code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Optional[Any] = [1] for i in range(2 , lowerCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowercase : int = [] _lowercase : Union[str, Any] = list(range(lowerCamelCase_ ) ) # Find permutation while factorials: _lowercase : Dict = factorials.pop() _lowercase , _lowercase : Any = divmod(lowerCamelCase_ , lowerCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : str = """deta""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , snake_case_ : Dict=None , snake_case_ : int=9_0_0 , snake_case_ : Tuple=2_0_4_8 , snake_case_ : Union[str, Any]=6 , snake_case_ : Tuple=2_0_4_8 , snake_case_ : int=8 , snake_case_ : str=6 , snake_case_ : int=1_0_2_4 , snake_case_ : str=8 , snake_case_ : Tuple=0.0 , snake_case_ : int=True , snake_case_ : str="relu" , snake_case_ : Optional[int]=2_5_6 , snake_case_ : int=0.1 , snake_case_ : int=0.0 , snake_case_ : Dict=0.0 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Optional[int]=1.0 , snake_case_ : Tuple=True , snake_case_ : Dict=False , snake_case_ : Any="sine" , snake_case_ : int=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : List[Any]=4 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=3_0_0 , snake_case_ : str=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=1 , snake_case_ : Optional[int]=5 , snake_case_ : str=2 , snake_case_ : int=1 , snake_case_ : Union[str, Any]=1 , snake_case_ : Dict=5 , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=0.2_5 , **snake_case_ : Optional[Any] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = backbone_config.pop("model_type" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(snake_case_ ) _UpperCAmelCase = backbone_config _UpperCAmelCase = num_queries _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = init_xavier_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = auxiliary_loss _UpperCAmelCase = position_embedding_type # deformable attributes _UpperCAmelCase = num_feature_levels _UpperCAmelCase = encoder_n_points _UpperCAmelCase = decoder_n_points _UpperCAmelCase = two_stage _UpperCAmelCase = two_stage_num_proposals _UpperCAmelCase = with_box_refine _UpperCAmelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _UpperCAmelCase = class_cost _UpperCAmelCase = bbox_cost _UpperCAmelCase = giou_cost # Loss coefficients _UpperCAmelCase = mask_loss_coefficient _UpperCAmelCase = dice_loss_coefficient _UpperCAmelCase = bbox_loss_coefficient _UpperCAmelCase = giou_loss_coefficient _UpperCAmelCase = eos_coefficient _UpperCAmelCase = focal_alpha super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowercase ( self : List[Any] ): return self.encoder_attention_heads @property def lowercase ( self : Dict ): return self.d_model def lowercase ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
22
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Dict = logging.get_logger(__name__) UpperCamelCase__: Optional[Any] = ["model.decoder.embed_positions.weights"] def snake_case_ ( _lowerCAmelCase : str ) -> Tuple: if "emb" in name: UpperCAmelCase : int = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCAmelCase : Optional[Any] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: UpperCAmelCase : int = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: UpperCAmelCase : List[str] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: UpperCAmelCase : Any = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: UpperCAmelCase : str = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCAmelCase : str = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: UpperCAmelCase : Optional[int] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def snake_case_ ( _lowerCAmelCase : OrderedDict , _lowerCAmelCase : int ) -> Tuple[Dict, Dict]: UpperCAmelCase : int = list(state_dict.keys() ) UpperCAmelCase : Tuple = {} for key in keys: UpperCAmelCase : Optional[int] = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Union[str, Any] = val[:hidden_size, :] UpperCAmelCase : str = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : Tuple = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def snake_case_ ( _lowerCAmelCase : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values UpperCAmelCase : Optional[int] = 1024 UpperCAmelCase : List[Any] = 24 UpperCAmelCase : List[Any] = 16 elif checkpoint == "medium": UpperCAmelCase : Tuple = 1536 UpperCAmelCase : Union[str, Any] = 48 UpperCAmelCase : Tuple = 24 elif checkpoint == "large": UpperCAmelCase : Tuple = 2048 UpperCAmelCase : List[Any] = 48 UpperCAmelCase : List[Any] = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCAmelCase : List[Any] = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , ) return config @torch.no_grad() def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Dict="cpu" ) -> str: UpperCAmelCase : List[str] = MusicGen.get_pretrained(_lowerCAmelCase , device=_lowerCAmelCase ) UpperCAmelCase : Dict = decoder_config_from_checkpoint(_lowerCAmelCase ) UpperCAmelCase : Any = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_state_dict( _lowerCAmelCase , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Tuple = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCAmelCase : Dict = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCAmelCase : Optional[int] = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCAmelCase : Any = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase , audio_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : List[str] = model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) UpperCAmelCase : int = MusicgenProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids UpperCAmelCase : Optional[int] = 2048 UpperCAmelCase : List[Any] = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : Optional[Any] = True UpperCAmelCase : str = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCamelCase__: Optional[int] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
23
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.2_5 , width=0.2_5 ) __snake_case = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''CPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''GPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Model''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) __snake_case = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) __snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) __snake_case = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) __snake_case = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Disk''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) __snake_case = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
24
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ : List[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ : Optional[int] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): SCREAMING_SNAKE_CASE__ : Optional[int] = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' ,_snake_case ,) is not None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE__ : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE__ : str = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] SCREAMING_SNAKE_CASE__ : int = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed SCREAMING_SNAKE_CASE__ : List[str] = True if not attribute_used: SCREAMING_SNAKE_CASE__ : List[str] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE__ : Optional[Any] = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE__ : str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE__ : Any = True elif attribute.endswith("""_token_id""" ): SCREAMING_SNAKE_CASE__ : Dict = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE__ : List[str] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] ) SCREAMING_SNAKE_CASE__ : str = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE__ : str = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] SCREAMING_SNAKE_CASE__ : List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE__ : Tuple = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE__ : Any = inspect.getsourcefile(_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [os.path.join(_snake_case ,_snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith("""modeling_""" )] # Get the source code strings SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE__ : Any = [] for config_param, default_value in zip(_snake_case ,_snake_case ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE__ : Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case ,_snake_case ,_snake_case ,_snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE__ : List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) ,lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case ,_snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) ,) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE__ : Optional[int] = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = unused_attributes if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
25
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _A : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case_ ) ) return round(snake_case_,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionLatentUpscalePipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } A_ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) A_ = True @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 1 __a : Any = 4 __a : List[str] = (16, 16) __a : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : List[Any] = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=__a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=__a , only_cross_attention=__a , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) __a : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) __a : str = EulerDiscreteScheduler(prediction_type='sample' ) __a : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) __a : Optional[Any] = CLIPTextModel(__a ) __a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Any = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith('mps' ): __a : str = torch.manual_seed(__a ) else: __a : Tuple = torch.Generator(device=__a ).manual_seed(__a ) __a : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'cpu' __a : List[Any] = self.get_dummy_components() __a : Optional[int] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Dict = self.get_dummy_inputs(__a ) __a : Tuple = pipe(**__a ).images __a : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) __a : List[str] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) __a : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] __a : Tuple = self.get_dummy_components() __a : Tuple = self.pipeline_class(**__a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : List[str] = self.get_dummy_inputs(__a ) __a : Any = 2 __a : Tuple = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a : Tuple = getattr(__a , scheduler_enum.name ) __a : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config ) __a : int = pipe(**__a )[0] outputs.append(__a ) assert check_same_shape(__a ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = torch.manual_seed(33 ) __a : str = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a : str = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __a : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' __a : int = pipe(__a , generator=__a , output_type='latent' ).images __a : Union[str, Any] = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type='np' , ).images[0] __a : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = torch.manual_seed(33 ) __a : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __a : Optional[int] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) __a : List[str] = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type='np' , ).images[0] __a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
27
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCamelCase : Dict = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Any , UpperCamelCase__ : Path , UpperCamelCase__ : Union[str, None] = None , UpperCamelCase__ : Union[List[str], None] = None , UpperCamelCase__ : Union[str, List[str], None] = None , UpperCamelCase__ : bool = True , ): """simple docstring""" UpperCamelCase = [file for file in os.listdir(UpperCamelCase__ ) if os.path.isfile(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )] if identifier is not None: UpperCamelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for n_ in n_identifier: UpperCamelCase = [file for file in files if n_ not in file] else: UpperCamelCase = [file for file in files if n_identifier not in file] UpperCamelCase = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase__ ) if only_modules: UpperCamelCase = file.split('.' )[0] try: UpperCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = doctest.DocTestSuite(UpperCamelCase__ ) UpperCamelCase = unittest.TextTestRunner().run(UpperCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: UpperCamelCase = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = Path('src/transformers' ) UpperCamelCase = 'modeling' UpperCamelCase = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ , ignore_files=UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Path('src/transformers' ) UpperCamelCase = 'tokenization' self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = Path('src/transformers' ) UpperCamelCase = 'configuration' self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = Path('src/transformers' ) UpperCamelCase = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase__ , n_identifier=UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = Path('docs/source' ) UpperCamelCase = ['favicon.ico'] self.analyze_directory(UpperCamelCase__ , ignore_files=UpperCamelCase__ , only_modules=UpperCamelCase__ )
