ : int = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Any = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample UpperCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : int = size if size is not None else self.size UpperCAmelCase_ : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCAmelCase_ : Any = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase_ : Union[str, Any] = [to_numpy_array(snake_case_ ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=snake_case_ , size=snake_case_ , crop_pct=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: UpperCAmelCase_ : Any = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: UpperCAmelCase_ : str = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] UpperCAmelCase_ : List[Any] = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] UpperCAmelCase_ : Any = {"""pixel_values""": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
29
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int=1_2 , __UpperCAmelCase : str=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=9_9 , __UpperCAmelCase : int=3_2 , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Optional[int]=3_7 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[int]=5_1_2 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Optional[int]=None , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = projection_dim SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = bos_token_id def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: SCREAMING_SNAKE_CASE__ = input_mask.numpy() SCREAMING_SNAKE_CASE__ = input_mask.shape SCREAMING_SNAKE_CASE__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case_ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = TFBlipTextModel(config=snake_case_ ) SCREAMING_SNAKE_CASE__ = model(snake_case_ , attention_mask=snake_case_ , training=snake_case_ ) SCREAMING_SNAKE_CASE__ = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase (_a ,unittest.TestCase ): lowerCamelCase__ : int = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : str = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = BlipTextModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: pass @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFBlipTextModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[str]=True ) -> Any: super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case_ )
165
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCAmelCase_ (__a : Optional[int] , __a : Optional[Any] , __a : List[str] ): """simple docstring""" if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): _a : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _a : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _a : List[str] = np.concatenate(_lowerCamelCase , axis=0 ) _a : List[str] = np.array(_lowerCamelCase ).astype(np.floataa ) / 255.0 _a : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) _a : Any = 2.0 * image - 1.0 _a : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _a : Any = torch.cat(_lowerCamelCase , dim=0 ) return image def UpperCAmelCase_ (__a : Optional[int] , __a : Tuple , __a : Dict , __a : str=0.9995 ): """simple docstring""" if not isinstance(_lowerCamelCase , np.ndarray ): _a : Union[str, Any] = True _a : List[Any] = va.device _a : Dict = va.cpu().numpy() _a : Optional[Any] = va.cpu().numpy() _a : Union[str, Any] = np.sum(va * va / (np.linalg.norm(_lowerCamelCase ) * np.linalg.norm(_lowerCamelCase )) ) if np.abs(_lowerCamelCase ) > DOT_THRESHOLD: _a : Optional[int] = (1 - t) * va + t * va else: _a : Tuple = np.arccos(_lowerCamelCase ) _a : Optional[Any] = np.sin(_lowerCamelCase ) _a : str = theta_a * t _a : Tuple = np.sin(_lowerCamelCase ) _a : int = np.sin(theta_a - theta_t ) / sin_theta_a _a : List[Any] = sin_theta_t / sin_theta_a _a : Optional[Any] = sa * va + sa * va if inputs_are_torch: _a : Tuple = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) return va def UpperCAmelCase_ (__a : str , __a : List[str] ): """simple docstring""" _a : List[str] = F.normalize(_lowerCamelCase , dim=-1 ) _a : Dict = F.normalize(_lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCAmelCase_ (__a : Optional[Any] , __a : List[Any] ): """simple docstring""" for param in model.parameters(): _a : Tuple = value class UpperCAmelCase__ ( _a ): """simple docstring""" def __init__( self : Optional[Any] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Optional[Any] ,_a : str ,_a : Union[str, Any] ,_a : Dict ,_a : Optional[Any] ,_a : str=None ,_a : Union[str, Any]=None ,_a : Optional[Any]=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case_ ,text_encoder=snake_case_ ,clip_model=snake_case_ ,tokenizer=snake_case_ ,unet=snake_case_ ,scheduler=snake_case_ ,feature_extractor=snake_case_ ,coca_model=snake_case_ ,coca_tokenizer=snake_case_ ,coca_transform=snake_case_ ,) _a : str = ( feature_extractor.size if isinstance(feature_extractor.size ,snake_case_ ) else feature_extractor.size["""shortest_edge"""] ) _a : Optional[Any] = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,snake_case_ ) set_requires_grad(self.clip_model ,snake_case_ ) def __lowercase ( self : str ,_a : Tuple = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case_ ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(snake_case_ ) def __lowercase ( self : Tuple ): '''simple docstring''' set_requires_grad(self.vae ,snake_case_ ) def __lowercase ( self : Dict ): '''simple docstring''' set_requires_grad(self.vae ,snake_case_ ) def __lowercase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.unet ,snake_case_ ) def __lowercase ( self : str ): '''simple docstring''' set_requires_grad(self.unet ,snake_case_ ) def __lowercase ( self : Dict ,_a : Tuple ,_a : Optional[int] ,_a : str ): '''simple docstring''' _a : List[Any] = min(int(num_inference_steps * strength ) ,snake_case_ ) _a : Dict = max(num_inference_steps - init_timestep ,0 ) _a : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : Optional[int] ,_a : Dict ,_a : List[Any] ,_a : Optional[int] ,_a : Optional[int] ,_a : int ,_a : Optional[int]=None ): '''simple docstring''' if not isinstance(snake_case_ ,torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(snake_case_ )}""" ) _a : str = image.to(device=snake_case_ ,dtype=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ): _a : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case_ ) ] _a : Any = torch.cat(snake_case_ ,dim=0 ) else: _a : Dict = self.vae.encode(snake_case_ ).latent_dist.sample(snake_case_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a : Optional[int] = 0.1_8215 * init_latents _a : Dict = init_latents.repeat_interleave(snake_case_ ,dim=0 ) _a : List[Any] = randn_tensor(init_latents.shape ,generator=snake_case_ ,device=snake_case_ ,dtype=snake_case_ ) # get latents _a : Any = self.scheduler.add_noise(snake_case_ ,snake_case_ ,snake_case_ ) _a : List[Any] = init_latents return latents def __lowercase ( self : Tuple ,_a : Optional[int] ): '''simple docstring''' _a : int = self.coca_transform(snake_case_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a : Optional[int] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) _a : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' ,'' ).rstrip(' .,' ) def __lowercase ( self : List[Any] ,_a : Dict ,_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.feature_extractor.preprocess(snake_case_ ) _a : Tuple = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _a : Union[str, Any] = self.clip_model.get_image_features(snake_case_ ) _a : Optional[int] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case_ ) _a : List[Any] = image_embeddings_clip.repeat_interleave(snake_case_ ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowercase ( self : Dict ,_a : Optional[int] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Optional[Any] ,_a : Tuple ,_a : List[Any] ,_a : List[Any] ,): '''simple docstring''' _a : Union[str, Any] = latents.detach().requires_grad_() _a : Optional[Any] = self.scheduler.scale_model_input(snake_case_ ,snake_case_ ) # predict the noise residual _a : List[str] = self.unet(snake_case_ ,snake_case_ ,encoder_hidden_states=snake_case_ ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a : Dict = self.scheduler.alphas_cumprod[timestep] _a : Optional[Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : Tuple = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a : str = torch.sqrt(snake_case_ ) _a : Tuple = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,snake_case_ ): _a : Any = self.scheduler.sigmas[index] _a : Tuple = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a : List[Any] = 1 / 0.1_8215 * sample _a : List[Any] = self.vae.decode(snake_case_ ).sample _a : Union[str, Any] = (image / 2 + 0.5).clamp(0 ,1 ) _a : Dict = transforms.Resize(self.feature_extractor_size )(snake_case_ ) _a : Any = self.normalize(snake_case_ ).to(latents.dtype ) _a : Optional[int] = self.clip_model.get_image_features(snake_case_ ) _a : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case_ ) _a : List[Any] = spherical_dist_loss(snake_case_ ,snake_case_ ).mean() * clip_guidance_scale _a : Any = -torch.autograd.grad(snake_case_ ,snake_case_ )[0] if isinstance(self.scheduler ,snake_case_ ): _a : int = latents.detach() + grads * (sigma**2) _a : Dict = noise_pred_original else: _a : Tuple = noise_pred_original - torch.sqrt(snake_case_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Dict ,_a : Dict ,_a : Optional[Any] ,_a : Tuple = None ,_a : List[str] = None ,_a : Any = 512 ,_a : Optional[Any] = 512 ,_a : int = 0.6 ,_a : Any = 50 ,_a : List[str] = 7.5 ,_a : Optional[int] = 1 ,_a : Optional[Any] = 0.0 ,_a : str = 100 ,_a : Union[str, Any] = None ,_a : Optional[int] = "pil" ,_a : List[Any] = True ,_a : Any = 0.8 ,_a : List[str] = 0.1 ,_a : Union[str, Any] = 0.1 ,): '''simple docstring''' if isinstance(snake_case_ ,snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(snake_case_ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(snake_case_ ,torch.Generator ) and batch_size > 1: _a : List[Any] = [generator] + [None] * (batch_size - 1) _a : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] _a : Optional[Any] = [x[0] for x in coca_is_none if x[1]] _a : List[Any] = """, """.join(snake_case_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case_ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _a : Dict = self.get_image_description(snake_case_ ) if style_prompt is None: if len(snake_case_ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _a : Optional[int] = self.get_image_description(snake_case_ ) # get prompt text embeddings for content and style _a : Union[str, Any] = self.tokenizer( snake_case_ ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,truncation=snake_case_ ,return_tensors='pt' ,) _a : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a : Any = self.tokenizer( snake_case_ ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,truncation=snake_case_ ,return_tensors='pt' ,) _a : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a : List[str] = slerp(snake_case_ ,snake_case_ ,snake_case_ ) # duplicate text embeddings for each generation per prompt _a : Optional[Any] = text_embeddings.repeat_interleave(snake_case_ ,dim=0 ) # set timesteps _a : List[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a : int = {} if accepts_offset: _a : str = 1 self.scheduler.set_timesteps(snake_case_ ,**snake_case_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a : List[str] = self.get_timesteps(snake_case_ ,snake_case_ ,self.device ) _a : Dict = timesteps[:1].repeat(snake_case_ ) # Preprocess image _a : List[str] = preprocess(snake_case_ ,snake_case_ ,snake_case_ ) _a : Optional[int] = self.prepare_latents( snake_case_ ,snake_case_ ,snake_case_ ,text_embeddings.dtype ,self.device ,snake_case_ ) _a : Optional[Any] = preprocess(snake_case_ ,snake_case_ ,snake_case_ ) _a : str = self.prepare_latents( snake_case_ ,snake_case_ ,snake_case_ ,text_embeddings.dtype ,self.device ,snake_case_ ) _a : List[str] = slerp(snake_case_ ,snake_case_ ,snake_case_ ) if clip_guidance_scale > 0: _a : Dict = self.get_clip_image_embeddings(snake_case_ ,snake_case_ ) _a : int = self.get_clip_image_embeddings(snake_case_ ,snake_case_ ) _a : Optional[int] = slerp( snake_case_ ,snake_case_ ,snake_case_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a : int = content_text_input.input_ids.shape[-1] _a : List[str] = self.tokenizer([''] ,padding='max_length' ,max_length=snake_case_ ,return_tensors='pt' ) _a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a : List[str] = uncond_embeddings.repeat_interleave(snake_case_ ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a : Optional[Any] = torch.randn(snake_case_ ,generator=snake_case_ ,device='cpu' ,dtype=snake_case_ ).to( self.device ) else: _a : int = torch.randn(snake_case_ ,generator=snake_case_ ,device=self.device ,dtype=snake_case_ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _a : Union[str, Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a : Optional[Any] = {} if accepts_eta: _a : Optional[Any] = eta # check if the scheduler accepts generator _a : Optional[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a : int = generator with self.progress_bar(total=snake_case_ ): for i, t in enumerate(snake_case_ ): # expand the latents if we are doing classifier free guidance _a : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a : str = self.scheduler.scale_model_input(snake_case_ ,snake_case_ ) # predict the noise residual _a : Optional[Any] = self.unet(snake_case_ ,snake_case_ ,encoder_hidden_states=snake_case_ ).sample # perform classifier free guidance if do_classifier_free_guidance: _a : List[Any] = noise_pred.chunk(2 ) _a : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a : Any = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a : Optional[int] = self.cond_fn( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,) # compute the previous noisy sample x_t -> x_t-1 _a : Dict = self.scheduler.step(snake_case_ ,snake_case_ ,snake_case_ ,**snake_case_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a : List[Any] = 1 / 0.1_8215 * latents _a : List[str] = self.vae.decode(snake_case_ ).sample _a : Dict = (image / 2 + 0.5).clamp(0 ,1 ) _a : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _a : Dict = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case_ ,nsfw_content_detected=snake_case_ )
271
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( _a): UpperCamelCase_ = """encodec""" def __init__( self : List[str] , UpperCamelCase__ : Any=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : int=2_4000 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=128 , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[int]=[8, 5, 4, 2] , UpperCamelCase__ : str="weight_norm" , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = target_bandwidths SCREAMING_SNAKE_CASE : Any = sampling_rate SCREAMING_SNAKE_CASE : Tuple = audio_channels SCREAMING_SNAKE_CASE : str = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : List[Any] = overlap SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_filters SCREAMING_SNAKE_CASE : Dict = num_residual_layers SCREAMING_SNAKE_CASE : Union[str, Any] = upsampling_ratios SCREAMING_SNAKE_CASE : int = norm_type SCREAMING_SNAKE_CASE : Tuple = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : Tuple = dilation_growth_rate SCREAMING_SNAKE_CASE : Dict = use_causal_conv SCREAMING_SNAKE_CASE : int = pad_mode SCREAMING_SNAKE_CASE : Optional[Any] = compress SCREAMING_SNAKE_CASE : str = num_lstm_layers SCREAMING_SNAKE_CASE : List[Any] = trim_right_ratio SCREAMING_SNAKE_CASE : Dict = codebook_size SCREAMING_SNAKE_CASE : List[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**snake_case_ ) @property def __A ( self : str ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Any ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : Dict = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = """bridgetower_vision_model""" def __init__( self : str , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : int=2_88 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : str=1e-05 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any=False , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case_ ) A__ : Optional[int] =hidden_size A__ : Optional[Any] =num_hidden_layers A__ : Dict =num_channels A__ : Union[str, Any] =patch_size A__ : Tuple =image_size A__ : Optional[Any] =initializer_factor A__ : str =layer_norm_eps A__ : List[str] =stop_gradient A__ : Dict =share_layernorm A__ : str =remove_last_layer @classmethod def lowercase__ ( cls : Optional[Any] , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' A__ : List[str] =cls.get_config_dict(snake_case_ , **snake_case_ ) if config_dict.get("""model_type""" ) == "bridgetower": A__ : Tuple =config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = """bridgetower_text_model""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Dict=5_02_65 , lowerCAmelCase_ : str=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : str=30_72 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=5_14 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : str=1e-05 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[int]=True , **lowerCAmelCase_ : Any , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case_ ) A__ : Any =vocab_size A__ : int =hidden_size A__ : str =num_hidden_layers A__ : str =num_attention_heads A__ : Optional[int] =hidden_act A__ : Optional[Any] =initializer_factor A__ : List[str] =intermediate_size A__ : Any =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : Tuple =type_vocab_size A__ : Optional[Any] =layer_norm_eps A__ : Any =position_embedding_type A__ : Any =use_cache A__ : int =pad_token_id A__ : str =bos_token_id A__ : Union[str, Any] =eos_token_id @classmethod def lowercase__ ( cls : List[Any] , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =cls.get_config_dict(snake_case_ , **snake_case_ ) if config_dict.get("""model_type""" ) == "bridgetower": A__ : Dict =config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = """bridgetower""" def __init__( self : Tuple , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[str]=1e-05 , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : int="add" , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[str] , ) -> Optional[Any]: '''simple docstring''' # TODO: remove this once the Hub files are updated. A__ : List[str] =kwargs.pop("""text_config_dict""" , snake_case_ ) A__ : Any =kwargs.pop("""vision_config_dict""" , snake_case_ ) super().__init__(**snake_case_ ) A__ : str =share_cross_modal_transformer_layers A__ : List[Any] =hidden_act A__ : Union[str, Any] =hidden_size A__ : Dict =initializer_factor A__ : Optional[Any] =layer_norm_eps A__ : Any =share_link_tower_layers A__ : List[str] =link_tower_type A__ : int =num_attention_heads A__ : Any =num_hidden_layers A__ : List[str] =tie_word_embeddings A__ : List[Any] =init_layernorm_from_vision_encoder if text_config is None: A__ : Any ={} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: A__ : Optional[int] ={} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) A__ : str =BridgeTowerTextConfig(**snake_case_ ) A__ : List[str] =BridgeTowerVisionConfig(**snake_case_ ) @classmethod def lowercase__ ( cls : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> int: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : Tuple =copy.deepcopy(self.__dict__ ) A__ : Union[str, Any] =self.text_config.to_dict() A__ : int =self.vision_config.to_dict() A__ : Union[str, Any] =self.__class__.model_type return output
134
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