28
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
__UpperCAmelCase = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __UpperCAmelCase = ['a', 'b', 'c', 'd', 'e'] def lowercase__ ( __snake_case : List[str] , __snake_case : str , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = start # add current to visited visited.append(__snake_case ) UpperCAmelCase_ : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase_ : str = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: UpperCAmelCase_ : Optional[Any] = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase = topological_sort('a', [], []) print(sort)
29
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowercase__: """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any]=1_3 , SCREAMING_SNAKE_CASE_ : int=3_0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : List[Any]=3_7 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : int=2 , ) -> Any: lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = TFDeiTModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: lowercase_ = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: lowercase_ = self.type_sequence_label_size lowercase_ = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) a :Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) a :Any = False a :Optional[int] = False a :Tuple = False a :int = False def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = TFDeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _lowercase ( self : List[str] ) -> str: pass def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[int] ) -> List[str]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> List[str]: lowercase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : int ) -> int: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( ): '''simple docstring''' lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ) -> Optional[int]: return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _lowercase ( self : List[str] ) -> Any: lowercase_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
30
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip_2_vision_model" def __init__( self : Optional[Any] , A : Union[str, Any]=1408 , A : int=6144 , A : Union[str, Any]=39 , A : List[str]=16 , A : List[str]=224 , A : List[Any]=14 , A : int="gelu" , A : Optional[Any]=0.00_001 , A : str=0.0 , A : List[str]=1E-10 , A : Dict=True , **A : Optional[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = hidden_size _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Any = qkv_bias @classmethod def _A ( cls : Tuple , A : Union[str, os.PathLike] , **A : List[str] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _UpperCAmelCase : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip_2_qformer" def __init__( self : List[str] , A : Dict=30522 , A : Optional[Any]=768 , A : List[str]=12 , A : int=12 , A : List[Any]=3072 , A : List[Any]="gelu" , A : List[str]=0.1 , A : int=0.1 , A : Any=512 , A : List[Any]=0.02 , A : List[Any]=1E-12 , A : Tuple=0 , A : int="absolute" , A : str=2 , A : List[Any]=1408 , **A : Optional[int] , ): super().__init__(pad_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Optional[Any] = cross_attention_frequency _UpperCAmelCase : int = encoder_hidden_size @classmethod def _A ( cls : Optional[Any] , A : Union[str, os.PathLike] , **A : Optional[int] ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _UpperCAmelCase : List[str] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = "blip-2" __UpperCamelCase: List[Any] = True def __init__( self : str , A : Optional[Any]=None , A : List[Any]=None , A : str=None , A : Optional[int]=32 , **A : Union[str, Any] ): super().__init__(**A ) if vision_config is None: _UpperCAmelCase : Dict = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : int = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : Dict = BlipaVisionConfig(**A ) _UpperCAmelCase : Optional[int] = BlipaQFormerConfig(**A ) _UpperCAmelCase : str = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : int = CONFIG_MAPPING[text_model_type](**A ) _UpperCAmelCase : Any = self.text_config.tie_word_embeddings _UpperCAmelCase : Any = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : Optional[int] = self.vision_config.hidden_size _UpperCAmelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Optional[Any] = 0.02 @classmethod def _A ( cls : List[Any] , A : BlipaVisionConfig , A : BlipaQFormerConfig , A : PretrainedConfig , **A : Any , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : List[Any] = self.vision_config.to_dict() _UpperCAmelCase : Tuple = self.qformer_config.to_dict() _UpperCAmelCase : Dict = self.text_config.to_dict() _UpperCAmelCase : Tuple = self.__class__.model_type return output
31
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Tuple: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: raise NotImplementedError()
32
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : int , __snake_case : int ): lowercase_ : Optional[int] = cva.getAffineTransform(__snake_case , __snake_case ) return cva.warpAffine(__snake_case , __snake_case , (rows, cols) ) if __name__ == "__main__": # read original image __A : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Union[str, Any] = gray_img.shape # set different points to rotate image __A : Optional[Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : int = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : List[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : str = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Optional[int] = plt.figure(1) __A : int = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
33
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : def __init__( self : str , lowercase : List[Any] , lowercase : Dict=2 , lowercase : str=32 , lowercase : Optional[Any]=16 , lowercase : Optional[Any]=3 , lowercase : Union[str, Any]=True , lowercase : List[Any]=True , lowercase : Optional[int]=32 , lowercase : Any=4 , lowercase : str=[0, 1, 2, 3] , lowercase : List[Any]=4 , lowercase : str=37 , lowercase : Optional[Any]="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.02 , lowercase : int=3 , lowercase : int=[1, 384, 24, 24] , lowercase : str=True , lowercase : List[Any]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = backbone_out_indices UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = backbone_featmap_shape UpperCAmelCase = scope UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def A ( self : int ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def A ( self : str ): '''simple docstring''' UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : Optional[int] , lowercase : str , lowercase : Optional[Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = DPTModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , lowercase : Tuple , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DPTForDepthEstimation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : int , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DPTForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __a : Optional[int] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __a : Any = False __a : List[Any] = False __a : Dict = False def A ( self : int ): '''simple docstring''' UpperCAmelCase = DPTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) def A ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True if model_class in get_values(lowercase ): continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : str ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = False UpperCAmelCase = True if model_class in get_values(lowercase ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowercase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowercase ) # Skip the check for the backbone UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : int ): '''simple docstring''' pass @slow def A ( self : Any ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase = DPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = '''add''' with self.assertRaises(lowercase ): UpperCAmelCase = DPTForDepthEstimation(lowercase ) def snake_case_ (): UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowercase ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase ) UpperCAmelCase = outputs.predicted_depth # verify the predicted depth UpperCAmelCase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowercase , atol=1E-4 ) )
34
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase ( self : str ): return self._get_superresolution_dummy_components() def lowerCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : List[str]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : List[str] = torch.manual_seed(snake_case_ ) else: snake_case__ : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase ( self : int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase ( self : Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase ( self : Dict ): self._test_save_load_local() def lowerCamelCase ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
35
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase__ : Optional[int] = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=1 ) -> Dict: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCAmelCase__ : List[str] = [[w, v]] if not self.graph.get(__UpperCAmelCase ): lowerCAmelCase__ : Dict = [] def UpperCAmelCase_ ( self ) -> Tuple: return list(self.graph ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ,__UpperCAmelCase=-1 ) -> Optional[Any]: if s == d: return [] lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Tuple = [] if s == -2: lowerCAmelCase__ : Any = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : Any = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : int = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def UpperCAmelCase_ ( self ,__UpperCAmelCase=-1 ) -> List[Any]: if c == -1: lowerCAmelCase__ : Tuple = floor(random() * 1_0000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase__ : int = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase ,__UpperCAmelCase ,1 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ) -> int: lowerCAmelCase__ : List[Any] = deque() lowerCAmelCase__ : Tuple = [] if s == -2: lowerCAmelCase__ : Optional[int] = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: lowerCAmelCase__ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return len(self.graph[u] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ) -> Optional[Any]: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Dict = [] if s == -2: lowerCAmelCase__ : List[str] = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = s lowerCAmelCase__ : Dict = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : int = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : List[str] = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : List[Any] = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = -2 lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[int] = s lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase__ : Any = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase__ : Dict = True if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : Optional[int] = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : List[str] = False indirect_parents.