'''simple docstring''' import sys from collections import defaultdict class A : '''simple docstring''' def __init__(self ) -> int: __UpperCamelCase : List[str] = [] def a_ (self , _UpperCAmelCase ) -> Tuple: return self.node_position[vertex] def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : Any = pos def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCamelCase : Dict = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCamelCase : int = 2 * start + 1 else: __UpperCamelCase : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCamelCase : List[str] = heap[smallest_child], positions[smallest_child] __UpperCamelCase : Dict = ( heap[start], positions[start], ) __UpperCamelCase : Dict = temp, tempa __UpperCamelCase : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = position[index] while index != 0: __UpperCamelCase : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCamelCase : str = heap[parent] __UpperCamelCase : Optional[Any] = position[parent] self.set_position(position[parent] , snake_case_ ) else: __UpperCamelCase : str = val __UpperCamelCase : Any = temp self.set_position(snake_case_ , snake_case_ ) break __UpperCamelCase : Dict = parent else: __UpperCamelCase : List[Any] = val __UpperCamelCase : Tuple = temp self.set_position(snake_case_ , 0 ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> int: __UpperCamelCase : Tuple = positions[0] __UpperCamelCase : List[str] = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : int = Heap() __UpperCamelCase : Dict = [0] * len(_lowerCamelCase ) __UpperCamelCase : Dict = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCamelCase : str = [] # Heap of Distance of vertices from their neighboring vertex __UpperCamelCase : List[str] = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) __UpperCamelCase : Any = [] __UpperCamelCase : Optional[int] = 1 __UpperCamelCase : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCamelCase : str = 0 __UpperCamelCase : List[Any] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): __UpperCamelCase : Union[str, Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCamelCase : int = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): __UpperCamelCase : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input('''Enter number of edges: ''').strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = {'vocab_file': 'spiece.model'} a_ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } a_ = { 'google/reformer-crime-and-punishment': 524_288, } class _lowercase ( _a ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , snake_case : List[str] , snake_case : List[str]="</s>" , snake_case : Optional[int]="<unk>" , snake_case : str=[] , snake_case : List[Any] = None , **snake_case : Tuple , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) UpperCamelCase_ : int = vocab_file UpperCamelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ : Tuple = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ : Dict = self.__dict__.copy() UpperCamelCase_ : Tuple = None return state def __setstate__( self : Tuple , snake_case : List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : Tuple = {} UpperCamelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : int ) -> str: """simple docstring""" return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any ) -> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCamelCase_ : Optional[Any] = self.sp_model.IdToPiece(snake_case_ ) return token def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : List[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase_ : Optional[int] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Tuple , snake_case : int = None ) -> Tuple: """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : str = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
175
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
from timeit import timeit __snake_case = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' UpperCAmelCase : List[str] =0 UpperCAmelCase : Optional[int] =len(_lowerCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' UpperCAmelCase : Union[str, Any] =len(_lowerCamelCase ) // 2 UpperCAmelCase : int =len(_lowerCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if len(_lowerCamelCase ) <= 2: return True if s[0] == s[len(_lowerCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' return s == s[::-1] def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' UpperCAmelCase : Any =f'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase : Optional[int] =f'''from __main__ import test_data, {name}''' UpperCAmelCase : int =50_00_00 UpperCAmelCase : Dict =timeit(stmt=_lowerCamelCase , setup=_lowerCamelCase , number=_lowerCamelCase ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'{key:21} {value}') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
348
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str ): def get_masked_lm_array(__lowerCAmelCase : str ): a__ = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: a__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_array(__lowerCAmelCase : str ): a__ = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: a__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_layer_array(__lowerCAmelCase : int , __lowerCAmelCase : str ): a__ = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: a__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_attention_layer_array(__lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): a__ = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) a__ = array.reshape(_lowerCamelCase ) if "kernel" in name: a__ = array.transpose() return torch.from_numpy(_lowerCamelCase ) print(F'Loading model based on config from {config_path}...' ) a__ = BertConfig.from_json_file(_lowerCamelCase ) a__ = BertForMaskedLM(_lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a__ = model.bert.encoder.layer[layer_index] # Self-attention a__ = layer.attention.self a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_query_dense/bias' , self_attn.query.bias.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_key_dense/bias' , self_attn.key.bias.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output a__ = layer.attention.output a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) a__ = get_encoder_attention_layer_array( _lowerCamelCase , '_output_dense/bias' , self_output.dense.bias.data.shape ) a__ = get_encoder_layer_array(_lowerCamelCase , '_attention_layer_norm/gamma' ) a__ = get_encoder_layer_array(_lowerCamelCase , '_attention_layer_norm/beta' ) # Intermediate a__ = layer.intermediate a__ = get_encoder_layer_array(_lowerCamelCase , '_intermediate_dense/kernel' ) a__ = get_encoder_layer_array(_lowerCamelCase , '_intermediate_dense/bias' ) # Output a__ = layer.output a__ = get_encoder_layer_array(_lowerCamelCase , '_output_dense/kernel' ) a__ = get_encoder_layer_array(_lowerCamelCase , '_output_dense/bias' ) a__ = get_encoder_layer_array(_lowerCamelCase , '_output_layer_norm/gamma' ) a__ = get_encoder_layer_array(_lowerCamelCase , '_output_layer_norm/beta' ) # Embeddings a__ = get_encoder_array('_position_embedding_layer/embeddings' ) a__ = get_encoder_array('_type_embedding_layer/embeddings' ) a__ = get_encoder_array('_embedding_norm_layer/gamma' ) a__ = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head a__ = model.cls.predictions.transform a__ = get_masked_lm_array('dense/kernel' ) a__ = get_masked_lm_array('dense/bias' ) a__ = get_masked_lm_array('layer_norm/gamma' ) a__ = get_masked_lm_array('layer_norm/beta' ) a__ = get_masked_lm_array('embedding_table' ) # Pooling a__ = BertPooler(config=_lowerCamelCase ) a__ = get_encoder_array('_pooler_layer/kernel' ) a__ = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(_lowerCamelCase ) # Integration test - should load without any errors ;) a__ = BertForMaskedLM.from_pretrained(_lowerCamelCase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) snake_case : int = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
def lowerCAmelCase_ ( snake_case_ = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3,n + 1 ) ) if __name__ == "__main__": print(solution())
26
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a__ = logging.get_logger(__name__) a__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class snake_case ( _a ): '''simple docstring''' snake_case_ : List[Any] = """deberta-v2""" def __init__( self : Optional[int] , lowerCAmelCase : str=12_8100 , lowerCAmelCase : Tuple=1536 , lowerCAmelCase : List[str]=24 , lowerCAmelCase : Union[str, Any]=24 , lowerCAmelCase : Union[str, Any]=6144 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : Dict=0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Tuple=1E-7 , lowerCAmelCase : int=False , lowerCAmelCase : Dict=-1 , lowerCAmelCase : Union[str, Any]=0 , lowerCAmelCase : str=True , lowerCAmelCase : int=None , lowerCAmelCase : Any=0 , lowerCAmelCase : Dict="gelu" , **lowerCAmelCase : Any , ) -> int: """simple docstring""" super().__init__(**snake_case_) _snake_case : List[Any] = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : List[str] = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : Dict = initializer_range _snake_case : Optional[int] = relative_attention _snake_case : Optional[Any] = max_relative_positions _snake_case : Optional[int] = pad_token_id _snake_case : Tuple = position_biased_input # Backwards compatibility if type(snake_case_) == str: _snake_case : Any = [x.strip() for x in pos_att_type.lower().split("""|""")] _snake_case : List[Any] = pos_att_type _snake_case : Any = vocab_size _snake_case : Optional[int] = layer_norm_eps _snake_case : Dict = kwargs.get("""pooler_hidden_size""" , snake_case_) _snake_case : Optional[Any] = pooler_dropout _snake_case : int = pooler_hidden_act class snake_case ( _a ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Tuple = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)]) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)]) @property def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" return 12 def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : Any = -1 , lowerCAmelCase : Any = False , lowerCAmelCase : Tuple = None , lowerCAmelCase : Optional[Any] = 3 , lowerCAmelCase : int = 40 , lowerCAmelCase : Dict = 40 , lowerCAmelCase : str = None , ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = super().generate_dummy_inputs(preprocessor=snake_case_ , framework=snake_case_) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
317
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase (_a ): lowerCamelCase__ : List[Any] = """yolos""" def __init__( self : List[str] , __UpperCAmelCase : Tuple=7_6_8 , __UpperCAmelCase : Optional[int]=1_2 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : List[Any]=3_0_7_2 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[int]=1e-12 , __UpperCAmelCase : Any=[5_1_2, 8_6_4] , __UpperCAmelCase : Optional[int]=1_6 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=1_0_0 , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : Dict=1 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Union[str, Any]=0.1 , **__UpperCAmelCase : Dict , ) -> Any: super().__init__(**snake_case_ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = num_detection_tokens SCREAMING_SNAKE_CASE__ = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ = class_cost SCREAMING_SNAKE_CASE__ = bbox_cost SCREAMING_SNAKE_CASE__ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ = giou_loss_coefficient SCREAMING_SNAKE_CASE__ = eos_coefficient class lowerCamelCase (_a ): lowerCamelCase__ : Tuple = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return 1_2
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCAmelCase = random.Random() def UpperCAmelCase_ (__a : Tuple , __a : int=1.0 , __a : Optional[int]=None , __a : List[str]=None ): """simple docstring""" if rng is None: _a : List[Any] = global_rng _a : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=7 ,_a : Optional[Any]=400 ,_a : Any=2000 ,_a : str=1 ,_a : Union[str, Any]=0.0 ,_a : int=1_6000 ,_a : List[Any]=True ,_a : Optional[Any]=True ,): '''simple docstring''' _a : List[str] = parent _a : Dict = batch_size _a : Optional[int] = min_seq_length _a : Optional[Any] = max_seq_length _a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : Optional[Any] = feature_size _a : Optional[int] = padding_value _a : List[Any] = sampling_rate _a : Tuple = return_attention_mask _a : Dict = do_normalize def __lowercase ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowercase ( self : Optional[Any] ,_a : List[Any]=False ,_a : Union[str, Any]=False ): '''simple docstring''' def _flatten(_a : Dict ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _a : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _a : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _a : Any = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase__ ( _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor def __lowercase ( self : List[str] ): '''simple docstring''' _a : str = WavaVecaFeatureExtractionTester(self ) def __lowercase ( self : List[Any] ,_a : List[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(snake_case_ ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ ,axis=0 ) - 1 ) < 1E-3 ) ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a : str = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _a : Dict = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _a : Dict = feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values _a : Optional[Any] = feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(snake_case_ ,snake_case_ ,atol=1E-3 ) ) # Test batched _a : List[Any] = feat_extract(snake_case_ ,return_tensors='np' ).input_values _a : List[str] = feat_extract(snake_case_ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ ,snake_case_ ): self.assertTrue(np.allclose(snake_case_ ,snake_case_ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _a : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a : Any = np.asarray(snake_case_ ) _a : List[Any] = feat_extract(snake_case_ ,return_tensors='np' ).input_values _a : Tuple = feat_extract(snake_case_ ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ ,snake_case_ ): self.assertTrue(np.allclose(snake_case_ ,snake_case_ ,atol=1E-3 ) ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _a : Tuple = ["""longest""", """max_length""", """do_not_pad"""] _a : Any = [None, 1600, None] for max_length, padding in zip(snake_case_ ,snake_case_ ): _a : Optional[Any] = feat_extract(snake_case_ ,padding=snake_case_ ,max_length=snake_case_ ,return_tensors='np' ) _a : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : str = range(800 ,1400 ,200 ) _a : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] _a : str = ["""longest""", """max_length""", """do_not_pad"""] _a : str = [None, 1600, None] for max_length, padding in zip(snake_case_ ,snake_case_ ): _a : List[str] = feat_extract(snake_case_ ,max_length=snake_case_ ,padding=snake_case_ ) _a : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _a : List[Any] = feat_extract( snake_case_ ,truncation=snake_case_ ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) _a : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowercase ( self : int ): '''simple docstring''' _a : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Dict = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _a : Union[str, Any] = feat_extract( snake_case_ ,truncation=snake_case_ ,max_length=1000 ,padding='longest' ,return_tensors='np' ) _a : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _a : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _a : Dict = feat_extract( snake_case_ ,truncation=snake_case_ ,max_length=2000 ,padding='longest' ,return_tensors='np' ) _a : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def __lowercase ( self : Any ): '''simple docstring''' import torch _a : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : List[Any] = np.random.rand(100 ).astype(np.floataa ) _a : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _a : Any = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __lowercase ( self : Optional[int] ): '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _a : Union[str, Any] = WavaVecaConfig.from_pretrained(snake_case_ ) _a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
271
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( _a): UpperCamelCase_ = """new-model""" if is_tf_available(): class lowercase__ ( _a): UpperCamelCase_ = NewModelConfig @require_tf class lowercase__ ( unittest.TestCase): @slow def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = """bert-base-cased""" SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = """bert-base-cased""" SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : Dict ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForCausalLM.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForCausalLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForMaskedLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : List[str] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Any = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : Dict ): '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Any = TFAutoModelForQuestionAnswering.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow @require_tensorflow_probability def __A ( self : str ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_4410 ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFAutoModelWithLMHead.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_4410 ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Any = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE : List[Any] = ["""FunnelBaseModel"""] SCREAMING_SNAKE_CASE : List[str] = TFAutoModel.from_config(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = TFAutoModel.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def __A ( self : Tuple ): '''simple docstring''' try: AutoConfig.register('''new-model''' , snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case_ ): auto_class.register(snake_case_ , snake_case_ ) auto_class.register(snake_case_ , snake_case_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case_ ): auto_class.register(snake_case_ , snake_case_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Tuple = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE : Dict = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE : Any = auto_class.from_config(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[int] = auto_class.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __A ( self : str ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained('''bert-base''' ) def __A ( self : str ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModel.from_pretrained(snake_case_ , revision='''aaaaaa''' ) def __A ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): SCREAMING_SNAKE_CASE : str = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __A ( self : str ): '''simple docstring''' with self.assertRaisesRegex(snake_case_ , '''Use `from_pt=True` to load this model''' ): SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : int = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case : Optional[int] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } __snake_case : Union[str, Any] = { 'camembert-base': 512, } __snake_case : Union[str, Any] = '▁' class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : str="<mask>" , lowerCAmelCase_ : str=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase_ : List[str] = None , **lowerCAmelCase_ : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it A__ : Dict =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A__ : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) A__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) A__ : Dict =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ : List[Any] ={"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} A__ : Tuple =len(self.fairseq_tokens_to_ids ) A__ : List[str] =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ : Union[str, Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] = None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : str =[self.cls_token_id] A__ : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Any] = False ) -> Any: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] = None ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ : Optional[int] ={self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : Tuple =[] A__ : Tuple ="""""" A__ : List[str] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token A__ : int =True A__ : str =[] else: current_sub_tokens.append(snake_case_ ) A__ : List[str] =False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __getstate__( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Any =self.__dict__.copy() A__ : Optional[Any] =None return state def __setstate__( self : Dict , lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' A__ : int =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : int ={} A__ : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] = None ) -> Optional[int]: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : List[Any] =os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: A__ : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A ( _a ): '''simple docstring''' def a_ (self ) -> int: __UpperCamelCase : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , "tf_padding" ) ) self.parent.assertTrue(hasattr(snake_case_ , "depth_multiplier" ) ) class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=3 , _UpperCAmelCase=3_2 , _UpperCAmelCase=0.25 , _UpperCAmelCase=8 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=3_2 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu6" , _UpperCAmelCase=1_2_8_0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1_0 , _UpperCAmelCase=None , ) -> List[Any]: __UpperCamelCase : Tuple = parent __UpperCamelCase : Optional[Any] = batch_size __UpperCamelCase : Dict = num_channels __UpperCamelCase : Optional[int] = image_size __UpperCamelCase : str = depth_multiplier __UpperCamelCase : Optional[int] = depth_divisible_by __UpperCamelCase : Optional[int] = min_depth __UpperCamelCase : Optional[int] = expand_ratio __UpperCamelCase : str = tf_padding __UpperCamelCase : List[Any] = output_stride __UpperCamelCase : Tuple = first_layer_is_expansion __UpperCamelCase : Optional[int] = finegrained_output __UpperCamelCase : int = hidden_act __UpperCamelCase : Optional[Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __UpperCamelCase : Dict = classifier_dropout_prob __UpperCamelCase : List[Any] = use_labels __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Union[str, Any] = num_labels __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Union[str, Any] = scope def a_ (self ) -> List[str]: __UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : Optional[int] = None __UpperCamelCase : Dict = None if self.use_labels: __UpperCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def a_ (self ) -> Optional[int]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: __UpperCamelCase : List[Any] = MobileNetVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : List[str] = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : Union[str, Any] = MobileNetVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : str = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: __UpperCamelCase : List[Any] = self.num_labels __UpperCamelCase : Optional[int] = MobileNetVaForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCamelCase : int = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ (self ) -> List[Any]: __UpperCamelCase : str = self.prepare_config_and_inputs() __UpperCamelCase : Optional[int] = config_and_inputs __UpperCamelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( _a , _a , unittest.TestCase ): '''simple docstring''' A = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) A = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) A = False A = False A = False A = False def a_ (self ) -> Any: __UpperCamelCase : Optional[Any] = MobileNetVaModelTester(self ) __UpperCamelCase : List[str] = MobileNetVaConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def a_ (self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def a_ (self ) -> Optional[int]: pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def a_ (self ) -> Optional[Any]: pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def a_ (self ) -> List[str]: pass def a_ (self ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Optional[Any] = model_class(snake_case_ ) __UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Tuple = [*signature.parameters.keys()] __UpperCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def a_ (self ) -> int: def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __UpperCamelCase : str = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __UpperCamelCase : str = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __UpperCamelCase : int = outputs.hidden_states __UpperCamelCase : Any = 1_6 self.assertEqual(len(snake_case_ ) , snake_case_ ) __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def a_ (self ) -> Any: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def a_ (self ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @slow def a_ (self ) -> List[Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Any = MobileNetVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __lowerCAmelCase ( ): __UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def a_ (self ) -> Optional[int]: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(snake_case_ ) __UpperCamelCase : Union[str, Any] = self.default_image_processor __UpperCamelCase : Union[str, Any] = prepare_img() __UpperCamelCase : Tuple = image_processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): __UpperCamelCase : str = model(**snake_case_ ) # verify the logits __UpperCamelCase : Any = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __UpperCamelCase : int = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) ) @slow def a_ (self ) -> str: __UpperCamelCase : str = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) __UpperCamelCase : Dict = model.to(snake_case_ ) __UpperCamelCase : Optional[Any] = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) __UpperCamelCase : Union[str, Any] = prepare_img() __UpperCamelCase : Dict = image_processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): __UpperCamelCase : int = model(**snake_case_ ) __UpperCamelCase : List[Any] = outputs.logits # verify the logits __UpperCamelCase : Optional[int] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , snake_case_ ) __UpperCamelCase : str = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=snake_case_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case_ , atol=1E-4 ) )
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =pos_x UpperCAmelCase : List[str] =pos_y UpperCAmelCase : Tuple =(pos_y, pos_x) UpperCAmelCase : List[Any] =goal_x UpperCAmelCase : int =goal_y UpperCAmelCase : Union[str, Any] =g_cost UpperCAmelCase : List[Any] =parent UpperCAmelCase : List[Any] =self.calculate_heuristic() UpperCAmelCase : Optional[int] =self.g_cost + self.h_cost def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =self.pos_x - self.goal_x UpperCAmelCase : Optional[int] =self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case__ ) -> List[str]: '''simple docstring''' return self.f_cost < other.f_cost class __snake_case : def __init__( self , snake_case__ , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) UpperCAmelCase : Tuple =Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , snake_case_ ) UpperCAmelCase : List[str] =[self.start] UpperCAmelCase : list[Node] =[] UpperCAmelCase : List[str] =False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : Optional[int] =self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) UpperCAmelCase : Optional[int] =self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path UpperCAmelCase : Optional[Any] =self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] for action in delta: UpperCAmelCase : Union[str, Any] =parent.pos_x + action[1] UpperCAmelCase : Dict =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =node UpperCAmelCase : Optional[Any] =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Optional[int] =current_node.parent path.reverse() return path class __snake_case : def __init__( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =AStar(snake_case_ , snake_case_ ) UpperCAmelCase : int =AStar(snake_case_ , snake_case_ ) UpperCAmelCase : Optional[int] =False def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase : Tuple =self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase : Optional[Any] =self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) UpperCAmelCase : List[str] =current_bwd_node UpperCAmelCase : Dict =current_fwd_node UpperCAmelCase : Any ={ self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path UpperCAmelCase : List[Any] =astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : int =self.fwd_astar.retrace_path(snake_case_ ) UpperCAmelCase : Optional[Any] =self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : Dict =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
348
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case : str = logging.get_logger(__name__) @add_end_docstrings(_a ) class snake_case_ (_a ): def __init__( self :str ,*__snake_case :Any ,**__snake_case :Union[str, Any] ) -> Optional[int]: super().__init__(*snake_case_ ,**snake_case_ ) requires_backends(self ,'vision' ) self.check_model_type(snake_case_ ) def __call__( self :Tuple ,__snake_case :Union[str, Any] ,**__snake_case :List[str] ) -> str: return super().__call__(snake_case_ ,**snake_case_ ) def lowerCamelCase__( self :str ,**__snake_case :int ) -> Optional[int]: return {}, {}, {} def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ) -> str: a__ = load_image(snake_case_ ) a__ = image.size a__ = self.image_processor(images=snake_case_ ,return_tensors=self.framework ) return model_inputs def lowerCamelCase__( self :Any ,__snake_case :str ) -> str: a__ = self.model(**snake_case_ ) return model_outputs def lowerCamelCase__( self :Tuple ,__snake_case :str ) -> List[Any]: a__ = model_outputs.predicted_depth a__ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='bicubic' ,align_corners=snake_case_ ) a__ = prediction.squeeze().cpu().numpy() a__ = (output * 2_55 / np.max(snake_case_ )).astype('uint8' ) a__ = Image.fromarray(snake_case_ ) a__ = {} a__ = predicted_depth a__ = depth return output_dict
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase : def __init__( self , _a , _a=14 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Optional[int]: _A : int = parent _A : str = batch_size _A : Optional[int] = seq_length _A : List[Any] = is_training _A : Tuple = use_token_type_ids _A : Union[str, Any] = use_input_mask _A : Tuple = use_labels _A : Union[str, Any] = use_mc_token_ids _A : str = vocab_size _A : List[Any] = hidden_size _A : Any = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : List[str] = hidden_act _A : List[str] = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : List[str] = type_vocab_size _A : Tuple = type_sequence_label_size _A : Optional[Any] = initializer_range _A : List[Any] = num_labels _A : str = num_choices _A : Optional[Any] = scope _A : List[str] = self.vocab_size - 1 def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : int = None if self.use_input_mask: _A : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _A : Optional[Any] = None if self.use_token_type_ids: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Optional[Any] = None if self.use_mc_token_ids: _A : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _A : List[str] = None _A : List[str] = None _A : List[str] = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _A : Any = self.get_config() _A : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def a__ ( self ) -> Union[str, Any]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def a__ ( self , _a , _a , _a , _a , _a , *_a ) -> List[Any]: _A : Any = CTRLModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) model(snake_case_ , token_type_ids=snake_case_ ) _A : int = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def a__ ( self , _a , _a , _a , _a , _a , *_a ) -> List[Any]: _A : Optional[Any] = CTRLLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _A : Dict = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ) -> List[Any]: _A : Optional[int] = self.prepare_config_and_inputs() ( _A ) : str = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def a__ ( self , _a , _a , _a , _a , *_a ) -> Tuple: _A : str = self.num_labels _A : str = CTRLForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Union[str, Any] = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowercase ( _a,_a,_a,unittest.TestCase ): _a = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _a = (CTRLLMHeadModel,) if is_torch_available() else () _a = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) _a = True _a = False _a = False def a__ ( self , _a , _a , _a , _a , _a ) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def a__ ( self ) -> List[str]: _A : str = CTRLModelTester(self ) _A : Any = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def a__ ( self ) -> Union[str, Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Any: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[int]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case_ ) def a__ ( self ) -> Tuple: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self ) -> Optional[Any]: pass @slow def a__ ( self ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Any = CTRLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def a__ ( self ) -> Any: pass @require_torch class lowercase ( unittest.TestCase ): def a__ ( self ) -> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def a__ ( self ) -> Union[str, Any]: _A : Tuple = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(snake_case_ ) _A : Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=snake_case_ ) # Legal the president is _A : str = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _A : Tuple = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCAmelCase = random.Random() def lowercase__ ( __snake_case : int , __snake_case : Tuple=1.0 , __snake_case : int=None , __snake_case : int=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ : List[str] = global_rng UpperCAmelCase_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=4_0_0 , _UpperCamelCase=2_0_0_0 , _UpperCamelCase=2_4 , _UpperCamelCase=2_4 , _UpperCamelCase=0.0 , _UpperCamelCase=1_6_0_0_0 , _UpperCamelCase=True , _UpperCamelCase=True , ) -> List[str]: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : str = min_seq_length UpperCAmelCase_ : str = max_seq_length UpperCAmelCase_ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ : Tuple = feature_size UpperCAmelCase_ : Tuple = num_mel_bins UpperCAmelCase_ : Tuple = padding_value UpperCAmelCase_ : Union[str, Any] = sampling_rate UpperCAmelCase_ : Optional[int] = return_attention_mask UpperCAmelCase_ : Union[str, Any] = do_normalize def __UpperCAmelCase ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self , _UpperCamelCase=False , _UpperCamelCase=False ) -> List[Any]: def _flatten(_UpperCamelCase ): return list(itertools.chain(*snake_case_ ) ) if equal_length: UpperCAmelCase_ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : List[str] = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase (_a , unittest.TestCase ): '''simple docstring''' _snake_case : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Any = SpeechaTextFeatureExtractionTester(self ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCAmelCase ( self ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : Optional[Any] = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ : Union[str, Any] = feature_extractor(snake_case_ , padding=snake_case_ , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features UpperCAmelCase_ : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched UpperCAmelCase_ : str = feature_extractor(snake_case_ , return_tensors='np' ).input_features UpperCAmelCase_ : Any = feature_extractor(snake_case_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ : Dict = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase_ : Optional[int] = np.asarray(snake_case_ ) UpperCAmelCase_ : Any = feature_extractor(snake_case_ , return_tensors='np' ).input_features UpperCAmelCase_ : Union[str, Any] = feature_extractor(snake_case_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : Tuple = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase_ : List[Any] = [None, 1_6, None] for max_length, padding in zip(snake_case_ , snake_case_ ): UpperCAmelCase_ : List[str] = feature_extractor( snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = inputs.input_features UpperCAmelCase_ : Any = inputs.attention_mask UpperCAmelCase_ : List[Any] = [np.sum(snake_case_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : Dict = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase_ : int = [None, 1_6, None] for max_length, padding in zip(snake_case_ , snake_case_ ): UpperCAmelCase_ : int = feature_extractor( snake_case_ , max_length=snake_case_ , padding=snake_case_ , return_tensors='np' , return_attention_mask=snake_case_ ) UpperCAmelCase_ : List[Any] = inputs.input_features UpperCAmelCase_ : Optional[int] = inputs.attention_mask UpperCAmelCase_ : Optional[Any] = [np.sum(snake_case_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : int = feature_extractor( snake_case_ , padding='max_length' , max_length=4 , truncation=snake_case_ , return_tensors='np' , return_attention_mask=snake_case_ , ) UpperCAmelCase_ : str = inputs.input_features UpperCAmelCase_ : Any = inputs.attention_mask UpperCAmelCase_ : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : Union[str, Any] = feature_extractor( snake_case_ , padding='longest' , max_length=4 , truncation=snake_case_ , return_tensors='np' , return_attention_mask=snake_case_ , ) UpperCAmelCase_ : Dict = inputs.input_features UpperCAmelCase_ : List[str] = inputs.attention_mask UpperCAmelCase_ : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) UpperCAmelCase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase_ : Optional[Any] = feature_extractor( snake_case_ , padding='longest' , max_length=1_6 , truncation=snake_case_ , return_tensors='np' , return_attention_mask=snake_case_ , ) UpperCAmelCase_ : str = inputs.input_features UpperCAmelCase_ : Any = inputs.attention_mask UpperCAmelCase_ : Union[str, Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __UpperCAmelCase ( self ) -> Any: import torch UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : Any = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) UpperCAmelCase_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ : Union[str, Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCAmelCase_ : int = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: from datasets import load_dataset UpperCAmelCase_ : Any = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCAmelCase_ : Tuple = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self ) -> Tuple: # fmt: off UpperCAmelCase_ : Dict = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on UpperCAmelCase_ : Union[str, Any] = self._load_datasamples(1 ) UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : Union[str, Any] = feature_extractor(snake_case_ , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , snake_case_ , atol=1E-4 ) )
29
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures A_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class lowerCamelCase : lowerCamelCase__ : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowerCamelCase__ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase__ : int = field( default=1_2_8 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : bool = field( default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.task_name.lower() class lowerCamelCase (_a ): lowerCamelCase__ : Optional[Any] = """train""" lowerCamelCase__ : Any = """dev""" lowerCamelCase__ : int = """test""" class lowerCamelCase (_a ): lowerCamelCase__ : GlueDataTrainingArguments lowerCamelCase__ : str lowerCamelCase__ : List[InputFeatures] def __init__( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple = None , __UpperCAmelCase : Any = Split.train , __UpperCAmelCase : str = None , ) -> Any: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , snake_case_ , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE__ = glue_output_modes[args.task_name] if isinstance(snake_case_ , snake_case_ ): try: SCREAMING_SNAKE_CASE__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) SCREAMING_SNAKE_CASE__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE__ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + """.lock""" with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = torch.load(snake_case_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: SCREAMING_SNAKE_CASE__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE__ = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE__ = examples[:limit_length] SCREAMING_SNAKE_CASE__ = glue_convert_examples_to_features( snake_case_ , snake_case_ , max_length=args.max_seq_length , label_list=snake_case_ , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE__ = time.time() torch.save(self.features , snake_case_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : int ) -> Any: return len(self.features ) def __getitem__( self : str , __UpperCAmelCase : int ) -> Any: return self.features[i] def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return self.label_list
165