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = s lowerCAmelCase__ : Dict = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Dict = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = -2 lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : List[Any] = s lowerCAmelCase__ : str = False lowerCAmelCase__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase__ : List[str] = True if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : Union[str, Any] = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : Optional[Any] = False indirect_parents.append(__UpperCAmelCase ) lowerCAmelCase__ : str = s lowerCAmelCase__ : List[str] = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ,__UpperCAmelCase=-1 ) -> int: lowerCAmelCase__ : Optional[Any] = time() self.dfs(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = time() return end - begin def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ) -> Dict: lowerCAmelCase__ : str = time() self.bfs(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = time() return end - begin class lowerCAmelCase_: '''simple docstring''' def __init__( self ) -> Optional[int]: lowerCAmelCase__ : int = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=1 ) -> Optional[int]: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCAmelCase__ : Tuple = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCAmelCase__ : List[Any] = [[w, u]] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ,__UpperCAmelCase=-1 ) -> List[str]: if s == d: return [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Optional[int] = [] if s == -2: lowerCAmelCase__ : str = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : Optional[int] = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def UpperCAmelCase_ ( self ,__UpperCAmelCase=-1 ) -> Dict: if c == -1: lowerCAmelCase__ : Dict = floor(random() * 1_0000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase__ : Any = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase ,__UpperCAmelCase ,1 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ) -> Tuple: lowerCAmelCase__ : Dict = deque() lowerCAmelCase__ : Optional[int] = [] if s == -2: lowerCAmelCase__ : Optional[int] = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: lowerCAmelCase__ : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return len(self.graph[u] ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[int] = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : int = -2 lowerCAmelCase__ : int = [] lowerCAmelCase__ : List[str] = s lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase__ : int = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase__ : Optional[Any] = True if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : Optional[Any] = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : int = False indirect_parents.append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = s lowerCAmelCase__ : List[str] = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : str = [] lowerCAmelCase__ : Optional[Any] = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) lowerCAmelCase__ : Dict = -2 lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Any = s lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase__ : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase__ : Optional[int] = True if len(__UpperCAmelCase ) != 0: lowerCAmelCase__ : str = stack[len(__UpperCAmelCase ) - 1] else: lowerCAmelCase__ : Tuple = False indirect_parents.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = s lowerCAmelCase__ : int = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def UpperCAmelCase_ ( self ) -> str: return list(self.graph ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ,__UpperCAmelCase=-1 ) -> List[str]: lowerCAmelCase__ : Tuple = time() self.dfs(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : int = time() return end - begin def UpperCAmelCase_ ( self ,__UpperCAmelCase=-2 ) -> int: lowerCAmelCase__ : Optional[int] = time() self.bfs(__UpperCAmelCase ) lowerCAmelCase__ : Any = time() return end - begin
37
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ : Dict = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCAmelCase_ : Any = { '''allenai/led-base-16384''': 1_63_84, } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : int = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = LEDTokenizer snake_case__ : str = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : int=None , __lowerCamelCase : Any="replace" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=True , **__lowerCamelCase : str , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :Union[str, Any] = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) UpperCamelCase :Optional[Any] = add_prefix_space UpperCamelCase :Tuple = pre_tok_class(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase :str = """post_processor""" UpperCamelCase :List[str] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: UpperCamelCase :Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase :int = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase :Optional[int] = tuple(state["""cls"""] ) UpperCamelCase :Optional[Any] = False if state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :Optional[Any] = add_prefix_space UpperCamelCase :Union[str, Any] = True if state.get("""trim_offsets""" , __lowerCamelCase ) != trim_offsets: UpperCamelCase :Tuple = trim_offsets UpperCamelCase :Tuple = True if changes_to_apply: UpperCamelCase :Tuple = getattr(__lowerCamelCase , state.pop("""type""" ) ) UpperCamelCase :int = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _A ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _A ( self : Dict , __lowerCamelCase : List[str] ): UpperCamelCase :Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value UpperCamelCase :List[Any] = value def _A ( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[int] ): UpperCamelCase :Optional[int] = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Tuple , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : str ): UpperCamelCase :Tuple = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :List[str] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=None ): UpperCamelCase :List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _A ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Dict = [self.sep_token_id] UpperCamelCase :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self : Tuple , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): UpperCamelCase :List[Any] = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase :List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase :str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase :Union[str, Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(__lowerCamelCase ) if needs_to_be_padded: UpperCamelCase :Optional[int] = len(__lowerCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase :Optional[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase :Union[str, Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
38
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
from collections.abc import Generator from math import sin def __A ( __lowerCAmelCase )-> bytes: """simple docstring""" if len(__lowerCAmelCase ) != 32: raise ValueError('Input must be of length 32' ) _UpperCAmelCase = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __A ( __lowerCAmelCase )-> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _UpperCAmelCase = format(__lowerCAmelCase , '08x' )[-8:] _UpperCAmelCase = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def __A ( __lowerCAmelCase )-> bytes: """simple docstring""" _UpperCAmelCase = b'' for char in message: bit_string += format(__lowerCAmelCase , '08b' ).encode('utf-8' ) _UpperCAmelCase = format(len(__lowerCAmelCase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__lowerCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __A ( __lowerCAmelCase )-> Generator[list[int], None, None]: """simple docstring""" if len(__lowerCAmelCase ) % 512 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__lowerCAmelCase ) , 512 ): _UpperCAmelCase = bit_string[pos : pos + 512] _UpperCAmelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __A ( __lowerCAmelCase )-> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _UpperCAmelCase = format(__lowerCAmelCase , '032b' ) _UpperCAmelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__lowerCAmelCase , 2 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" return (a + b) % 2**32 def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __A ( __lowerCAmelCase )-> bytes: """simple docstring""" _UpperCAmelCase = preprocess(__lowerCAmelCase ) _UpperCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCAmelCase = 0X6_7_4_5_2_3_0_1 _UpperCAmelCase = 0XE_F_C_D_A_B_8_9 _UpperCAmelCase = 0X9_8_B_A_D_C_F_E _UpperCAmelCase = 0X1_0_3_2_5_4_7_6 _UpperCAmelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__lowerCAmelCase ): _UpperCAmelCase = aa _UpperCAmelCase = ba _UpperCAmelCase = ca _UpperCAmelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCAmelCase = d ^ (b & (c ^ d)) _UpperCAmelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCAmelCase = c ^ (d & (b ^ c)) _UpperCAmelCase = (5 * i + 1) % 16 elif i <= 47: _UpperCAmelCase = b ^ c ^ d _UpperCAmelCase = (3 * i + 5) % 16 else: _UpperCAmelCase = c ^ (b | not_aa(__lowerCAmelCase )) _UpperCAmelCase = (7 * i) % 16 _UpperCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCAmelCase = d _UpperCAmelCase = c _UpperCAmelCase = b _UpperCAmelCase = sum_aa(__lowerCAmelCase , left_rotate_aa(__lowerCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCAmelCase = sum_aa(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = sum_aa(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = sum_aa(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = sum_aa(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = reformat_hex(__lowerCAmelCase ) + reformat_hex(__lowerCAmelCase ) + reformat_hex(__lowerCAmelCase ) + reformat_hex(__lowerCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' import string import numpy def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return b if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) class _lowercase : a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda _lowercase : x % 36 ) a = numpy.vectorize(_lowercase ) def __init__( self: Optional[int] , UpperCamelCase__: numpy.ndarray ): lowerCamelCase__ : List[Any] = self.modulus(UpperCamelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCamelCase__ : Optional[Any] = encrypt_key.shape[0] def lowerCamelCase_ ( self: int , UpperCamelCase__: str ): return self.key_string.index(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): return self.key_string[round(UpperCamelCase__ )] def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase__ : Optional[Any] = det % len(self.key_string ) lowerCamelCase__ : int = len(self.key_string ) if greatest_common_divisor(UpperCamelCase__ , len(self.key_string ) ) != 1: lowerCamelCase__ : List[str] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): lowerCamelCase__ : List[str] = [char for char in text.upper() if char in self.key_string] lowerCamelCase__ : Optional[Any] = chars[-1] while len(UpperCamelCase__ ) % self.break_key != 0: chars.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): lowerCamelCase__ : Tuple = self.process_text(text.upper() ) lowerCamelCase__ : str = """""" for i in range(0 , len(UpperCamelCase__ ) - self.break_key + 1 , self.break_key ): lowerCamelCase__ : List[Any] = text[i : i + self.break_key] lowerCamelCase__ : Dict = [self.replace_letters(UpperCamelCase__ ) for char in batch] lowerCamelCase__ : Union[str, Any] = numpy.array([vec] ).T lowerCamelCase__ : List[Any] = self.modulus(self.encrypt_key.dot(UpperCamelCase__ ) ).T.tolist()[ 0 ] lowerCamelCase__ : List[str] = """""".join( self.replace_digits(UpperCamelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCamelCase_ ( self: str ): lowerCamelCase__ : str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase__ : Any = det % len(self.key_string ) lowerCamelCase__ : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCamelCase__ : Optional[Any] = i break lowerCamelCase__ : Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase__ ) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: str ): lowerCamelCase__ : str = self.make_decrypt_key() lowerCamelCase__ : Optional[Any] = self.process_text(text.upper() ) lowerCamelCase__ : Union[str, Any] = """""" for i in range(0 , len(UpperCamelCase__ ) - self.break_key + 1 , self.break_key ): lowerCamelCase__ : List[str] = text[i : i + self.break_key] lowerCamelCase__ : Optional[Any] = [self.replace_letters(UpperCamelCase__ ) for char in batch] lowerCamelCase__ : List[Any] = numpy.array([vec] ).T lowerCamelCase__ : Any = self.modulus(decrypt_key.dot(UpperCamelCase__ ) ).T.tolist()[0] lowerCamelCase__ : List[str] = """""".join( self.replace_digits(UpperCamelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE_ () -> None: lowerCamelCase__ : List[Any] = int(input("""Enter the order of the encryption key: """ ) ) lowerCamelCase__ : List[str] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(UpperCamelCase ): lowerCamelCase__ : Union[str, Any] = [int(UpperCamelCase ) for x in input().split()] hill_matrix.append(UpperCamelCase ) lowerCamelCase__ : List[str] = HillCipher(numpy.array(UpperCamelCase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) lowerCamelCase__ : Union[str, Any] = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": lowerCamelCase__ : Tuple = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(UpperCamelCase ) ) elif option == "2": lowerCamelCase__ : Union[str, Any] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase : str = logging.get_logger(__name__) lowercase : Dict = {"vocab_file": "vocab.txt"} lowercase : Tuple = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } lowercase : Any = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } lowercase : Optional[int] = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_INIT_CONFIGURATION __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = ConvBertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