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase = trt.Logger(trt.Logger.WARNING) __lowerCAmelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=3_8_4, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=1_2_8, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=2_0, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=3_0, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=4_2, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) __lowerCAmelCase = parser.parse_args() if args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) __lowerCAmelCase = args.per_device_eval_batch_size __lowerCAmelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase = True __lowerCAmelCase = """temp_engine/bert-fp32.engine""" if args.fpaa: __lowerCAmelCase = """temp_engine/bert-fp16.engine""" if args.inta: __lowerCAmelCase = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") __lowerCAmelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase = [network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def UpperCAmelCase_ (__a : Optional[int] , __a : str , __a : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : Dict , __a : Optional[int] , __a : Optional[Any] ): """simple docstring""" _a : List[str] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _a : Union[str, Any] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _a : int = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time _a : str = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time _a : int = time.time() _a : int = end_time - start_time _a : Dict = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase = raw_datasets["""validation"""].column_names __lowerCAmelCase = """question""" if """question""" in column_names else column_names[0] __lowerCAmelCase = """context""" if """context""" in column_names else column_names[1] __lowerCAmelCase = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __lowerCAmelCase = min(args.max_seq_length, tokenizer.model_max_length) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _a : Optional[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _a : int = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _a : int = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _a : List[Any] = tokenized_examples.sequence_ids(_lowerCamelCase ) _a : Dict = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _a : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _a : str = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __lowerCAmelCase = raw_datasets["""validation"""] # Validation Feature Creation __lowerCAmelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) __lowerCAmelCase = default_data_collator __lowerCAmelCase = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) __lowerCAmelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCAmelCase_ (__a : Tuple , __a : str , __a : Optional[int] , __a : Optional[int]="eval" ): """simple docstring""" _a : Optional[int] = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _a : int = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: _a : int = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] _a : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) __lowerCAmelCase = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCAmelCase_ (__a : Dict ): """simple docstring""" return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __lowerCAmelCase = 0.0 __lowerCAmelCase = 0 __lowerCAmelCase = timeit.default_timer() __lowerCAmelCase = None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase = outputs __lowerCAmelCase = torch.tensor(start_logits) __lowerCAmelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __lowerCAmelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __lowerCAmelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __lowerCAmelCase = nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_0_0_0 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_0_0_0)) logger.info("""Total Number of Inference = %d""", niter) __lowerCAmelCase = post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
271
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def A ( _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : str = job["""started_at"""] SCREAMING_SNAKE_CASE : Any = job["""completed_at"""] SCREAMING_SNAKE_CASE : Optional[Any] = date_parser.parse(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = date_parser.parse(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) SCREAMING_SNAKE_CASE : List[Any] = start SCREAMING_SNAKE_CASE : List[str] = end SCREAMING_SNAKE_CASE : Dict = duration_in_min return job_info def A ( _lowercase , _lowercase=None ): SCREAMING_SNAKE_CASE : Optional[Any] = None if token is not None: SCREAMING_SNAKE_CASE : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} SCREAMING_SNAKE_CASE : Tuple = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" SCREAMING_SNAKE_CASE : List[str] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() SCREAMING_SNAKE_CASE : Optional[int] = {} try: job_time.update({job['''name''']: extract_time_from_single_job(_lowerCamelCase ) for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE : Optional[int] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(_lowerCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') __UpperCamelCase : str = parser.parse_args() __UpperCamelCase : Dict = get_job_time(args.workflow_run_id) __UpperCamelCase : Any = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = (DPMSolverSDEScheduler,) __snake_case = 10 def lowercase__ ( self : Any , **lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : List[Any] ={ """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.scheduler_classes[0] A__ : str =self.get_scheduler_config() A__ : Any =scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ : Tuple =self.dummy_model() A__ : List[str] =self.dummy_sample_deter * scheduler.init_noise_sigma A__ : Optional[Any] =sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): A__ : Union[str, Any] =scheduler.scale_model_input(snake_case_ , snake_case_ ) A__ : Union[str, Any] =model(snake_case_ , snake_case_ ) A__ : Any =scheduler.step(snake_case_ , snake_case_ , snake_case_ ) A__ : Dict =output.prev_sample A__ : List[Any] =torch.sum(torch.abs(snake_case_ ) ) A__ : Dict =torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : str =self.scheduler_classes[0] A__ : Optional[Any] =self.get_scheduler_config(prediction_type="""v_prediction""" ) A__ : Dict =scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ : int =self.dummy_model() A__ : Dict =self.dummy_sample_deter * scheduler.init_noise_sigma A__ : int =sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): A__ : List[str] =scheduler.scale_model_input(snake_case_ , snake_case_ ) A__ : List[Any] =model(snake_case_ , snake_case_ ) A__ : str =scheduler.step(snake_case_ , snake_case_ , snake_case_ ) A__ : int =output.prev_sample A__ : str =torch.sum(torch.abs(snake_case_ ) ) A__ : Optional[int] =torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : str =self.get_scheduler_config() A__ : str =scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) A__ : Tuple =self.dummy_model() A__ : Optional[int] =self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ : str =scheduler.scale_model_input(snake_case_ , snake_case_ ) A__ : Dict =model(snake_case_ , snake_case_ ) A__ : Any =scheduler.step(snake_case_ , snake_case_ , snake_case_ ) A__ : Dict =output.prev_sample A__ : List[Any] =torch.sum(torch.abs(snake_case_ ) ) A__ : Dict =torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : Any =self.scheduler_classes[0] A__ : Optional[int] =self.get_scheduler_config() A__ : Tuple =scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) A__ : List[Any] =self.dummy_model() A__ : str =self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma A__ : Optional[int] =sample.to(snake_case_ ) for t in scheduler.timesteps: A__ : List[str] =scheduler.scale_model_input(snake_case_ , snake_case_ ) A__ : int =model(snake_case_ , snake_case_ ) A__ : Optional[int] =scheduler.step(snake_case_ , snake_case_ , snake_case_ ) A__ : str =output.prev_sample A__ : Optional[Any] =torch.sum(torch.abs(snake_case_ ) ) A__ : Dict =torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
134
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
'''simple docstring''' _lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = True __UpperCamelCase : Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) order.append(_lowerCamelCase ) return order def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : int = True __UpperCamelCase : List[str] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return component def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = len(_lowerCamelCase ) * [False] __UpperCamelCase : dict[int, list[int]] = {vert: [] for vert in range(len(_lowerCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_lowerCamelCase ) __UpperCamelCase : List[str] = [] for i, was_visited in enumerate(_lowerCamelCase ): if not was_visited: order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : Optional[int] = [] __UpperCamelCase : Optional[Any] = len(_lowerCamelCase ) * [False] for i in range(len(_lowerCamelCase ) ): __UpperCamelCase : List[str] = order[len(_lowerCamelCase ) - i - 1] if not visited[vert]: __UpperCamelCase : List[Any] = find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) components_list.append(_lowerCamelCase ) return components_list
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata a_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _lowercase ( tr.AbstractTransform ): def __init__( self : List[Any] , snake_case : Dict = " " ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = sentence_delimiter def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Tuple ) -> int: """simple docstring""" return list(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : int ) -> List[str]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] for sent_idx, sentence in enumerate(snake_case_ ): chars.extend(self.process_string(snake_case_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case_ ) - 1: chars.append(self.sentence_delimiter ) return chars a_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: a_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) a_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' a_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' a_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Any , snake_case : List[str] , snake_case : Any=False ) -> Tuple: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( snake_case_ , snake_case_ , truth_transform=snake_case_ , hypothesis_transform=snake_case_ , )["wer"] UpperCamelCase_ : Dict = 0 UpperCamelCase_ : List[str] = 0 for prediction, reference in zip(snake_case_ , snake_case_ ): UpperCamelCase_ : Optional[int] = jiwer.compute_measures( snake_case_ , snake_case_ , truth_transform=snake_case_ , hypothesis_transform=snake_case_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
175
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt'''} __snake_case = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __snake_case = { '''YituTech/conv-bert-base''': 5_12, '''YituTech/conv-bert-medium-small''': 5_12, '''YituTech/conv-bert-small''': 5_12, } __snake_case = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class __snake_case ( _a ): __lowerCamelCase : Any = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) UpperCAmelCase : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): UpperCAmelCase : Dict =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) UpperCAmelCase : List[str] =do_lower_case UpperCAmelCase : str =strip_accents UpperCAmelCase : List[Any] =tokenize_chinese_chars UpperCAmelCase : List[Any] =normalizer_class(**snake_case_ ) UpperCAmelCase : str =do_lower_case def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
348
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType snake_case : Any = logging.get_logger(__name__) snake_case : Optional[Any] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off snake_case : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] snake_case : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class snake_case_ (_a ): UpperCAmelCase__ : Optional[Any] = """whisper""" UpperCAmelCase__ : Any = ["""past_key_values"""] UpperCAmelCase__ : Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[Any] ,__snake_case :str=5_18_65 ,__snake_case :List[Any]=80 ,__snake_case :Optional[int]=6 ,__snake_case :int=4 ,__snake_case :List[str]=6 ,__snake_case :List[str]=4 ,__snake_case :str=15_36 ,__snake_case :Optional[int]=15_36 ,__snake_case :str=0.0 ,__snake_case :Any=0.0 ,__snake_case :Optional[int]=5_02_57 ,__snake_case :List[Any]=True ,__snake_case :Dict=True ,__snake_case :int="gelu" ,__snake_case :Union[str, Any]=2_56 ,__snake_case :Optional[Any]=0.0 ,__snake_case :Any=0.0 ,__snake_case :Any=0.0 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :List[Any]=False ,__snake_case :int=15_00 ,__snake_case :List[Any]=4_48 ,__snake_case :Dict=5_02_56 ,__snake_case :List[Any]=5_02_56 ,__snake_case :int=5_02_56 ,__snake_case :List[Any]=None ,__snake_case :Optional[Any]=[2_20, 5_02_56] ,__snake_case :Optional[int]=False ,__snake_case :Optional[Any]=2_56 ,__snake_case :Tuple=False ,__snake_case :Tuple=0.05 ,__snake_case :Optional[Any]=10 ,__snake_case :Optional[Any]=2 ,__snake_case :str=0.0 ,__snake_case :Optional[int]=10 ,__snake_case :List[str]=0 ,__snake_case :Union[str, Any]=7 ,**__snake_case :Optional[Any] ,) -> List[Any]: a__ = vocab_size a__ = num_mel_bins a__ = d_model a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_layers a__ = decoder_attention_heads a__ = decoder_ffn_dim a__ = encoder_ffn_dim a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = use_cache a__ = encoder_layers a__ = scale_embedding # scale factor will be sqrt(d_model) if True a__ = max_source_positions a__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ = classifier_proj_size a__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ = apply_spec_augment a__ = mask_time_prob a__ = mask_time_length a__ = mask_time_min_masks a__ = mask_feature_prob a__ = mask_feature_length a__ = mask_feature_min_masks a__ = median_filter_width super().__init__( pad_token_id=snake_case_ ,bos_token_id=snake_case_ ,eos_token_id=snake_case_ ,is_encoder_decoder=snake_case_ ,decoder_start_token_id=snake_case_ ,suppress_tokens=snake_case_ ,begin_suppress_tokens=snake_case_ ,**snake_case_ ,) class snake_case_ (_a ): @property def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: a__ = {0: """batch"""} else: a__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ ,direction='inputs' ) return common_inputs def lowerCamelCase__( self :Tuple ,__snake_case :Dict ,__snake_case :Union[str, Any] = -1 ,__snake_case :Tuple = -1 ,__snake_case :Optional[int] = False ,__snake_case :int = None ,__snake_case :Union[str, Any] = 2_20_50 ,__snake_case :int = 5.0 ,__snake_case :Any = 2_20 ,) -> Any: a__ = OrderedDict() a__ = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=snake_case_ ,framework=snake_case_ ,sampling_rate=snake_case_ ,time_duration=snake_case_ ,frequency=snake_case_ ,) a__ = encoder_inputs["""input_features"""].shape[2] a__ = encoder_sequence_length // 2 if self.use_past else seq_length a__ = super().generate_dummy_inputs( preprocessor.tokenizer ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) a__ = encoder_inputs.pop('input_features' ) a__ = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: a__ = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowerCamelCase__( self :List[Any] ) -> str: return 1E-3
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): _A : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _A : int = Image.open(requests.get(_lowerCamelCase,stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def lowerCAmelCase_ ( snake_case_ ): _A : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = dct.pop(_lowerCamelCase ) _A : str = val def lowerCAmelCase_ ( snake_case_,snake_case_ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _A : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) _A : Optional[Any] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _A : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase,requires_grad=_lowerCamelCase ), v_bias) ) _A : str = qkv_bias def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : str = 364 if """coco""" in model_name else 224 _A : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _A : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""",eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _A : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""",eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _A : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""",dense_act_fn="""gelu""",bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _A : str = TaConfig.from_pretrained("""google/flan-t5-xxl""",dense_act_fn="""gelu""",bos_token_id=1 ).to_dict() _A : Dict = BlipaConfig(vision_config=_lowerCamelCase,text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_=None,snake_case_=False ): _A : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _A : List[Any] = tokenizer("""\n""",add_special_tokens=_lowerCamelCase ).input_ids[0] _A : List[str] = get_blipa_config(_lowerCamelCase,eos_token_id=_lowerCamelCase ) _A : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _A : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _A : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _A : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _A : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase,model_type=_lowerCamelCase,is_eval=_lowerCamelCase,device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _A : List[Any] = original_model.state_dict() _A : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase,_lowerCamelCase,_lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _A : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _A : List[Any] = key.replace("""Qformer.bert""","""qformer""" ) if "attention.self" in key: _A : Optional[int] = key.replace("""self""","""attention""" ) if "opt_proj" in key: _A : Dict = key.replace("""opt_proj""","""language_projection""" ) if "t5_proj" in key: _A : Tuple = key.replace("""t5_proj""","""language_projection""" ) if key.startswith("""opt""" ): _A : List[Any] = key.replace("""opt""","""language""" ) if key.startswith("""t5""" ): _A : int = key.replace("""t5""","""language""" ) _A : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase,_lowerCamelCase ) _A : Optional[int] = hf_model.load_state_dict(_lowerCamelCase,strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _A : Union[str, Any] = load_demo_image() _A : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _A : List[str] = tokenizer(["""\n"""],return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _A : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size},image_mean=_lowerCamelCase,image_std=_lowerCamelCase ) _A : Tuple = BlipaProcessor(image_processor=_lowerCamelCase,tokenizer=_lowerCamelCase ) _A : Any = processor(images=_lowerCamelCase,return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase,_lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _A : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _A : Optional[Any] = hf_model(_lowerCamelCase,_lowerCamelCase ).logits else: _A : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _A : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id,-100 ) _A : Dict = hf_model(_lowerCamelCase,_lowerCamelCase,labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""",original_logits[0, :3, :3] ) print("""First values of HF logits:""",logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _A : Any = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]],device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3],_lowerCamelCase,atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _A : List[Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]],device=_lowerCamelCase ) else: # cast to same type _A : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ),_lowerCamelCase,atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _A : Optional[int] = """""" _A : Union[str, Any] = tokenizer(_lowerCamelCase,return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _A : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _A : Dict = hf_model.generate( _lowerCamelCase,_lowerCamelCase,do_sample=_lowerCamelCase,num_beams=5,max_length=30,min_length=1,top_p=0.9,repetition_penalty=1.0,length_penalty=1.0,temperature=1,) print("""Original generation:""",_lowerCamelCase ) _A : int = input_ids.shape[1] _A : str = processor.batch_decode(outputs[:, prompt_length:],skip_special_tokens=_lowerCamelCase ) _A : List[str] = [text.strip() for text in output_text] print("""HF generation:""",_lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() _snake_case = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
26
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from PIL import Image def lowercase ( SCREAMING_SNAKE_CASE__ : Image , SCREAMING_SNAKE_CASE__ : float ) -> Image: def brightness(SCREAMING_SNAKE_CASE__ : int ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a__ = change_brightness(img, 1_00) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
317