42
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __lowercase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __UpperCamelCase :str = '''lm_head''' __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCamelCase :int = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __UpperCamelCase :Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase :Optional[Any] = value elif weight_type == "weight_g": __UpperCamelCase :Any = value elif weight_type == "weight_v": __UpperCamelCase :Any = value elif weight_type == "bias": __UpperCamelCase :Any = value else: __UpperCamelCase :Optional[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = [] __UpperCamelCase :Tuple = fairseq_model.state_dict() __UpperCamelCase :Tuple = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase :Optional[Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCamelCase :List[Any] = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase :Optional[int] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCamelCase :Optional[int] = True if "*" in mapped_key: __UpperCamelCase :str = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __UpperCamelCase :Tuple = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCamelCase :Union[str, Any] = '''weight_g''' elif "weight_v" in name: __UpperCamelCase :Optional[int] = '''weight_v''' elif "bias" in name: __UpperCamelCase :str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase :int = '''weight''' else: __UpperCamelCase :str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = full_name.split('''conv_layers.''' )[-1] __UpperCamelCase :Optional[int] = name.split('''.''' ) __UpperCamelCase :int = int(items[0] ) __UpperCamelCase :List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase :int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCamelCase :str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase :List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: __UpperCamelCase :str = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: __UpperCamelCase :Tuple = Dictionary.load_from_json(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase :Tuple = target_dict.pad_index __UpperCamelCase :Any = target_dict.bos_index __UpperCamelCase :List[str] = target_dict.eos_index __UpperCamelCase :int = len(target_dict.symbols ) __UpperCamelCase :Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase :int = 42 __UpperCamelCase :str = 43 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :int = True if config.feat_extract_norm == '''layer''' else False __UpperCamelCase :List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :List[str] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = UniSpeechForCTC(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :List[Any] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase :Optional[int] = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowercase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
43
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Union[str, Any] = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Optional[int] = num_choices _lowerCAmelCase : Optional[Any] = scope def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = LlamaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model(a__ , attention_mask=a__ ) _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = LlamaModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Optional[Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) _lowerCAmelCase : Any = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Tuple = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) _lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase : Tuple = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )["""hidden_states"""][0] _lowerCAmelCase : Optional[Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["""hidden_states"""][0] # select random slice _lowerCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCamelCase : Dict = (LlamaForCausalLM,) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = False def __A ( self ): _lowerCAmelCase : Dict = LlamaModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : List[str] = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Union[str, Any] = input_dict["""input_ids"""] _lowerCAmelCase : str = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase : List[Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = 3 _lowerCAmelCase : str = """single_label_classification""" _lowerCAmelCase : Optional[int] = input_dict["""input_ids"""] _lowerCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : int = """multi_label_classification""" _lowerCAmelCase : Tuple = input_dict["""input_ids"""] _lowerCAmelCase : Dict = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , a__ ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase : List[str] = LlamaModel(a__ ) original_model.to(a__ ) original_model.eval() _lowerCAmelCase : List[str] = original_model(a__ ).last_hidden_state _lowerCAmelCase : Optional[Any] = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase : Tuple = {"""type""": scaling_type, """factor""": 1_0.0} _lowerCAmelCase : Optional[Any] = LlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() _lowerCAmelCase : Any = scaled_model(a__ ).last_hidden_state _lowerCAmelCase : Optional[Any] = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) @require_torch class __A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowerCAmelCase : Optional[int] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCAmelCase : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCAmelCase : Optional[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ): _lowerCAmelCase : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _lowerCAmelCase : str = model(torch.tensor(a__ ) ) _lowerCAmelCase : Tuple = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # fmt: off _lowerCAmelCase : Union[str, Any] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ): _lowerCAmelCase : List[str] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _lowerCAmelCase : str = """Simply put, the theory of relativity states that """ _lowerCAmelCase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(a__ , return_tensors="""pt""" ) _lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=a__ ) # greedy generation outputs _lowerCAmelCase : Optional[int] = model.generate(a__ , max_new_tokens=64 , top_p=a__ , temperature=1 , do_sample=a__ ) _lowerCAmelCase : Dict = tokenizer.decode(generated_ids[0] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ )
44
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = KandinskyVaaImgaImgPipeline __UpperCAmelCase : Optional[Any] = ['image_embeds', 'negative_image_embeds', 'image'] __UpperCAmelCase : List[Any] = [ 'image_embeds', 'negative_image_embeds', 'image', ] __UpperCAmelCase : Optional[Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __UpperCAmelCase : Any = False @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return 32 @property def __UpperCAmelCase ( self ): return self.time_input_dim @property def __UpperCAmelCase ( self ): return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ): return 100 @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __a = UNetaDConditionModel(**_a ) return model @property def __UpperCAmelCase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self ): __a = self.dummy_unet __a = self.dummy_movq __a = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __a = DDIMScheduler(**_a ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCAmelCase ( self , _a , _a=0 ): __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) __a = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = pipe(**self.get_dummy_inputs(_a ) ) __a = output.images __a = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __a = '''A red cartoon frog, 4k''' __a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) __a = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __a = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) __a = torch.Generator(device='''cpu''' ).manual_seed(0 ) __a , __a = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __a = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
45
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
"""simple docstring""" import math def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE , 2 ) - a def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return 2 * x def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float ): '''simple docstring''' lowerCAmelCase = 2.0 while start <= a: lowerCAmelCase = math.pow(SCREAMING_SNAKE_CASE , 2 ) return start def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int = 99_99 , SCREAMING_SNAKE_CASE : float = 0.00_00_00_00_00_00_01 ): '''simple docstring''' if a < 0: raise ValueError("""math domain error""" ) lowerCAmelCase = get_initial_point(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase = value lowerCAmelCase = value - fx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / fx_derivative(SCREAMING_SNAKE_CASE ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , _a : Any , _a : List[str]=13 , _a : Union[str, Any]=7 , _a : List[Any]=True , _a : Optional[int]=True , _a : Tuple=True , _a : Optional[Any]=True , _a : Optional[int]=99 , _a : str=24 , _a : str=2 , _a : Union[str, Any]=6 , _a : Union[str, Any]=37 , _a : Any="gelu" , _a : Any=0.1 , _a : List[Any]=0.1 , _a : List[str]=512 , _a : Tuple=16 , _a : List[str]=2 , _a : int=0.02 , _a : Optional[int]=3 , _a : Any=None , _a : int=1000 , ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =range_bbox def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE =bbox[i, j, 3] _SCREAMING_SNAKE_CASE =bbox[i, j, 1] _SCREAMING_SNAKE_CASE =t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE =bbox[i, j, 2] _SCREAMING_SNAKE_CASE =bbox[i, j, 0] _SCREAMING_SNAKE_CASE =t _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : int , _a : Any , _a : str , _a : Union[str, Any] , _a : Any , _a : Tuple , _a : List[Any] , _a : Dict , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[int] , _a : Tuple , _a : List[str] , _a : Optional[Any] , _a : Any , _a : Tuple , _a : Any , _a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Tuple , _a : str , _a : List[str] , _a : Optional[Any] , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : str , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A__ ( A__ , A__ , A__ , unittest.TestCase ): A__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False def A ( self : Tuple , _a : Union[str, Any] , _a : int , _a : List[Any] , _a : Optional[int] , _a : int ) -> Optional[Any]: '''simple docstring''' return True def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*_a ) def A ( self : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def A ( self : List[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def A ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class A__ ( unittest.TestCase ): def A ( self : Dict ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[1, 2]] , device=_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(input_ids=_a , bbox=_a ) _SCREAMING_SNAKE_CASE =torch.Size([1, 2, 768] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1e-3 ) )
47
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : '''simple docstring''' pass
48
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
def __snake_case ( _UpperCAmelCase ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __a = len(_UpperCAmelCase ) __a = max(_UpperCAmelCase ) __a = min(_UpperCAmelCase ) # create the counting array __a = coll_max + 1 - coll_min __a = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _UpperCAmelCase ): __a = counting_arr[i] + counting_arr[i - 1] # create the output collection __a = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _UpperCAmelCase ) ): __a = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __snake_case ( _UpperCAmelCase ): return "".join([chr(_UpperCAmelCase ) for i in counting_sort([ord(_UpperCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" __snake_case :Tuple = input('''Enter numbers separated by a comma:\n''').strip() __snake_case :Dict = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
49
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
def A (__A : int = 1000000 ) -> int: """simple docstring""" UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , __A ): for n in range(__A , __A , __A ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
51
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
import os def A_ ( ) -> List[str]: UpperCamelCase : Optional[Any] = os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) UpperCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , "triangle.txt" ) with open(_lowerCAmelCase ) as f: UpperCamelCase : Optional[int] = f.readlines() UpperCamelCase : Tuple = [] for line in triangle: UpperCamelCase : int = [] for number in line.strip().split(" " ): numbers_from_line.append(int(_lowerCAmelCase ) ) a.append(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): for j in range(len(a[i] ) ): UpperCamelCase : Dict = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase : Tuple = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCAmelCase , _lowerCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
52
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there' , return_tensors='tf' ).input_ids __UpperCamelCase = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __UpperCamelCase = model(__A , labels=__A ).loss __UpperCamelCase = -tf.math.reduce_mean(__A ).numpy() __UpperCamelCase = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
53
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a__ : Union[str, Any] = logging.get_logger(__name__) a__ : str = '''T5Config''' def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = jnp.zeros_like(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __SCREAMING_SNAKE_CASE = shifted_input_ids.at[:, 0].set(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = jnp.where(shifted_input_ids == -100 , lowerCAmelCase_ , lowerCAmelCase_ ) return shifted_input_ids class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "mt5" snake_case__ : List[str] = MTaConfig class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : int = "mt5" snake_case__ : Dict = MTaConfig class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = "mt5" snake_case__ : Optional[int] = MTaConfig
54
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): if isinstance(UpperCAmelCase_ , torch.Tensor ): return image elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(UpperCAmelCase_ , axis=0 ) lowerCamelCase_ = np.array(UpperCAmelCase_ ).astype(np.floataa ) / 255.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase_ , dim=0 ) return image def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=0.9995 ): if not isinstance(UpperCAmelCase_ , np.ndarray ): lowerCamelCase_ = True lowerCamelCase_ = va.device lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = np.sum(va * va / (np.linalg.norm(UpperCAmelCase_ ) * np.linalg.norm(UpperCAmelCase_ )) ) if np.abs(UpperCAmelCase_ ) > DOT_THRESHOLD: lowerCamelCase_ = (1 - t) * va + t * va else: lowerCamelCase_ = np.arccos(UpperCAmelCase_ ) lowerCamelCase_ = np.sin(UpperCAmelCase_ ) lowerCamelCase_ = theta_a * t lowerCamelCase_ = np.sin(UpperCAmelCase_ ) lowerCamelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ = sin_theta_t / sin_theta_a lowerCamelCase_ = sa * va + sa * va if inputs_are_torch: lowerCamelCase_ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) return va def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): lowerCamelCase_ = F.normalize(UpperCAmelCase_ , dim=-1 ) lowerCamelCase_ = F.normalize(UpperCAmelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): for param in model.parameters(): lowerCamelCase_ = value class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): """simple docstring""" super().__init__() self.register_modules( vae=UpperCamelCase , text_encoder=UpperCamelCase , clip_model=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , feature_extractor=UpperCamelCase , coca_model=UpperCamelCase , coca_tokenizer=UpperCamelCase , coca_transform=UpperCamelCase , ) lowerCamelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCamelCase ) else feature_extractor.size["shortest_edge"] ) lowerCamelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCamelCase ) set_requires_grad(self.clip_model , UpperCamelCase ) def snake_case ( self , UpperCamelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.enable_attention_slicing(UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.vae , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.vae , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.unet , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.unet , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" # get the original timestep using init_timestep lowerCamelCase_ = min(int(num_inference_steps * strength ) , UpperCamelCase ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" if not isinstance(UpperCamelCase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(UpperCamelCase )}''' ) lowerCamelCase_ = image.to(device=UpperCamelCase , dtype=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase ) ] lowerCamelCase_ = torch.cat(UpperCamelCase , dim=0 ) else: lowerCamelCase_ = self.vae.encode(UpperCamelCase ).latent_dist.sample(UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 0.18_215 * init_latents lowerCamelCase_ = init_latents.repeat_interleave(UpperCamelCase , dim=0 ) lowerCamelCase_ = randn_tensor(init_latents.shape , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) # get latents lowerCamelCase_ = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = init_latents return latents def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.coca_transform(UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.feature_extractor.preprocess(UpperCamelCase ) lowerCamelCase_ = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ = self.clip_model.get_image_features(UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip.repeat_interleave(UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = latents.detach().requires_grad_() lowerCamelCase_ = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ = torch.sqrt(UpperCamelCase ) lowerCamelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCamelCase ): lowerCamelCase_ = self.scheduler.sigmas[index] lowerCamelCase_ = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18_215 * sample lowerCamelCase_ = self.vae.decode(UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = transforms.Resize(self.feature_extractor_size )(UpperCamelCase ) lowerCamelCase_ = self.normalize(UpperCamelCase ).to(latents.dtype ) lowerCamelCase_ = self.clip_model.get_image_features(UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase ) lowerCamelCase_ = spherical_dist_loss(UpperCamelCase , UpperCamelCase ).mean() * clip_guidance_scale lowerCamelCase_ = -torch.autograd.grad(UpperCamelCase , UpperCamelCase )[0] if isinstance(self.scheduler , UpperCamelCase ): lowerCamelCase_ = latents.detach() + grads * (sigma**2) lowerCamelCase_ = noise_pred_original else: lowerCamelCase_ = noise_pred_original - torch.sqrt(UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 512 , UpperCamelCase = 512 , UpperCamelCase = 0.6 , UpperCamelCase = 50 , UpperCamelCase = 7.5 , UpperCamelCase = 1 , UpperCamelCase = 0.0 , UpperCamelCase = 100 , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , UpperCamelCase = 0.8 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(UpperCamelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(UpperCamelCase , torch.Generator ) and batch_size > 1: lowerCamelCase_ = [generator] + [None] * (batch_size - 1) lowerCamelCase_ = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase_ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase_ = ", ".join(UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCamelCase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(UpperCamelCase ) if style_prompt is None: if len(UpperCamelCase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(UpperCamelCase ) # get prompt text embeddings for content and style lowerCamelCase_ = self.tokenizer( UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = self.tokenizer( UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = slerp(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ = text_embeddings.repeat_interleave(UpperCamelCase , dim=0 ) # set timesteps lowerCamelCase_ = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ = {} if accepts_offset: lowerCamelCase_ = 1 self.scheduler.set_timesteps(UpperCamelCase , **UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.get_timesteps(UpperCamelCase , UpperCamelCase , self.device ) lowerCamelCase_ = timesteps[:1].repeat(UpperCamelCase ) # Preprocess image lowerCamelCase_ = preprocess(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , text_embeddings.dtype , self.device , UpperCamelCase ) lowerCamelCase_ = preprocess(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , text_embeddings.dtype , self.device , UpperCamelCase ) lowerCamelCase_ = slerp(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if clip_guidance_scale > 0: lowerCamelCase_ = self.get_clip_image_embeddings(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.get_clip_image_embeddings(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = slerp( UpperCamelCase , UpperCamelCase , UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = content_text_input.input_ids.shape[-1] lowerCamelCase_ = self.tokenizer([""] , padding="max_length" , max_length=UpperCamelCase , return_tensors="pt" ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ = uncond_embeddings.repeat_interleave(UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ = torch.randn(UpperCamelCase , generator=UpperCamelCase , device="cpu" , dtype=UpperCamelCase ).to( self.device ) else: lowerCamelCase_ = torch.randn(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta # check if the scheduler accepts generator lowerCamelCase_ = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ = generator with self.progress_bar(total=UpperCamelCase ): for i, t in enumerate(UpperCamelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ ,lowerCamelCase_ = self.cond_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCamelCase , nsfw_content_detected=UpperCamelCase )
55
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: # noqa: E741 '''simple docstring''' while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return 0 snake_case_ = [0] * len(__UpperCAmelCase ) snake_case_ = 1 snake_case_ = v[0] for i in range(1, len(__UpperCAmelCase ) ): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right A : Union[str, Any] = 5_0_0_0_3 A : Any = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str =PLBartTokenizer __UpperCAmelCase : Optional[Any] =None __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 4 , __a )] self.assertListEqual(__a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) __lowerCAmelCase = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __lowerCAmelCase = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) def snake_case ( self ): __lowerCAmelCase = PLBartTokenizer(__a , language_codes="multi" , keep_accents=__a ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 7 , __a )] self.assertListEqual( __a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) __lowerCAmelCase = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __lowerCAmelCase = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict ="""uclanlp/plbart-python-en_XX""" __UpperCAmelCase : List[str] =[ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] __UpperCAmelCase : List[Any] =[ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] __UpperCAmelCase : Optional[int] =[ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def snake_case ( cls ): __lowerCAmelCase = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) __lowerCAmelCase = 1 return cls def snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_00_03 ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def snake_case ( self ): self.assertIn(__a , self.tokenizer.all_special_ids ) __lowerCAmelCase = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] __lowerCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case ( self ): __lowerCAmelCase = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , __a ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_00_04, 5_00_01] ) def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) __lowerCAmelCase = PLBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) __lowerCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __lowerCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="pt" ) __lowerCAmelCase = targets["input_ids"] __lowerCAmelCase = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX "input_ids": [[1_50, 2_42, 2, 5_00_03]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_00_01, } , )