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase (_a , unittest.TestCase ): '''simple docstring''' _snake_case : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Optional[int]: UpperCAmelCase_ : Any = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(snake_case_ ) ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(snake_case_ ) UpperCAmelCase_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs() UpperCAmelCase_ : List[Any] = pipe(**snake_case_ ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : int = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase_ : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Dict = self.get_dummy_inputs() UpperCAmelCase_ : List[str] = pipe(**snake_case_ ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : Optional[int] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : Union[str, Any] = pipe(**snake_case_ ).images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : Any = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase_ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs() UpperCAmelCase_ : Any = pipe(**snake_case_ ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : int = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase_ : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs() UpperCAmelCase_ : Optional[int] = pipe(**snake_case_ ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : Any = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[Any] = ort.SessionOptions() UpperCAmelCase_ : Tuple = False return options def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCAmelCase_ : List[str] = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default UpperCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : List[str] = """A fantasy landscape, trending on artstation""" UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe( prompt=snake_case_ , image=snake_case_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case_ , output_type='np' , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCAmelCase_ : List[Any] = init_image.resize((1_2_8, 1_2_8) ) UpperCAmelCase_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : List[str] = """A fantasy landscape, trending on artstation""" UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe( prompt=snake_case_ , image=snake_case_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=snake_case_ , output_type='np' , ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase_ : Dict = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
29
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def A ( snake_case__ ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase (nn.Module ): def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = module SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) SCREAMING_SNAKE_CASE__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase__ : List[Any] = """bigscience/bloom-1b7""" # Constant values lowerCamelCase__ : Optional[int] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase__ : int = """Hello my name is""" lowerCamelCase__ : Tuple = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCamelCase__ : Optional[Any] = 1_0 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_abit.config self.assertTrue(hasattr(snake_case_ , """quantization_config""" ) ) SCREAMING_SNAKE_CASE__ = config.to_dict() SCREAMING_SNAKE_CASE__ = config.to_diff_dict() SCREAMING_SNAKE_CASE__ = config.to_json_string() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE__ = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() with self.assertRaises(snake_case_ ): SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.float() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=snake_case_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """t5-small""" SCREAMING_SNAKE_CASE__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE__ = """Translate in German: Hello, my dog is cute""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = None # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) SCREAMING_SNAKE_CASE__ = modules def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**snake_case_ ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: super().setUp() # model_name SCREAMING_SNAKE_CASE__ = """bigscience/bloom-560m""" SCREAMING_SNAKE_CASE__ = """t5-small""" # Different types of model SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Sequence classification model SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # CausalLM model SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Seq2seq model SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map="""auto""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str ) -> str: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: super().setUp() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: super().setUp() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch SCREAMING_SNAKE_CASE__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase (_a ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = """facebook/opt-350m""" super().setUp() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): SCREAMING_SNAKE_CASE__ = LoRALayer(module.q_proj , rank=1_6 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.k_proj , rank=1_6 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE__ = model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase (_a ): lowerCamelCase__ : Any = """gpt2-xl""" lowerCamelCase__ : Optional[Any] = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MgpstrTokenizer __UpperCAmelCase : List[str] = False __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Tuple = False def __lowercase ( self : str ): '''simple docstring''' super().setUp() # fmt: off _a : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _a : Union[str, Any] = dict(zip(snake_case_ ,range(len(snake_case_ ) ) ) ) _a : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) def __lowercase ( self : str ,**_a : List[str] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**snake_case_ ) def __lowercase ( self : str ,_a : Optional[Any] ): '''simple docstring''' _a : Tuple = """tester""" _a : Optional[int] = """tester""" return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : List[str] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({'cls_token': special_token} ) _a : List[str] = tokenizer.encode([special_token] ,add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) ,1 ) _a : Any = tokenizer.decode(snake_case_ ,skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : Optional[Any] = self.get_input_output_texts(snake_case_ ) _a : List[str] = tokenizer.tokenize(snake_case_ ) _a : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) _a : Optional[Any] = tokenizer.encode(snake_case_ ,add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ ,snake_case_ ) _a : Any = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertNotEqual(len(snake_case_ ) ,0 ) _a : Optional[Any] = tokenizer.decode(snake_case_ ) self.assertIsInstance(snake_case_ ,snake_case_ ) self.assertEqual(text_a.replace(' ' ,'' ) ,snake_case_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def __lowercase ( self : Dict ): '''simple docstring''' pass
271
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowercase__ ( _a): UpperCamelCase_ = """MCTCTFeatureExtractor""" UpperCamelCase_ = """AutoTokenizer""" def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' super().__init__(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Any = False def __call__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''audio''' , snake_case_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''sampling_rate''' , snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text''' , snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = args[0] SCREAMING_SNAKE_CASE : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: SCREAMING_SNAKE_CASE : int = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE : int = encodings["""input_ids"""] return inputs def __A ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __A ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''input_features''' , snake_case_ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''labels''' , snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : Tuple = args[0] SCREAMING_SNAKE_CASE : Tuple = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE : str = self.feature_extractor.pad(snake_case_ , *snake_case_ , **snake_case_ ) if labels is not None: SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(snake_case_ , **snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE : str = labels["""input_ids"""] return input_features def __A ( self : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str] ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def __A ( self : Dict ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer yield SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Any = False
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : int, __snake_case : Tuple, __snake_case : str ) -> List[Any]: """simple docstring""" A__ : Optional[int] =BertConfig.from_json_file(_lowerCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) A__ : Union[str, Any] =BertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict(), _lowerCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result __UpperCamelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _lowerCAmelCase = [] _lowerCAmelCase = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): _lowerCAmelCase = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'Denomination {i}: ').strip())) _lowerCAmelCase = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter _lowerCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] _lowerCAmelCase = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'Following is minimal change for {value}: ') _lowerCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowercase ( _a ): lowercase = (DEISMultistepScheduler,) lowercase = (("""num_inference_steps""", 2_5),) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **snake_case : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : Dict = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**snake_case_ ) return config def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[Any]=0 , **snake_case : Any ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCamelCase_ : Tuple = kwargs.pop('num_inference_steps' , snake_case_ ) UpperCamelCase_ : Any = self.dummy_sample UpperCamelCase_ : Union[str, Any] = 0.1 * sample UpperCamelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Union[str, Any] = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_ : int = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase_ : Any = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase_ : int = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase_ : Union[str, Any] = sample, sample for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase_ : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_ : Union[str, Any] = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Optional[Any]=0 , **snake_case : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = dict(self.forward_default_kwargs ) UpperCamelCase_ : List[Any] = kwargs.pop('num_inference_steps' , snake_case_ ) UpperCamelCase_ : int = self.dummy_sample UpperCamelCase_ : Dict = 0.1 * sample UpperCamelCase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Optional[Any] = self.get_scheduler_config() UpperCamelCase_ : List[Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase_ : Optional[int] = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase_ : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_ : int = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int=None , **snake_case : int ) -> List[str]: """simple docstring""" if scheduler is None: UpperCamelCase_ : Tuple = self.scheduler_classes[0] UpperCamelCase_ : List[Any] = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_ : Optional[Any] = scheduler_class(**snake_case_ ) UpperCamelCase_ : Any = self.scheduler_classes[0] UpperCamelCase_ : str = self.get_scheduler_config(**snake_case_ ) UpperCamelCase_ : Optional[Any] = scheduler_class(**snake_case_ ) UpperCamelCase_ : str = 1_0 UpperCamelCase_ : Union[str, Any] = self.dummy_model() UpperCamelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ : Tuple = model(snake_case_ , snake_case_ ) UpperCamelCase_ : Optional[Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = dict(self.forward_default_kwargs ) UpperCamelCase_ : Union[str, Any] = kwargs.pop('num_inference_steps' , snake_case_ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Optional[int] = self.get_scheduler_config() UpperCamelCase_ : Tuple = scheduler_class(**snake_case_ ) UpperCamelCase_ : Dict = self.dummy_sample UpperCamelCase_ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , 'set_timesteps' ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , 'set_timesteps' ): UpperCamelCase_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase_ : str = scheduler.timesteps[5] UpperCamelCase_ : str = scheduler.timesteps[6] UpperCamelCase_ : List[Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase_ : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: """simple docstring""" UpperCamelCase_ : str = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase_ : List[Any] = self.full_loop(scheduler=snake_case_ ) UpperCamelCase_ : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase_ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_ : int = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_ : int = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase_ : int = self.full_loop(scheduler=snake_case_ ) UpperCamelCase_ : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" self.check_over_configs(thresholding=snake_case_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type='deis' , solver_order=snake_case_ , solver_type=snake_case_ , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) UpperCamelCase_ : Tuple = self.full_loop( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=snake_case_ ) self.check_over_configs(lower_order_final=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.full_loop() UpperCamelCase_ : List[Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" UpperCamelCase_ : Any = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase_ : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: """simple docstring""" UpperCamelCase_ : int = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 ) UpperCamelCase_ : Any = scheduler_class(**snake_case_ ) UpperCamelCase_ : Tuple = 1_0 UpperCamelCase_ : int = self.dummy_model() UpperCamelCase_ : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ : Optional[Any] = model(snake_case_ , snake_case_ ) UpperCamelCase_ : Dict = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample assert sample.dtype == torch.floataa
175
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase_ ( )-> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
348
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import numpy as np def __lowercase ( __lowerCAmelCase : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Optional[int]: debug_launcher(test_script.main ) def a__ ( self ) -> int: debug_launcher(test_ops.main )
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } a__ = { """distilbert-base-uncased""": 5_12, """distilbert-base-uncased-distilled-squad""": 5_12, """distilbert-base-cased""": 5_12, """distilbert-base-cased-distilled-squad""": 5_12, """distilbert-base-german-cased""": 5_12, """distilbert-base-multilingual-cased""": 5_12, } a__ = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class snake_case ( _a ): '''simple docstring''' snake_case_ : Tuple = VOCAB_FILES_NAMES snake_case_ : str = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : List[str] = PRETRAINED_INIT_CONFIGURATION snake_case_ : Optional[int] = ["""input_ids""", """attention_mask"""] snake_case_ : Union[str, Any] = DistilBertTokenizer def __init__( self : Dict , lowerCAmelCase : str=None , lowerCAmelCase : str=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any="[UNK]" , lowerCAmelCase : Optional[int]="[SEP]" , lowerCAmelCase : Union[str, Any]="[PAD]" , lowerCAmelCase : Dict="[CLS]" , lowerCAmelCase : Tuple="[MASK]" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , snake_case_) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_) != tokenize_chinese_chars ): _snake_case : List[str] = getattr(snake_case_ , normalizer_state.pop("""type""")) _snake_case : Any = do_lower_case _snake_case : Dict = strip_accents _snake_case : str = tokenize_chinese_chars _snake_case : Any = normalizer_class(**snake_case_) _snake_case : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str = None) -> List[str]: """simple docstring""" _snake_case : int = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] = None) -> List[str]: """simple docstring""" _snake_case : Dict = self._tokenizer.model.save(snake_case_ , name=snake_case_) return tuple(snake_case_)
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : List[str] = question_encoder UpperCAmelCase_ : Optional[Any] = generator UpperCAmelCase_ : Optional[Any] = self.question_encoder def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: if os.path.isfile(snake_case_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase_ : Any = os.path.join(snake_case_ , 'question_encoder_tokenizer' ) UpperCAmelCase_ : Tuple = os.path.join(snake_case_ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , **_UpperCamelCase ) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ : Dict = kwargs.pop('config' , snake_case_ ) if config is None: UpperCAmelCase_ : List[Any] = RagConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.question_encoder def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.generator def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "longest" , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ) -> Union[str, Any]: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , snake_case_ , ) if max_length is None: UpperCAmelCase_ : Any = self.current_tokenizer.model_max_length UpperCAmelCase_ : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ : List[str] = self.current_tokenizer.model_max_length UpperCAmelCase_ : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) UpperCAmelCase_ : Dict = labels["""input_ids"""] return model_inputs
29
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
"""simple docstring""" A_ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Optional[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : List[str] = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' assert len(str(_lowerCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: SCREAMING_SNAKE_CASE__ = year // 1_00 SCREAMING_SNAKE_CASE__ = (5 * (century % 4) + 2) % 7 SCREAMING_SNAKE_CASE__ = year % 1_00 SCREAMING_SNAKE_CASE__ = centurian % 12 SCREAMING_SNAKE_CASE__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 SCREAMING_SNAKE_CASE__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) SCREAMING_SNAKE_CASE__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
165
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