57
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
'''simple docstring''' import sys lowercase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase ( __lowerCamelCase : str ) ->int: _SCREAMING_SNAKE_CASE = 1 for digit in s: product *= int(__lowerCamelCase ) return product def lowerCamelCase ( __lowerCamelCase : str = N ) ->int: _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 _SCREAMING_SNAKE_CASE = n[:13] _SCREAMING_SNAKE_CASE = 13 while cur_index < len(__lowerCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index] cur_index += 1 else: _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , str_eval(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
58
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": 5_12, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = LxmertTokenizer def __init__(self : Dict , snake_case__ : Tuple=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[Any]=True , snake_case__ : Tuple="[UNK]" , snake_case__ : Optional[Any]="[SEP]" , snake_case__ : Optional[Any]="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : Tuple="[MASK]" , snake_case__ : Dict=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(snake_case__ , normalizer_state.pop("type" ) ) snake_case : str = do_lower_case snake_case : List[Any] = strip_accents snake_case : Optional[int] = tokenize_chinese_chars snake_case : int = normalizer_class(**snake_case__ ) snake_case : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=None ) -> Any: '''simple docstring''' snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Optional[Any] = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : List[Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
59
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case ( _snake_case : Union[str, Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ): lowerCAmelCase : Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase : Dict = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) lowerCAmelCase : List[Any] = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) lowerCAmelCase : List[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) lowerCAmelCase : List[str] = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) lowerCAmelCase : Optional[Any] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) lowerCAmelCase : Tuple = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) lowerCAmelCase : int = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) lowerCAmelCase : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) lowerCAmelCase : List[str] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) lowerCAmelCase : Dict = key.replace('''image_encoder.module''' , '''flava.image_model''' ) lowerCAmelCase : Optional[int] = key.replace('''text_encoder.module''' , '''flava.text_model''' ) lowerCAmelCase : Optional[int] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) lowerCAmelCase : Tuple = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) lowerCAmelCase : Tuple = key.replace('''text_projection''' , '''flava.text_projection''' ) lowerCAmelCase : Dict = key.replace('''image_projection''' , '''flava.image_projection''' ) lowerCAmelCase : Union[str, Any] = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase : Dict = value return upgrade @torch.no_grad() def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : int=None ): if config_path is not None: lowerCAmelCase : Optional[int] = FlavaConfig.from_pretrained(_snake_case ) else: lowerCAmelCase : Optional[Any] = FlavaConfig() lowerCAmelCase : List[Any] = FlavaForPreTraining(_snake_case ).eval() lowerCAmelCase : int = convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='''cpu''' ) else: lowerCAmelCase : str = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' ) lowerCAmelCase : str = upgrade_state_dict(_snake_case , _snake_case ) hf_model.load_state_dict(_snake_case ) lowerCAmelCase : Optional[int] = hf_model.state_dict() lowerCAmelCase : Any = count_parameters(_snake_case ) lowerCAmelCase : List[Any] = count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1E-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case__ : Any = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
60
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
61
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='hf-internal-testing/tiny-random-t5' __UpperCamelCase =AutoTokenizer.from_pretrained(A_ ) __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ ) __UpperCamelCase =tokenizer('This is me' , return_tensors='pt' ) __UpperCamelCase =model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCamelCase =model.generate(**A_ ) __UpperCamelCase =model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCamelCase =model_reloaded.generate(**A_ ) self.assertTrue(torch.allclose(A_ , A_ ) ) def _a ( self ) -> str: __UpperCamelCase ='hf-internal-testing/tiny-random-t5' __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ ) __UpperCamelCase =model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(A_ ): model.save_pretrained(A_ ) __UpperCamelCase =model.reverse_bettertransformer() model.save_pretrained(A_ )
62
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A_ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') A_ = parser.parse_args() if args.model_type == "bert": A_ = BertForMaskedLM.from_pretrained(args.model_name) A_ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') A_ = model.state_dict() A_ = {} for w in ["word_embeddings", "position_embeddings"]: A_ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: A_ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] A_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 A_ = state_dict['''cls.predictions.decoder.weight'''] A_ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: A_ = state_dict[F'''cls.predictions.transform.dense.{w}'''] A_ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
64
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[torch.FloatTensor] = None __UpperCAmelCase : torch.FloatTensor = None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None class A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=5_1_2 , __UpperCAmelCase : List[str]="cls" , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : str=True , **__UpperCAmelCase : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = project_dim UpperCAmelCase__ = pooler_fn UpperCAmelCase__ = learn_encoder UpperCAmelCase__ = use_attention_mask class A ( UpperCAmelCase_ ): __UpperCAmelCase : Tuple = [r'pooler', r'logit_scale'] __UpperCAmelCase : int = [r'position_ids', r'predictions.decoder.bias'] __UpperCAmelCase : Any = 'roberta' __UpperCAmelCase : List[str] = RobertaSeriesConfig def __init__(self : Tuple , __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" super().__init__(__UpperCAmelCase ) UpperCAmelCase__ = XLMRobertaModel(__UpperCAmelCase ) UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = getattr(__UpperCAmelCase , "has_pre_transformation" , __UpperCAmelCase ) if self.has_pre_transformation: UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.base_model( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__UpperCAmelCase , ) if self.has_pre_transformation: UpperCAmelCase__ = outputs["hidden_states"][-2] UpperCAmelCase__ = self.pre_LN(__UpperCAmelCase ) UpperCAmelCase__ = self.transformation_pre(__UpperCAmelCase ) return TransformationModelOutput( projection_state=__UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
65
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" def A_ ( _lowercase, _lowercase ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ :Union[str, Any] = str(bin(_lowercase ) ) binary_number += "0" * shift_amount return binary_number def A_ ( _lowercase, _lowercase ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ :Optional[int] = str(bin(_lowercase ) )[2:] if shift_amount >= len(_lowercase ): return "0b0" snake_case_ :Optional[int] = binary_number[: len(_lowercase ) - shift_amount] return "0b" + shifted_binary_number def A_ ( _lowercase, _lowercase ): '''simple docstring''' if number >= 0: # Get binary representation of positive number snake_case_ :Any = """0""" + str(bin(_lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ :Dict = len(bin(_lowercase )[3:] ) # Find 2's complement of number snake_case_ :Optional[int] = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:] snake_case_ :Any = ( """1""" + """0""" * (binary_number_length - len(_lowercase )) + binary_number ) if shift_amount >= len(_lowercase ): return "0b" + binary_number[0] * len(_lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
66
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class a__ : def __init__( self : List[Any] , a : Any ): """simple docstring""" __lowerCamelCase = data __lowerCamelCase = None class a__ : def __init__( self : Any ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = None def __iter__( self : Any ): """simple docstring""" __lowerCamelCase = self.head while self.head: yield node.data __lowerCamelCase = node.next if node == self.head: break def __len__( self : Any ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): """simple docstring""" return "->".join(str(a ) for item in iter(self ) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Any ): """simple docstring""" self.insert_nth(len(self ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Any ): """simple docstring""" self.insert_nth(0 , a ) def SCREAMING_SNAKE_CASE__ ( self : int , a : int , a : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __lowerCamelCase = Node(a ) if self.head is None: __lowerCamelCase = new_node # first node points itself __lowerCamelCase = __lowerCamelCase = new_node elif index == 0: # insert at head __lowerCamelCase = self.head __lowerCamelCase = __lowerCamelCase = new_node else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = new_node if index == len(self ) - 1: # insert at tail __lowerCamelCase = new_node def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __lowerCamelCase = self.head if self.head == self.tail: # just one node __lowerCamelCase = __lowerCamelCase = None elif index == 0: # delete head node __lowerCamelCase = self.tail.next.next __lowerCamelCase = self.head.next else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = temp.next.next if index == len(self ) - 1: # delete at tail __lowerCamelCase = temp return delete_node.data def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return len(self ) == 0 def __lowerCAmelCase ( ) -> None: __lowerCamelCase = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ReformerTokenizer __lowerCamelCase = ReformerTokenizerFast __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> int: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = "<s>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase ) , 1000 ) def UpperCamelCase ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = "I was born in 92000, and this is falsé." A__ = tokenizer.tokenize(lowercase ) A__ = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase ) A__ = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def UpperCamelCase ( self , lowercase=15 ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) # Simple input A__ = "This is a simple input" A__ = ["This is a simple input 1", "This is a simple input 2"] A__ = ("This is a simple input", "This is a pair") A__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding="max_length" ) # Simple input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding="max_length" ) # Simple input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding="max_length" , ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding="max_length" ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding="max_length" ) # Pair input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding="max_length" , ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = ReformerTokenizer(lowercase , keep_accents=lowercase ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [285, 46, 10, 170, 382] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = "Hello World!" A__ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) A__ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @require_torch @slow def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = " ".join(lowercase ) A__ = self.big_tokenizer.encode_plus(lowercase , return_tensors="pt" ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence["input_ids"].shape A__ = ReformerModel(lowercase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase ) model(**lowercase ) @slow def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowercase , sequences=lowercase , )
68