'''simple docstring''' def UpperCAmelCase_ (__a : int ): """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) _a : int = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__ ( tf.keras.optimizers.schedules.LearningRateSchedule): def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int = 1.0 , UpperCamelCase__ : Any = None , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE : Optional[int] = warmup_steps SCREAMING_SNAKE_CASE : Tuple = power SCREAMING_SNAKE_CASE : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE : List[Any] = name def __call__( self : Any , UpperCamelCase__ : Tuple ): '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE : List[str] = tf.cast(snake_case_ , tf.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE : Tuple = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE : Union[str, Any] = self.initial_learning_rate * tf.math.pow(snake_case_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=snake_case_ , ) def __A ( self : Optional[Any] ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A ( _lowercase , _lowercase , _lowercase , _lowercase = 0.0 , _lowercase = 0.9 , _lowercase = 0.999 , _lowercase = 1e-8 , _lowercase = None , _lowercase = None , _lowercase = 0.0 , _lowercase = 1.0 , _lowercase = None , ): SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCamelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCamelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE : Tuple = WarmUp( initial_learning_rate=_lowerCamelCase , decay_schedule_fn=_lowerCamelCase , warmup_steps=_lowerCamelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE : int = AdamWeightDecay( learning_rate=_lowerCamelCase , weight_decay_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : int = tf.keras.optimizers.Adam( learning_rate=_lowerCamelCase , beta_a=_lowerCamelCase , beta_a=_lowerCamelCase , epsilon=_lowerCamelCase , clipnorm=_lowerCamelCase , global_clipnorm=_lowerCamelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__ ( _a): def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] = 0.001 , UpperCamelCase__ : Any = 0.9 , UpperCamelCase__ : List[str] = 0.999 , UpperCamelCase__ : str = 1E-7 , UpperCamelCase__ : Any = False , UpperCamelCase__ : List[Any] = 0.0 , UpperCamelCase__ : List[str] = None , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : int = "AdamWeightDecay" , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = weight_decay_rate SCREAMING_SNAKE_CASE : Union[str, Any] = include_in_weight_decay SCREAMING_SNAKE_CASE : Tuple = exclude_from_weight_decay @classmethod def __A ( cls : Dict , UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {"""WarmUp""": WarmUp} return super(snake_case_ , cls ).from_config(snake_case_ , custom_objects=snake_case_ ) def __A ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super(snake_case_ , self )._prepare_local(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __A ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __A ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = list(zip(*snake_case_ ) ) return super(snake_case_ , self ).apply_gradients(zip(snake_case_ , snake_case_ ) , name=snake_case_ , **snake_case_ ) def __A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE : str = apply_state or {} SCREAMING_SNAKE_CASE : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE : Tuple = self._fallback_apply_state(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __A ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = self._decay_weights_op(snake_case_ , snake_case_ , snake_case_ ) with tf.control_dependencies([decay] ): return super(snake_case_ , self )._resource_apply_dense(snake_case_ , snake_case_ , **snake_case_ ) def __A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._get_lr(var.device , var.dtype.base_dtype , snake_case_ ) SCREAMING_SNAKE_CASE : int = self._decay_weights_op(snake_case_ , snake_case_ , snake_case_ ) with tf.control_dependencies([decay] ): return super(snake_case_ , self )._resource_apply_sparse(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __A ( self : Dict , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(snake_case_ , snake_case_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(snake_case_ , snake_case_ ) is not None: return False return True class lowercase__ ( _a): def __init__( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Dict = None @property def __A ( self : Any ): '''simple docstring''' if self._accum_steps is None: SCREAMING_SNAKE_CASE : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=snake_case_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __A ( self : Optional[Any] ): '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' if not self._gradients: SCREAMING_SNAKE_CASE : Optional[int] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(snake_case_ ) , trainable=snake_case_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(snake_case_ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(snake_case_ )}""" ) for accum_gradient, gradient in zip(self._gradients , snake_case_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(snake_case_ ) self._accum_steps.assign_add(1 ) def __A ( self : Union[str, Any] ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(snake_case_ ) )
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __snake_case : str = logging.get_logger(__name__) class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = ["""pixel_values"""] def __init__( self : List[str] , lowerCAmelCase_ : str = True , lowerCAmelCase_ : List[str] = 1 / 2_55 , lowerCAmelCase_ : List[Any] = True , lowerCAmelCase_ : Optional[int] = 8 , **lowerCAmelCase_ : str , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case_ ) A__ : str =do_rescale A__ : List[Any] =rescale_factor A__ : Optional[Any] =do_pad A__ : Any =pad_size def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple = None , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int = None ) -> Dict: '''simple docstring''' A__ : int =get_image_size(snake_case_ ) A__ : List[Any] =(old_height // size + 1) * size - old_height A__ : Dict =(old_width // size + 1) * size - old_width return pad(snake_case_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=snake_case_ ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : str = ChannelDimension.FIRST , **lowerCAmelCase_ : Dict , ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale A__ : Any =rescale_factor if rescale_factor is not None else self.rescale_factor A__ : int =do_pad if do_pad is not None else self.do_pad A__ : str =pad_size if pad_size is not None else self.pad_size A__ : int =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. A__ : Tuple =[to_numpy_array(snake_case_ ) for image in images] if do_rescale: A__ : Optional[Any] =[self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_pad: A__ : str =[self.pad(snake_case_ , size=snake_case_ ) for image in images] A__ : List[Any] =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] A__ : str ={"""pixel_values""": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
134
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> List[Any]: super().__init__() __UpperCamelCase : List[Any] = model __UpperCamelCase : Dict = 2 __UpperCamelCase : Union[str, Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def a_ (self ) -> List[str]: pass def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): # load longformer model from model identifier __UpperCamelCase : str = LongformerModel.from_pretrained(_lowerCamelCase ) __UpperCamelCase : str = LightningModel(_lowerCamelCase ) __UpperCamelCase : Any = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __UpperCamelCase : Union[str, Any] = LongformerForQuestionAnswering.from_pretrained(_lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowerCamelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
from __future__ import annotations from decimal import Decimal from numpy import array def __lowercase ( lowerCamelCase : list[list[float]] ): UpperCamelCase_ : Optional[Any] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase_ : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase_ : List[str] = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase_ : List[Any] = matrix[1][1], matrix[0][0] UpperCamelCase_ : str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase_ : Dict = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix UpperCamelCase_ : Optional[int] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase_ : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase_ : Union[str, Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase_ : List[Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase_ : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase_ : Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase_ : List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase_ : str = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase_ : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase_ : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase_ : List[Any] = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): UpperCamelCase_ : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase_ : List[str] = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
175
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __snake_case = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase : int =torch.manual_seed(0 ) UpperCAmelCase : str =pipe.dual_guided( prompt='''first prompt''' , image=snake_case_ , text_to_image_strength=0.75 , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case_ ) UpperCAmelCase : List[Any] =VersatileDiffusionPipeline.from_pretrained(snake_case_ , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase : int =generator.manual_seed(0 ) UpperCAmelCase : Tuple =pipe.dual_guided( prompt='''first prompt''' , image=snake_case_ , text_to_image_strength=0.75 , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase : Optional[int] ="""cyberpunk 2077""" UpperCAmelCase : Optional[int] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : List[Any] =pipe.dual_guided( prompt=snake_case_ , image=snake_case_ , text_to_image_strength=0.75 , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase : Optional[Any] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase : Dict ="""A painting of a squirrel eating a burger """ UpperCAmelCase : Tuple =torch.manual_seed(0 ) UpperCAmelCase : List[Any] =pipe.text_to_image( prompt=snake_case_ , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase : int =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase : List[str] =pipe.image_variation(snake_case_ , generator=snake_case_ , output_type='''numpy''' ).images UpperCAmelCase : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[Any] =np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
348
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): a__ = [0 for i in range(r + 1 )] # nc0 = 1 a__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case = 16 _snake_case = 32 def lowerCAmelCase_ ( snake_case_ ): return int(x / 2**20 ) class lowercase : def __enter__( self ) -> List[Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A : Any = torch.cuda.memory_allocated() return self def __exit__( self , *_a ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() _A : str = torch.cuda.memory_allocated() _A : Dict = torch.cuda.max_memory_allocated() _A : Union[str, Any] = bamb(self.end - self.begin ) _A : Optional[int] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( snake_case_,snake_case_ = 16,snake_case_ = "bert-base-cased",snake_case_ = 320,snake_case_ = 160,): _A : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _A : Any = load_dataset( """glue""","""mrpc""",split={"""train""": f'''train[:{n_train}]''', """validation""": f'''validation[:{n_val}]'''} ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) _A : List[str] = tokenizer(examples["""sentence1"""],examples["""sentence2"""],truncation=_lowerCamelCase,max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A : Optional[int] = datasets.map( _lowerCamelCase,batched=_lowerCamelCase,remove_columns=["""idx""", """sentence1""", """sentence2"""],load_from_cache_file=_lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : Tuple = tokenized_datasets.rename_column("""label""","""labels""" ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase,padding="""max_length""",max_length=128,return_tensors="""pt""" ) return tokenizer.pad(_lowerCamelCase,padding="""longest""",return_tensors="""pt""" ) # Instantiate dataloaders. _A : int = DataLoader( tokenized_datasets["""train"""],shuffle=_lowerCamelCase,collate_fn=_lowerCamelCase,batch_size=_lowerCamelCase ) _A : Any = DataLoader( tokenized_datasets["""validation"""],shuffle=_lowerCamelCase,collate_fn=_lowerCamelCase,batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Initialize accelerator _A : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : str = config["""lr"""] _A : List[str] = int(config["""num_epochs"""] ) _A : Optional[Any] = int(config["""seed"""] ) _A : List[str] = int(config["""batch_size"""] ) _A : Optional[int] = args.model_name_or_path set_seed(_lowerCamelCase ) _A : int = get_dataloaders(_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,args.n_train,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : int = AutoModelForSequenceClassification.from_pretrained(_lowerCamelCase,return_dict=_lowerCamelCase ) # Instantiate optimizer _A : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A : Any = optimizer_cls(params=model.parameters(),lr=_lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: _A : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _A : Optional[int] = 1 _A : int = (len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A : List[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase,num_warmup_steps=0,num_training_steps=_lowerCamelCase,) else: _A : Any = DummyScheduler(_lowerCamelCase,total_num_steps=_lowerCamelCase,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A : Any = accelerator.prepare( _lowerCamelCase,_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,_lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _A : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly _A : Dict = 0 # Now we train the model _A : Any = {} for epoch in range(_lowerCamelCase,_lowerCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCamelCase ): _A : Optional[Any] = model(**_lowerCamelCase ) _A : Optional[Any] = outputs.loss _A : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _A : str = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir,"""peak_memory_utilization.json""" ),"""w""" ) as f: json.dump(_lowerCamelCase,_lowerCamelCase ) def lowerCAmelCase_ ( ): _A : Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""",type=_lowerCamelCase,default="""bert-base-cased""",help="""Path to pretrained model or model identifier from huggingface.co/models.""",required=_lowerCamelCase,) parser.add_argument( """--output_dir""",type=_lowerCamelCase,default=""".""",help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""",) parser.add_argument( """--peak_memory_upper_bound""",type=_lowerCamelCase,default=_lowerCamelCase,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""",) parser.add_argument( """--n_train""",type=_lowerCamelCase,default=320,help="""Number of training examples to use.""",) parser.add_argument( """--n_val""",type=_lowerCamelCase,default=160,help="""Number of validation examples to use.""",) parser.add_argument( """--num_epochs""",type=_lowerCamelCase,default=1,help="""Number of train epochs.""",) _A : Tuple = parser.parse_args() _A : Union[str, Any] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase,_lowerCamelCase ) if __name__ == "__main__": main()
26
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
29
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase (_a ): lowerCamelCase__ : Dict = (IPNDMScheduler,) lowerCamelCase__ : Tuple = (("""num_inference_steps""", 5_0),) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__UpperCAmelCase : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = {"""num_train_timesteps""": 1_0_0_0} config.update(**snake_case_ ) return config def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Optional[Any]=0 , **__UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , snake_case_ ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , snake_case_ ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler_class(**snake_case_ ) SCREAMING_SNAKE_CASE__ = 1_0 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , snake_case_ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**snake_case_ ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , """set_timesteps""" ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , """set_timesteps""" ): SCREAMING_SNAKE_CASE__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[5] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[6] SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ , time_step=snake_case_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=snake_case_ , time_step=snake_case_ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCAmelCase_ (__a : Callable , __a : float , __a : float , __a : float , __a : float ): """simple docstring""" _a : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _a : Tuple = np.zeros((n + 1,) ) _a : List[Any] = ya _a : int = xa for k in range(_lowerCamelCase ): _a : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
from collections.abc import Callable def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : float = a SCREAMING_SNAKE_CASE : float = b if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase ) == 0: return b elif ( function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: SCREAMING_SNAKE_CASE : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase ) == 0: return mid elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0: SCREAMING_SNAKE_CASE : Optional[Any] = mid else: SCREAMING_SNAKE_CASE : str = mid SCREAMING_SNAKE_CASE : List[str] = start + (end - start) / 2.0 return mid def A ( _lowercase ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Dict = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase ( _a ): '''simple docstring''' __snake_case = """fnet""" def __init__( self : Tuple , lowerCAmelCase_ : Tuple=3_20_00 , lowerCAmelCase_ : List[str]=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Union[str, Any]=30_72 , lowerCAmelCase_ : Dict="gelu_new" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[Any]=2 , **lowerCAmelCase_ : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A__ : str =vocab_size A__ : List[str] =max_position_embeddings A__ : Union[str, Any] =hidden_size A__ : Any =num_hidden_layers A__ : List[str] =intermediate_size A__ : Tuple =hidden_act A__ : Optional[int] =hidden_dropout_prob A__ : int =initializer_range A__ : List[Any] =type_vocab_size A__ : str =layer_norm_eps A__ : Any =use_tpu_fourier_optimizations A__ : Optional[int] =tpu_short_seq_length
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) _lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) _lowerCAmelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) _lowerCAmelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) __UpperCamelCase : Optional[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __UpperCamelCase : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCAmelCase ( snake_case__ = 100 ): return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : int = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowerCamelCase ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def __lowerCAmelCase ( ): __UpperCamelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] __UpperCamelCase : Any = poker_hands.copy() shuffle(_lowerCamelCase ) __UpperCamelCase : List[str] = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def __lowerCAmelCase ( ): # Test that five high straights are compared correctly. __UpperCamelCase : Dict = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCAmelCase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __UpperCamelCase : Optional[int] = PokerHand("2C 4S AS 3D 5C" ) __UpperCamelCase : List[Any] = True __UpperCamelCase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCAmelCase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) __UpperCamelCase : str = os.path.join(_lowerCamelCase , "poker_hands.txt" ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: __UpperCamelCase : List[Any] = line[:14].strip() __UpperCamelCase : Optional[int] = line[15:].strip() __UpperCamelCase : Any = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) __UpperCamelCase : Any = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
def __lowercase ( lowerCamelCase : list ): if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
175
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
from typing import TYPE_CHECKING from ....utils import _LazyModule __snake_case = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
348
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ (_a , unittest.TestCase ): UpperCAmelCase__ : Any = KandinskyVaaInpaintPipeline UpperCAmelCase__ : Any = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase__ : Tuple = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase__ : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase__ : Optional[Any] = False @property def lowerCamelCase__( self :str ) -> Dict: return 32 @property def lowerCamelCase__( self :Any ) -> Any: return 32 @property def lowerCamelCase__( self :Optional[int] ) -> Tuple: return self.time_input_dim @property def lowerCamelCase__( self :Any ) -> Tuple: return self.time_input_dim * 4 @property def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: return 1_00 @property def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: torch.manual_seed(0 ) a__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } a__ = UNetaDConditionModel(**snake_case_ ) return model @property def lowerCamelCase__( self :int ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__( self :str ) -> Any: torch.manual_seed(0 ) a__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.dummy_unet a__ = self.dummy_movq a__ = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule='linear' ,beta_start=0.0_00_85 ,beta_end=0.0_12 ,clip_sample=snake_case_ ,set_alpha_to_one=snake_case_ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=snake_case_ ,) a__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any]=0 ) -> Tuple: a__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(snake_case_ ) ).to(snake_case_ ) a__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( snake_case_ ) # create init_image a__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(snake_case_ ) ).to(snake_case_ ) a__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] a__ = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask a__ = np.ones((64, 64) ,dtype=np.floataa ) a__ = 0 if str(snake_case_ ).startswith('mps' ): a__ = torch.manual_seed(snake_case_ ) else: a__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) a__ = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = """cpu""" a__ = self.get_dummy_components() a__ = self.pipeline_class(**snake_case_ ) a__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) a__ = pipe(**self.get_dummy_inputs(snake_case_ ) ) a__ = output.images a__ = pipe( **self.get_dummy_inputs(snake_case_ ) ,return_dict=snake_case_ ,)[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) a__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__( self :List[Any] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :str ) -> Optional[int]: a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) a__ = np.ones((7_68, 7_68) ,dtype=np.floataa ) a__ = 0 a__ = """a hat""" a__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) a__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' ,torch_dtype=torch.floataa ) a__ = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) a__ = torch.Generator(device='cpu' ).manual_seed(0 ) a__ = pipe_prior( snake_case_ ,generator=snake_case_ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() a__ = pipeline( image=snake_case_ ,mask_image=snake_case_ ,image_embeds=snake_case_ ,negative_image_embeds=snake_case_ ,generator=snake_case_ ,num_inference_steps=1_00 ,height=7_68 ,width=7_68 ,output_type='np' ,) a__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case_ ,snake_case_ )