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __UpperCamelCase = logging.get_logger('''transformers.models.speecht5''') __UpperCamelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __UpperCamelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __UpperCamelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __UpperCamelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __UpperCamelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __UpperCamelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __UpperCamelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __UpperCamelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCamelCase = [] __UpperCamelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __UpperCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value else: snake_case_ = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_ , snake_case_ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = [] if task == "s2t": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2T snake_case_ = IGNORE_KEYS_S2T elif task == "t2s": snake_case_ = None snake_case_ = MAPPING_T2S snake_case_ = IGNORE_KEYS_T2S elif task == "s2s": snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ = MAPPING_S2S snake_case_ = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCAmelCase , UpperCAmelCase ): logger.info(f'{name} was ignored' ) continue snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case_ , snake_case_ = key.split('.*.' ) if prefix in name and suffix in name: snake_case_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: snake_case_ = 'weight' elif "running_mean" in name: snake_case_ = 'running_mean' elif "running_var" in name: snake_case_ = 'running_var' elif "num_batches_tracked" in name: snake_case_ = 'num_batches_tracked' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Dict: if config_path is not None: snake_case_ = SpeechTaConfig.from_pretrained(UpperCAmelCase ) else: snake_case_ = SpeechTaConfig() if task == "s2t": snake_case_ = config.max_text_positions snake_case_ = SpeechTaForSpeechToText(UpperCAmelCase ) elif task == "t2s": snake_case_ = 1876 snake_case_ = 600 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForTextToSpeech(UpperCAmelCase ) elif task == "s2s": snake_case_ = 1876 snake_case_ = config.max_speech_positions snake_case_ = SpeechTaForSpeechToSpeech(UpperCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: snake_case_ = SpeechTaTokenizer(UpperCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case_ = AddedToken('<mask>' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) snake_case_ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = SpeechTaProcessor(tokenizer=UpperCAmelCase , feature_extractor=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) snake_case_ = torch.load(UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCAmelCase , UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase ) model.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
69
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: int = KandinskyVaaImgaImgPipeline _lowercase: List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase: Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase: Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase: List[str] = False @property def lowercase__ ( self : str ) -> List[str]: return 32 @property def lowercase__ ( self : Optional[int] ) -> List[Any]: return 32 @property def lowercase__ ( self : Tuple ) -> str: return self.time_input_dim @property def lowercase__ ( self : Any ) -> Optional[int]: return self.time_input_dim * 4 @property def lowercase__ ( self : int ) -> Optional[Any]: return 1_00 @property def lowercase__ ( self : int ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**__snake_case ) return model @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Dict ) -> str: torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[int] ) -> Optional[int]: _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**__snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : int , __snake_case : List[str] , __snake_case : List[Any]=0 ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) _lowerCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = """A red cartoon frog, 4k""" _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
70
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
from torch import nn def A ( a_ ) -> Any: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
71
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __snake_case ( _lowercase): snake_case__ : List[Any] = "roberta" def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int]=5_0_2_6_5 , __lowerCAmelCase : List[str]=7_6_8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Union[str, Any]=3_0_7_2 , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Dict=5_1_2 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[Any]=1E-12 , __lowerCAmelCase : str=1 , __lowerCAmelCase : List[Any]=0 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Tuple="absolute" , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Any=None , **__lowerCAmelCase : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Any = type_vocab_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : int = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Any = classifier_dropout class __snake_case ( _lowercase): @property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
72
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a =""" @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a ="""\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ a =""" Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: def remove_articles(lowerCamelCase__ ): __lowerCamelCase : Dict = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(lowerCamelCase__ , ' ' , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): __lowerCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Union[str, Any] = [any(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for ref in refs ) for pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ )] return (sum(lowerCamelCase__ ) / len(lowerCamelCase__ )) * 1_0_0 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : List[str] = [rgram for rgrams in rgramslist for rgram in rgrams] __lowerCamelCase : Any = Counter(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = Counter(lowerCamelCase__ ) __lowerCamelCase : List[str] = Counter() for sgram, scount in sgramcounter.items(): __lowerCamelCase : Any = scount * numref __lowerCamelCase : Union[str, Any] = Counter(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): __lowerCamelCase : List[str] = ccount * numref # KEEP __lowerCamelCase : Optional[Any] = sgramcounter_rep & cgramcounter_rep __lowerCamelCase : List[Any] = keepgramcounter_rep & rgramcounter __lowerCamelCase : int = sgramcounter_rep & rgramcounter __lowerCamelCase : int = 0 __lowerCamelCase : Optional[int] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : Optional[Any] = 1 if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Tuple = keeptmpscorea / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowerCamelCase : Tuple = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowerCamelCase : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowerCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowerCamelCase : str = sgramcounter_rep - cgramcounter_rep __lowerCamelCase : Tuple = delgramcounter_rep - rgramcounter __lowerCamelCase : Tuple = sgramcounter_rep - rgramcounter __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : int = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : Any = 1 if len(lowerCamelCase__ ) > 0: __lowerCamelCase : List[Any] = deltmpscorea / len(lowerCamelCase__ ) # ADDITION __lowerCamelCase : str = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = set(lowerCamelCase__ ) & set(lowerCamelCase__ ) __lowerCamelCase : str = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) __lowerCamelCase : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : int = 1 __lowerCamelCase : List[str] = 1 if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Any = addtmpscore / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Optional[int] = addtmpscore / len(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: __lowerCamelCase : List[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : int = len(lowerCamelCase__ ) __lowerCamelCase : int = ssent.split(' ' ) __lowerCamelCase : Optional[Any] = csent.split(' ' ) __lowerCamelCase : int = [] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Tuple = [] __lowerCamelCase : str = [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : List[Any] = [] __lowerCamelCase : List[Any] = [] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Dict = [] for rsent in rsents: __lowerCamelCase : str = rsent.split(' ' ) __lowerCamelCase : List[Any] = [] __lowerCamelCase : List[Any] = [] __lowerCamelCase : Union[str, Any] = [] ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: __lowerCamelCase : List[str] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: __lowerCamelCase : List[Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: __lowerCamelCase : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: __lowerCamelCase : Any = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: __lowerCamelCase : Optional[int] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: __lowerCamelCase : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: __lowerCamelCase : Any = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: __lowerCamelCase : str = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: __lowerCamelCase : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(lowerCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : Dict = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : Union[str, Any] = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : Union[str, Any] = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : str = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowerCamelCase : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4 __lowerCamelCase : str = sum([addascore, addascore, addascore, addascore] ) / 4 __lowerCamelCase : List[str] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = "13a" , lowerCamelCase__ = True ) -> Any: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __lowerCamelCase : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowerCamelCase : int = sacrebleu.metrics.bleu._get_tokenizer(lowerCamelCase__ )()(lowerCamelCase__ ) else: __lowerCamelCase : str = sacrebleu.TOKENIZERS[tokenizer]()(lowerCamelCase__ ) elif tokenizer == "moses": __lowerCamelCase : Optional[Any] = sacremoses.MosesTokenizer().tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ , escape=lowerCamelCase__ ) elif tokenizer == "penn": __lowerCamelCase : Tuple = sacremoses.MosesTokenizer().penn_tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ ) else: __lowerCamelCase : List[Any] = sentence if not return_str: __lowerCamelCase : Optional[int] = normalized_sent.split() return normalized_sent def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: if not (len(lowerCamelCase__ ) == len(lowerCamelCase__ ) == len(lowerCamelCase__ )): raise ValueError('Sources length must match predictions and references lengths.' ) __lowerCamelCase : List[str] = 0 for src, pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): sari_score += SARIsent(normalize(lowerCamelCase__ ) , normalize(lowerCamelCase__ ) , [normalize(lowerCamelCase__ ) for sent in refs] ) __lowerCamelCase : int = sari_score / len(lowerCamelCase__ ) return 1_0_0 * sari_score def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="exp" , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ) -> int: __lowerCamelCase : Tuple = len(references[0] ) if any(len(lowerCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __lowerCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(lowerCamelCase__ )] __lowerCamelCase : Dict = sacrebleu.corpus_bleu( lowerCamelCase__ , lowerCamelCase__ , smooth_method=lowerCamelCase__ , smooth_value=lowerCamelCase__ , force=lowerCamelCase__ , lowercase=lowerCamelCase__ , use_effective_order=lowerCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : str): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence'), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence') ,id='references'), }) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : List[str] = {} result.update({'sari': compute_sari(sources=SCREAMING_SNAKE_CASE__ ,predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__)}) result.update({'sacrebleu': compute_sacrebleu(predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__)}) result.update({'exact': compute_em(predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__)}) return result
73