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
import os import sys _snake_case = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _snake_case = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoConfig.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoTokenizer.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoModel.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase,**_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase,**_lowerCamelCase )
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
from __future__ import annotations import math def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ) -> float: _snake_case : Optional[Any] = u for i in range(1 , _lowerCamelCase ): _snake_case : Tuple = temp * (u - i) return temp def lowercase ( ) -> None: _snake_case : Tuple = int(input("""enter the numbers of values: """ ) ) _snake_case : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) _snake_case : Any = 0 print("""enter the values of parameters in a list: """ ) _snake_case : List[str] = list(map(_lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCamelCase ): _snake_case : int = float(input() ) _snake_case : Optional[Any] = int(input("""enter the value to interpolate: """ ) ) _snake_case : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): _snake_case : Tuple = y[j + 1][i - 1] - y[j][i - 1] _snake_case : Tuple = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __UpperCAmelCase = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def lowercase__ ( __snake_case : Tuple=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a ) ) class lowerCamelCase (_a ): '''simple docstring''' _snake_case : Union[str, Any] = None _snake_case : str = None def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]: with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : str = dataset_module_factory(snake_case_ , cache_dir=snake_case_ ) UpperCAmelCase_ : Optional[int] = import_main_class(dataset_module.module_path , dataset=snake_case_ ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=snake_case_ , config_name=snake_case_ , hash=dataset_module.hash , ) UpperCAmelCase_ : Optional[int] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase_ : str = cached_path(snake_case_ , cache_dir=snake_case_ ) self.assertTrue(os.path.exists(snake_case_ ) ) @pytest.mark.integration def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('test_hf_gcp' ) / """test_wikipedia_simple""" UpperCAmelCase_ : Tuple = dataset_module_factory('wikipedia' , cache_dir=_lowerCamelCase ) UpperCAmelCase_ : Dict = import_main_class(dataset_module.module_path ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ : Any = None builder_instance.download_and_prepare() UpperCAmelCase_ : str = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=_lowerCamelCase ) UpperCAmelCase_ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCamelCase ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) UpperCAmelCase_ : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , _lowerCamelCase ) assert next(iter(ds['train'] ) )
29
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path A_ : List[Any] = "src/transformers" # Matches is_xxx_available() A_ : Optional[int] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} A_ : str = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ : Any = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available A_ : Optional[int] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") A_ : Optional[int] = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ : Optional[Any] = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", A_ : Dict = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], A_ : Optional[int] = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo A_ : Any = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: A_ : Optional[int] = re.compile(R"^\s*try:") # Catches a line with else: A_ : Union[str, Any] = re.compile(R"^\s*else:") def A ( snake_case__ ): '''simple docstring''' if _re_test_backend.search(_lowerCamelCase ) is None: return None SCREAMING_SNAKE_CASE__ = [b[0] for b in _re_backend.findall(_lowerCamelCase )] backends.sort() return "_and_".join(_lowerCamelCase ) def A ( snake_case__ ): '''simple docstring''' with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = 0 while line_index < len(_lowerCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ = _re_one_line_import_struct.search(_lowerCamelCase ).groups()[0] SCREAMING_SNAKE_CASE__ = re.findall("""\[([^\]]+)\]""" , _lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue SCREAMING_SNAKE_CASE__ = _re_import_struct_key_value.search(_lowerCamelCase ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): SCREAMING_SNAKE_CASE__ = lines[line_index] if _re_import_struct_add_one.search(_lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = _re_import_struct_add_many.search(_lowerCamelCase ).groups()[0].split(""", """ ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_between_brackets.search(_lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = _re_between_brackets.search(_lowerCamelCase ).groups()[0].split(""", """ ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_quote_object.search(_lowerCamelCase ) is not None: objects.append(_re_quote_object.search(_lowerCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE__ = [] while ( line_index < len(_lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A ( snake_case__ , snake_case__ ): '''simple docstring''' def find_duplicates(snake_case__ ): return [k for k, v in collections.Counter(_lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE__ = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) SCREAMING_SNAKE_CASE__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE__ = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: SCREAMING_SNAKE_CASE__ = os.path.join(_lowerCamelCase , """__init__.py""" ) SCREAMING_SNAKE_CASE__ = parse_init(_lowerCamelCase ) if objects is not None: SCREAMING_SNAKE_CASE__ = analyze_results(*_lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE__ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCamelCase ) ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for path, directories, files in os.walk(_lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue SCREAMING_SNAKE_CASE__ = str((Path(_lowerCamelCase ) / folder).relative_to(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCamelCase ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE__ = str((Path(_lowerCamelCase ) / fname).relative_to(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCamelCase ) return submodules A_ : Optional[Any] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = importlib.util.spec_from_file_location( """transformers""" , os.path.join(_lowerCamelCase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) SCREAMING_SNAKE_CASE__ = spec.loader.load_module() SCREAMING_SNAKE_CASE__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE__ = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
165
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCAmelCase_ (__a : Optional[Any] , __a : float = 0.0 , __a : float = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase__ ( _a , _a , _a , unittest.TestCase): UpperCamelCase_ = StableDiffusionControlNetImgaImgPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""}) UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel(snake_case_ ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Optional[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' if str(snake_case_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(snake_case_ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : str = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __A ( self : Tuple ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self : Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase__ ( _a , _a , unittest.TestCase): UpperCamelCase_ = StableDiffusionControlNetImgaImgPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase__ : List[Any] ): if isinstance(snake_case_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Dict = CLIPTextModel(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : str = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE : Optional[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=0 ): '''simple docstring''' if str(snake_case_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(snake_case_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Dict = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), ] SCREAMING_SNAKE_CASE : Any = floats_tensor(control_image[0].shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) SCREAMING_SNAKE_CASE : str = 10.0 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = steps SCREAMING_SNAKE_CASE : Optional[int] = scale SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**snake_case_ )[0] SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = steps SCREAMING_SNAKE_CASE : Union[str, Any] = scale SCREAMING_SNAKE_CASE : Any = pipe(**snake_case_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = steps SCREAMING_SNAKE_CASE : Any = scale SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**snake_case_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(snake_case_ ) SCREAMING_SNAKE_CASE : str = steps SCREAMING_SNAKE_CASE : Optional[Any] = scale SCREAMING_SNAKE_CASE : int = pipe(**snake_case_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __A ( self : Union[str, Any] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self : List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) SCREAMING_SNAKE_CASE : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=snake_case_ , controlnet=snake_case_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case_ ) SCREAMING_SNAKE_CASE : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : str = """evil space-punk bird""" SCREAMING_SNAKE_CASE : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe( snake_case_ , snake_case_ , control_image=snake_case_ , generator=snake_case_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE : Dict = output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __snake_case : int = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' return 12 @property def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' return 12 @property def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return 32 @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ : List[str] =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : Optional[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(snake_case_ ) @property def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[int] =12 A__ : Union[str, Any] =12 A__ : Optional[int] ={ """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } A__ : str =TransformeraDModel(**snake_case_ ) return model def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : Tuple ="""cpu""" A__ : Optional[Any] =self.dummy_vqvae A__ : Tuple =self.dummy_text_encoder A__ : List[str] =self.dummy_tokenizer A__ : Optional[int] =self.dummy_transformer A__ : Optional[Any] =VQDiffusionScheduler(self.num_embed ) A__ : int =LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case_ ) A__ : Union[str, Any] =VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) A__ : Optional[int] =pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A__ : Any ="""teddy bear playing in the pool""" A__ : List[str] =torch.Generator(device=snake_case_ ).manual_seed(0 ) A__ : str =pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) A__ : Optional[Any] =output.images A__ : List[Any] =torch.Generator(device=snake_case_ ).manual_seed(0 ) A__ : Dict =pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] A__ : Tuple =image[0, -3:, -3:, -1] A__ : List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A__ : Tuple =np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : str ="""cpu""" A__ : List[Any] =self.dummy_vqvae A__ : Optional[int] =self.dummy_text_encoder A__ : Union[str, Any] =self.dummy_tokenizer A__ : Optional[int] =self.dummy_transformer A__ : List[str] =VQDiffusionScheduler(self.num_embed ) A__ : Optional[int] =LearnedClassifierFreeSamplingEmbeddings( learnable=snake_case_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) A__ : Any =VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) A__ : Optional[int] =pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A__ : Optional[int] ="""teddy bear playing in the pool""" A__ : List[Any] =torch.Generator(device=snake_case_ ).manual_seed(0 ) A__ : Optional[int] =pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) A__ : Any =output.images A__ : Optional[int] =torch.Generator(device=snake_case_ ).manual_seed(0 ) A__ : Any =pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] A__ : List[Any] =image[0, -3:, -3:, -1] A__ : List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A__ : Dict =np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) A__ : Union[str, Any] =VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) A__ : Tuple =pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though A__ : int =torch.Generator(device=snake_case_ ).manual_seed(0 ) A__ : Any =pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=snake_case_ , output_type="""np""" , ) A__ : List[str] =output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
134
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
'''simple docstring''' _lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # Return True if there is node that has not iterated. __UpperCamelCase : Optional[int] = [False] * len(_lowerCamelCase ) __UpperCamelCase : int = [s] __UpperCamelCase : str = True while queue: __UpperCamelCase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : str = u return visited[t] def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = [-1] * (len(_lowerCamelCase )) __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : str = [] __UpperCamelCase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[int] = float("Inf" ) __UpperCamelCase : str = sink while s != source: # Find the minimum value in select path __UpperCamelCase : int = min(_lowerCamelCase , graph[parent[s]][s] ) __UpperCamelCase : Dict = parent[s] max_flow += path_flow __UpperCamelCase : Union[str, Any] = sink while v != source: __UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase : List[Any] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
def __lowercase ( lowerCamelCase : list , lowerCamelCase : list , lowerCamelCase : int ): UpperCamelCase_ : int = len(_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = [[0] * n for i in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): UpperCamelCase_ : Optional[Any] = y_points[i] for i in range(2 , _lowerCamelCase ): for j in range(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
175
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __snake_case : def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =parent UpperCAmelCase : Tuple =out_indices if out_indices is not None else [4] UpperCAmelCase : Union[str, Any] =stage_names UpperCAmelCase : List[str] =out_features UpperCAmelCase : Union[str, Any] =backbone UpperCAmelCase : Tuple =batch_size UpperCAmelCase : List[str] =image_size UpperCAmelCase : Tuple =num_channels UpperCAmelCase : Optional[Any] =use_pretrained_backbone UpperCAmelCase : int =is_training def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[int] =self.get_config() return config, pixel_values def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] =TimmBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCAmelCase : Union[str, Any] =model(snake_case_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] =config_and_inputs UpperCAmelCase : Optional[Any] ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __snake_case ( _a , _a , _a , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () __lowerCamelCase : Union[str, Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : str = False __lowerCamelCase : List[str] = False def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =TimmBackboneModelTester(self ) UpperCAmelCase : Union[str, Any] =ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] ="""resnet18""" UpperCAmelCase : int ="""microsoft/resnet-18""" UpperCAmelCase : Union[str, Any] =AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ ) UpperCAmelCase : Union[str, Any] =AutoBackbone.from_pretrained(snake_case_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCAmelCase : Optional[Any] =AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ , out_indices=[1, 2, 3] ) UpperCAmelCase : Optional[Any] =AutoBackbone.from_pretrained(snake_case_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict =model_class(snake_case_ ) UpperCAmelCase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple =[*signature.parameters.keys()] UpperCAmelCase : List[str] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int =True UpperCAmelCase : Any =self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase : Tuple =self.all_model_classes[0] UpperCAmelCase : List[str] =model_class(snake_case_ ) model.to(snake_case_ ) UpperCAmelCase : List[str] =self._prepare_for_class(snake_case_ , snake_case_ ) UpperCAmelCase : List[Any] =model(**snake_case_ ) UpperCAmelCase : int =outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase : str =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase : Optional[Any] =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] =model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase : Union[str, Any] =model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase : Dict =copy.deepcopy(snake_case_ ) UpperCAmelCase : Dict =None UpperCAmelCase : int =model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase : Any =model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCAmelCase : str =copy.deepcopy(snake_case_ ) UpperCAmelCase : Union[str, Any] =False UpperCAmelCase : Union[str, Any] =model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase : Optional[int] =model(**snake_case_ )
348
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case : str = '''true''' def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple=8_2 , __lowerCAmelCase : List[Any]=1_6 ): set_seed(4_2 ) a__ = RegressionModel() a__ = deepcopy(_lowerCamelCase ) a__ = RegressionDataset(length=_lowerCamelCase ) a__ = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) model.to(accelerator.device ) a__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return model, ddp_model, dataloader def __lowercase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : List[Any]=False ): a__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs with accelerator.main_process_first(): a__ = dataset.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowerCAmelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=1_6 ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ): a__ = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase ) a__ = get_dataloader(_lowerCamelCase , not dispatch_batches ) a__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_lowerCamelCase ) a__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = [] for batch in dataloader: a__ = batch.values() with torch.no_grad(): a__ = model(_lowerCamelCase ) a__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a__ = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCamelCase ) targs.append(_lowerCamelCase ) a__ = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase ) return logits, targs def __lowercase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Dict=8_2 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Any=1_6 ): a__ = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a__ = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert ( len(_lowerCamelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}' def __lowercase ( __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False ): a__ = evaluate.load('glue' , 'mrpc' ) a__ = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase ) # First do baseline a__ = setup["""no"""] model.to(_lowerCamelCase ) model.eval() for batch in dataloader: batch.to(_lowerCamelCase ) with torch.inference_mode(): a__ = model(**_lowerCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCamelCase , references=batch['labels'] ) a__ = metric.compute() # Then do distributed a__ = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): a__ = model(**_lowerCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) a__ = batch["""labels"""] a__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase ) a__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __lowercase ( ): a__ = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(_lowerCamelCase , _lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a__ = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(_lowerCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a__ = Accelerator() test_torch_metrics(_lowerCamelCase , 5_1_2 ) accelerator.state._reset_state() def __lowercase ( __lowerCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
240
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _A : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def a__ ( self ) -> Any: torch.manual_seed(0 ) _A : Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def a__ ( self ) -> List[str]: torch.manual_seed(0 ) _A : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def a__ ( self ) -> Optional[int]: _A : Optional[Any] = self.dummy_uncond_unet _A : Optional[int] = DDIMScheduler() _A : List[str] = self.dummy_vq_model _A : Tuple = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) _A : int = torch.manual_seed(0 ) _A : int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images _A : List[str] = torch.manual_seed(0 ) _A : Optional[int] = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] _A : str = image[0, -3:, -3:, -1] _A : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _A : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : str = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) _A : int = torch.manual_seed(0 ) _A : List[Any] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A : Dict = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) _A : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
26
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] | None = None ) -> list[list[str]]: _snake_case : List[Any] = word_bank or [] # create a table _snake_case : int = len(_lowerCamelCase ) + 1 _snake_case : list[list[list[str]]] = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value _snake_case : Optional[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: _snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
317
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCAmelCase_ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
29
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" from __future__ import annotations import numpy as np def A ( snake_case__ ): '''simple docstring''' return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __lowerCAmelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) __lowerCAmelCase = None def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_lowerCamelCase , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_lowerCamelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" _a : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" def remove_articles(__a : List[Any] ): return ARTICLES_REGEX.sub(' ' , _lowerCamelCase ) def white_space_fix(__a : List[str] ): return " ".join(text.split() ) def remove_punc(__a : Optional[int] ): _a : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" if not s: return [] return normalize_answer(_lowerCamelCase ).split() def UpperCAmelCase_ (__a : Optional[Any] , __a : int ): """simple docstring""" return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def UpperCAmelCase_ (__a : List[Any] , __a : List[Any] ): """simple docstring""" _a : int = get_tokens(_lowerCamelCase ) _a : Optional[int] = get_tokens(_lowerCamelCase ) _a : Union[str, Any] = collections.Counter(_lowerCamelCase ) & collections.Counter(_lowerCamelCase ) _a : List[Any] = sum(common.values() ) if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _a : List[Any] = 1.0 * num_same / len(_lowerCamelCase ) _a : Dict = 1.0 * num_same / len(_lowerCamelCase ) _a : List[str] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ (__a : str , __a : Optional[int] ): """simple docstring""" _a : Optional[int] = {} _a : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : List[Any] = qa["""id"""] _a : List[str] = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_lowerCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _a : List[Any] = [""""""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue _a : Optional[Any] = preds[qid] # Take max over all gold answers _a : List[Any] = max(compute_exact(_lowerCamelCase , _lowerCamelCase ) for a in gold_answers ) _a : Dict = max(compute_fa(_lowerCamelCase , _lowerCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def UpperCAmelCase_ (__a : int , __a : List[str] , __a : int , __a : Optional[int] ): """simple docstring""" _a : List[str] = {} for qid, s in scores.items(): _a : int = na_probs[qid] > na_prob_thresh if pred_na: _a : Any = float(not qid_to_has_ans[qid] ) else: _a : Optional[int] = s return new_scores def UpperCAmelCase_ (__a : Dict , __a : Optional[int] , __a : Optional[Any]=None ): """simple docstring""" if not qid_list: _a : Optional[int] = len(_lowerCamelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: _a : Union[str, Any] = len(_lowerCamelCase ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def UpperCAmelCase_ (__a : Optional[int] , __a : str , __a : int ): """simple docstring""" for k in new_eval: _a : str = new_eval[k] def UpperCAmelCase_ (__a : List[Any] , __a : Union[str, Any] , __a : Any , __a : List[Any] ): """simple docstring""" plt.step(_lowerCamelCase , _lowerCamelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_lowerCamelCase , _lowerCamelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_lowerCamelCase ) plt.savefig(_lowerCamelCase ) plt.clf() def UpperCAmelCase_ (__a : List[Any] , __a : Any , __a : Union[str, Any] , __a : List[Any] , __a : Dict=None , __a : Optional[int]=None ): """simple docstring""" _a : Tuple = sorted(_lowerCamelCase , key=lambda __a : na_probs[k] ) _a : List[Any] = 0.0 _a : str = 1.0 _a : Any = 0.0 _a : List[str] = [1.0] _a : Tuple = [0.0] _a : List[str] = 0.0 for i, qid in enumerate(_lowerCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] _a : Optional[int] = true_pos / float(i + 1 ) _a : List[str] = true_pos / float(_lowerCamelCase ) if i == len(_lowerCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCamelCase ) recalls.append(_lowerCamelCase ) if out_image: plot_pr_curve(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return {"ap": 100.0 * avg_prec} def UpperCAmelCase_ (__a : Optional[int] , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[str] , __a : int ): """simple docstring""" if out_image_dir and not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _a : Optional[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _a : str = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) _a : Tuple = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) _a : int = {k: float(_lowerCamelCase ) for k, v in qid_to_has_ans.items()} _a : Optional[int] = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_lowerCamelCase , _lowerCamelCase , 'pr_exact' ) merge_eval(_lowerCamelCase , _lowerCamelCase , 'pr_f1' ) merge_eval(_lowerCamelCase , _lowerCamelCase , 'pr_oracle' ) def UpperCAmelCase_ (__a : int , __a : int , __a : int , __a : Optional[int] ): """simple docstring""" if not qid_list: return _a : List[Any] = [na_probs[k] for k in qid_list] _a : Optional[int] = np.ones_like(_lowerCamelCase ) / float(len(_lowerCamelCase ) ) plt.hist(_lowerCamelCase , weights=_lowerCamelCase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_lowerCamelCase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def UpperCAmelCase_ (__a : Dict , __a : str , __a : str , __a : int ): """simple docstring""" _a : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _a : str = num_no_ans _a : Union[str, Any] = cur_score _a : Optional[Any] = 0.0 _a : Dict = sorted(_lowerCamelCase , key=lambda __a : na_probs[k] ) for i, qid in enumerate(_lowerCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: _a : Union[str, Any] = scores[qid] else: if preds[qid]: _a : Optional[Any] = -1 else: _a : str = 0 cur_score += diff if cur_score > best_score: _a : Union[str, Any] = cur_score _a : List[str] = na_probs[qid] return 100.0 * best_score / len(_lowerCamelCase ), best_thresh def UpperCAmelCase_ (__a : Union[str, Any] , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple , __a : int ): """simple docstring""" _a : List[str] = find_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _a : Optional[Any] = find_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _a : Union[str, Any] = best_exact _a : List[str] = exact_thresh _a : int = best_fa _a : int = fa_thresh def UpperCAmelCase_ (): """simple docstring""" with open(OPTS.data_file ) as f: _a : Any = json.load(_lowerCamelCase ) _a : List[Any] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: _a : Optional[Any] = json.load(_lowerCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _a : str = json.load(_lowerCamelCase ) else: _a : Dict = {k: 0.0 for k in preds} _a : List[str] = make_qid_to_has_ans(_lowerCamelCase ) # maps qid to True/False _a : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if v] _a : List[str] = [k for k, v in qid_to_has_ans.items() if not v] _a : Optional[int] = get_raw_scores(_lowerCamelCase , _lowerCamelCase ) _a : List[Any] = apply_no_ans_threshold(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.na_prob_thresh ) _a : Dict = apply_no_ans_threshold(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.na_prob_thresh ) _a : Dict = make_eval_dict(_lowerCamelCase , _lowerCamelCase ) if has_ans_qids: _a : Optional[Any] = make_eval_dict(_lowerCamelCase , _lowerCamelCase , qid_list=_lowerCamelCase ) merge_eval(_lowerCamelCase , _lowerCamelCase , 'HasAns' ) if no_ans_qids: _a : Union[str, Any] = make_eval_dict(_lowerCamelCase , _lowerCamelCase , qid_list=_lowerCamelCase ) merge_eval(_lowerCamelCase , _lowerCamelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir ) histogram_na_prob(_lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) else: print(json.dumps(_lowerCamelCase , indent=2 ) ) if __name__ == "__main__": __lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
271
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
from math import loga def A ( _lowercase ): if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
182
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __snake_case : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case = field( default=_a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __snake_case = field( default=_a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __snake_case = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __snake_case = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __snake_case = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default=_a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __snake_case = field( default=_a , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) __snake_case = field( default=_a , metadata={'help': 'Train language if it is different from the evaluation language.'} ) __snake_case = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case = field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __snake_case = field( default=_a , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) __snake_case = field( default=_a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __snake_case = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case = field( default=_a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __snake_case = field( default=_a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Optional[int] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ : Tuple =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""", _lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ : Optional[int] =training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. A__ : Tuple =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : int =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A__ : Optional[int] =load_dataset( """xnli""", model_args.language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: A__ : str =load_dataset( """xnli""", model_args.train_language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) A__ : int =train_dataset.features["""label"""].names if training_args.do_eval: A__ : Optional[int] =load_dataset( """xnli""", model_args.language, split="""validation""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) A__ : Union[str, Any] =eval_dataset.features["""label"""].names if training_args.do_predict: A__ : Union[str, Any] =load_dataset( """xnli""", model_args.language, split="""test""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) A__ : Tuple =predict_dataset.features["""label"""].names # Labels A__ : Union[str, Any] =len(_lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : List[str] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=_lowerCamelCase, idalabel={str(_lowerCamelCase ): label for i, label in enumerate(_lowerCamelCase )}, labelaid={label: i for i, label in enumerate(_lowerCamelCase )}, finetuning_task="""xnli""", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A__ : Optional[Any] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A__ : List[str] =AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=_lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A__ : Any ="""max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A__ : Union[str, Any] =False def preprocess_function(__snake_case : Union[str, Any] ): # Tokenize the texts return tokenizer( examples["""premise"""], examples["""hypothesis"""], padding=_lowerCamelCase, max_length=data_args.max_seq_length, truncation=_lowerCamelCase, ) if training_args.do_train: if data_args.max_train_samples is not None: A__ : Union[str, Any] =min(len(_lowerCamelCase ), data_args.max_train_samples ) A__ : Dict =train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): A__ : Dict =train_dataset.map( _lowerCamelCase, batched=_lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on train dataset""", ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCamelCase ) ), 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ : List[str] =min(len(_lowerCamelCase ), data_args.max_eval_samples ) A__ : List[str] =eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): A__ : int =eval_dataset.map( _lowerCamelCase, batched=_lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) if training_args.do_predict: if data_args.max_predict_samples is not None: A__ : Dict =min(len(_lowerCamelCase ), data_args.max_predict_samples ) A__ : Optional[int] =predict_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): A__ : Union[str, Any] =predict_dataset.map( _lowerCamelCase, batched=_lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on prediction dataset""", ) # Get the metric function A__ : int =evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case : EvalPrediction ): A__ : int =p.predictions[0] if isinstance(p.predictions, _lowerCamelCase ) else p.predictions A__ : Tuple =np.argmax(_lowerCamelCase, axis=1 ) return metric.compute(predictions=_lowerCamelCase, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A__ : Any =default_data_collator elif training_args.fpaa: A__ : Optional[int] =DataCollatorWithPadding(_lowerCamelCase, pad_to_multiple_of=8 ) else: A__ : int =None # Initialize our Trainer A__ : List[Any] =Trainer( model=_lowerCamelCase, args=_lowerCamelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=_lowerCamelCase, tokenizer=_lowerCamelCase, data_collator=_lowerCamelCase, ) # Training if training_args.do_train: A__ : Any =None if training_args.resume_from_checkpoint is not None: A__ : List[str] =training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ : Union[str, Any] =last_checkpoint A__ : int =trainer.train(resume_from_checkpoint=_lowerCamelCase ) A__ : Tuple =train_result.metrics A__ : str =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) A__ : List[Any] =min(_lowerCamelCase, len(_lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""", _lowerCamelCase ) trainer.save_metrics("""train""", _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A__ : Tuple =trainer.evaluate(eval_dataset=_lowerCamelCase ) A__ : Any =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) A__ : List[Any] =min(_lowerCamelCase, len(_lowerCamelCase ) ) trainer.log_metrics("""eval""", _lowerCamelCase ) trainer.save_metrics("""eval""", _lowerCamelCase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) A__ : List[str] =trainer.predict(_lowerCamelCase, metric_key_prefix="""predict""" ) A__ : List[Any] =( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCamelCase ) ) A__ : Optional[int] =min(_lowerCamelCase, len(_lowerCamelCase ) ) trainer.log_metrics("""predict""", _lowerCamelCase ) trainer.save_metrics("""predict""", _lowerCamelCase ) A__ : str =np.argmax(_lowerCamelCase, axis=1 ) A__ : List[str] =os.path.join(training_args.output_dir, """predictions.txt""" ) if trainer.is_world_process_zero(): with open(_lowerCamelCase, """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(_lowerCamelCase ): A__ : Optional[int] =label_list[item] writer.write(f"{index}\t{item}\n" ) if __name__ == "__main__": main()
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __snake_case = logging.get_logger(__name__) class __lowerCamelCase (_a ): def __init__( self: Optional[int],**A_: Any ): '''simple docstring''' requires_backends(self,['bs4'] ) super().__init__(**A_ ) def snake_case_ ( self: int,A_: Dict ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCamelCase = parent.find_all(child.name,recursive=A_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(A_ ) else next(i for i, s in enumerate(A_,1 ) if s is child ) ) __UpperCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = BeautifulSoup(A_,'html.parser' ) __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] for element in html_code.descendants: if type(A_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCamelCase = html.unescape(A_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(A_ ) __UpperCamelCase, __UpperCamelCase = self.xpath_soup(A_ ) stringaxtag_seq.append(A_ ) stringaxsubs_seq.append(A_ ) if len(A_ ) != len(A_ ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(A_ ) != len(A_ ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case_ ( self: int,A_: Tuple,A_: str ): '''simple docstring''' __UpperCamelCase = '' for tagname, subs in zip(A_,A_ ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self: Optional[int],A_: Tuple ): '''simple docstring''' __UpperCamelCase = False # Check that strings has a valid type if isinstance(A_,A_ ): __UpperCamelCase = True elif isinstance(A_,(list, tuple) ): if len(A_ ) == 0 or isinstance(html_strings[0],A_ ): __UpperCamelCase = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F'''but is of type {type(A_ )}.''' ) __UpperCamelCase = bool(isinstance(A_,(list, tuple) ) and (isinstance(html_strings[0],A_ )) ) if not is_batched: __UpperCamelCase = [html_strings] # Get nodes + xpaths __UpperCamelCase = [] __UpperCamelCase = [] for html_string in html_strings: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self.get_three_from_single(A_ ) nodes.append(A_ ) __UpperCamelCase = [] for node, tag_list, sub_list in zip(A_,A_,A_ ): __UpperCamelCase = self.construct_xpath(A_,A_ ) xpath_strings.append(A_ ) xpaths.append(A_ ) # return as Dict __UpperCamelCase = {'nodes': nodes, 'xpaths': xpaths} __UpperCamelCase = BatchFeature(data=A_,tensor_type=A_ ) return encoded_inputs
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1