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = GPTaTokenizer _lowerCamelCase: Tuple = GPTaTokenizerFast _lowerCamelCase: str = True _lowerCamelCase: Any = {'''add_prefix_space''': True} _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,**A_ : Tuple ) -> Any: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,**A_ : List[str] ) -> List[str]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[Any] ) -> Union[str, Any]: A = 'lower newer' A = 'lower newer' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) A = 'lower newer' A = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] A = tokenizer.tokenize(A_ ,add_prefix_space=A_ ) self.assertListEqual(A_ ,A_ ) A = tokens + [tokenizer.unk_token] A = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer(add_prefix_space=A_ ) A = 'lower newer' # Testing tokenization A = tokenizer.tokenize(A_ ,add_prefix_space=A_ ) A = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) # Testing conversion to ids without special tokens A = tokenizer.encode(A_ ,add_special_tokens=A_ ,add_prefix_space=A_ ) A = rust_tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) # Testing conversion to ids with special tokens A = self.get_rust_tokenizer(add_prefix_space=A_ ) A = tokenizer.encode(A_ ,add_prefix_space=A_ ) A = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ ,A_ ) # Testing the unknown token A = tokens + [rust_tokenizer.unk_token] A = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,*A_ : Any ,**A_ : Dict ) -> Any: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any]=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) # Simple input A = 'This is a simple input' A = ['This is a simple input 1', 'This is a simple input 2'] A = ('This is a simple input', 'This is a pair') A = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(A_ ,tokenizer_r.encode ,A_ ,max_length=A_ ,padding='max_length' ) # Simple input self.assertRaises(A_ ,tokenizer_r.encode_plus ,A_ ,max_length=A_ ,padding='max_length' ) # Simple input self.assertRaises( A_ ,tokenizer_r.batch_encode_plus ,A_ ,max_length=A_ ,padding='max_length' ,) # Pair input self.assertRaises(A_ ,tokenizer_r.encode ,A_ ,max_length=A_ ,padding='max_length' ) # Pair input self.assertRaises(A_ ,tokenizer_r.encode_plus ,A_ ,max_length=A_ ,padding='max_length' ) # Pair input self.assertRaises( A_ ,tokenizer_r.batch_encode_plus ,A_ ,max_length=A_ ,padding='max_length' ,) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token='<pad>' ) # Simple input A = 'This is a simple input' A = ['This is a simple input looooooooong', 'This is a simple input'] A = ('This is a simple input', 'This is a pair') A = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] A = tokenizer.pad_token_id A = tokenizer(A_ ,padding='max_length' ,max_length=30 ,return_tensors='np' ) A = tokenizer(A_ ,padding=A_ ,truncate=A_ ,return_tensors='np' ) A = tokenizer(*A_ ,padding='max_length' ,max_length=60 ,return_tensors='np' ) A = tokenizer(A_ ,padding=A_ ,truncate=A_ ,return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = '$$$' A = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=A_ ,add_bos_token=A_ ) A = 'This is a simple input' A = ['This is a simple input 1', 'This is a simple input 2'] A = tokenizer.bos_token_id A = tokenizer(A_ ) A = tokenizer(A_ ) self.assertEqual(out_s.input_ids[0] ,A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A = tokenizer.decode(out_s.input_ids ) A = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented A = [self.get_tokenizer(do_lower_case=A_ ,add_bos_token=A_ )] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A = 'Encode this.' A = 'This one too please.' A = tokenizer.encode(A_ ,add_special_tokens=A_ ) encoded_sequence += tokenizer.encode(A_ ,add_special_tokens=A_ ) A = tokenizer.encode_plus( A_ ,A_ ,add_special_tokens=A_ ,return_special_tokens_mask=A_ ,) A = encoded_sequence_dict['input_ids'] A = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(A_ ) ,len(A_ ) ) A = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ ) ] A = [x for x in filtered_sequence if x is not None] self.assertEqual(A_ ,A_ ) @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 A = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=A_ ) A = 'A photo of a cat' A = tokenizer.encode( A_ ,) self.assertEqual(A_ ,[2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) A = AutoTokenizer.from_pretrained('./test_opt' ) A = tokenizer.encode( A_ ,) self.assertEqual(A_ ,[2, 250, 1345, 9, 10, 4758] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = AutoTokenizer.from_pretrained('facebook/opt-350m' ,use_slow=A_ ) A = 'A photo of a cat' A = tokenizer.encode( A_ ,) # Same as above self.assertEqual(A_ ,[2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=A_ ) A = 'bos' A = tokenizer.get_vocab()['bos'] A = 'A photo of a cat' A = tokenizer.encode( A_ ,) # We changed the bos token self.assertEqual(A_ ,[3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) A = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) A = tokenizer.encode( A_ ,) self.assertEqual(A_ ,[3_1957, 250, 1345, 9, 10, 4758] )
74
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_uncond_unet lowerCamelCase_ =ScoreSdeVeScheduler() lowerCamelCase_ =ScoreSdeVePipeline(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sde_ve(num_inference_steps=2, output_type='''numpy''', generator=lowerCAmelCase ).images lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sde_ve(num_inference_steps=2, output_type='''numpy''', generator=lowerCAmelCase, return_dict=lowerCAmelCase )[ 0 ] lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''google/ncsnpp-church-256''' lowerCamelCase_ =UNetaDModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =ScoreSdeVePipeline(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sde_ve(num_inference_steps=10, output_type='''numpy''', generator=lowerCAmelCase ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase_ =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
75
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCamelCase : Optional[int] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCamelCase : Any = concatenate_datasets _UpperCamelCase : Dict = DownloadConfig _UpperCamelCase : Dict = DownloadManager _UpperCamelCase : Dict = DownloadMode _UpperCamelCase : int = DownloadConfig _UpperCamelCase : Union[str, Any] = DownloadMode _UpperCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
77
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """rwkv""" __UpperCamelCase = {"""max_position_embeddings""": """context_length"""} def __init__( self :Dict , lowercase_ :Tuple=5_02_77 , lowercase_ :Union[str, Any]=10_24 , lowercase_ :Union[str, Any]=40_96 , lowercase_ :Dict=32 , lowercase_ :Optional[int]=None , lowercase_ :int=None , lowercase_ :Any=1E-5 , lowercase_ :Union[str, Any]=0 , lowercase_ :List[str]=0 , lowercase_ :str=6 , lowercase_ :Optional[int]=False , lowercase_ :Tuple=True , **lowercase_ :Optional[int] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = context_length UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = rescale_every UpperCAmelCase = use_cache UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
78
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase_ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''albert''' def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=30000 , __UpperCAmelCase : List[str]=128 , __UpperCAmelCase : List[Any]=4096 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : List[str]=64 , __UpperCAmelCase : str=16384 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : int="gelu_new" , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=512 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]="absolute" , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Dict=3 , **__UpperCAmelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = embedding_size _A = hidden_size _A = num_hidden_layers _A = num_hidden_groups _A = num_attention_heads _A = inner_group_num _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout_prob _A = position_embedding_type class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
79
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase_ ( unittest.TestCase ): def __a ( self ): UpperCamelCase__ = torch.nn.Linear(10 , 10 ) UpperCamelCase__ = torch.optim.SGD(model.parameters() , 0.1 ) UpperCamelCase__ = Accelerator() UpperCamelCase__ = accelerator.prepare(a ) try: pickle.loads(pickle.dumps(a ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
80
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "openai/whisper-base" __lowerCAmelCase = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __lowerCAmelCase = "transcriber" __lowerCAmelCase = WhisperProcessor __lowerCAmelCase = WhisperForConditionalGeneration __lowerCAmelCase = ["audio"] __lowerCAmelCase = ["text"] def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: return self.pre_processor(__A , return_tensors='''pt''' ).input_features def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: return self.model.generate(inputs=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0]
81
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" if index == number_of_items: return 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = knapsack(snake_case , snake_case , snake_case , snake_case , index + 1 ) if weights[index] <= max_weight: _lowerCAmelCase = values[index] + knapsack( snake_case , snake_case , snake_case , max_weight - weights[index] , index + 1 ) return max(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
82
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Optional[int]=0 ): '''simple docstring''' _UpperCamelCase : List[Any] = np.random.RandomState(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Tuple = self.get_dummy_inputs() _UpperCamelCase : Optional[Any] = pipe(**lowerCamelCase__ ).images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : str = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) _UpperCamelCase : Dict = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Dict = self.get_dummy_inputs() _UpperCamelCase : str = pipe(**lowerCamelCase__ ).images _UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : Dict = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) _UpperCamelCase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Tuple = self.get_dummy_inputs() _UpperCamelCase : str = pipe(**lowerCamelCase__ ).images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : List[str] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) _UpperCamelCase : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCamelCase : Union[str, Any] = pipe(**lowerCamelCase__ ).images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : Dict = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) _UpperCamelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Any = self.get_dummy_inputs() _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ).images _UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : List[Any] = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) _UpperCamelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = self.get_dummy_inputs() _UpperCamelCase : Optional[int] = pipe(**lowerCamelCase__ ).images _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase : Dict = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = self.get_dummy_inputs() _UpperCamelCase : int = 3 * [inputs['prompt']] # forward _UpperCamelCase : Union[str, Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = output.images[0, -3:, -3:, -1] _UpperCamelCase : Dict = self.get_dummy_inputs() _UpperCamelCase : Optional[int] = 3 * [inputs.pop('prompt' )] _UpperCamelCase : Tuple = pipe.tokenizer( lowerCamelCase__ ,padding='max_length' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowerCamelCase__ ,return_tensors='np' ,) _UpperCamelCase : Dict = text_inputs['input_ids'] _UpperCamelCase : Optional[Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _UpperCamelCase : Tuple = prompt_embeds # forward _UpperCamelCase : Dict = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = self.get_dummy_inputs() _UpperCamelCase : Dict = 3 * ['this is a negative prompt'] _UpperCamelCase : Optional[int] = negative_prompt _UpperCamelCase : Tuple = 3 * [inputs['prompt']] # forward _UpperCamelCase : Tuple = pipe(**lowerCamelCase__ ) _UpperCamelCase : int = output.images[0, -3:, -3:, -1] _UpperCamelCase : List[Any] = self.get_dummy_inputs() _UpperCamelCase : Optional[int] = 3 * [inputs.pop('prompt' )] _UpperCamelCase : List[str] = [] for p in [prompt, negative_prompt]: _UpperCamelCase : int = pipe.tokenizer( lowerCamelCase__ ,padding='max_length' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowerCamelCase__ ,return_tensors='np' ,) _UpperCamelCase : Optional[Any] = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = embeds # forward _UpperCamelCase : Dict = pipe(**lowerCamelCase__ ) _UpperCamelCase : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Dict = ort.SessionOptions() _UpperCamelCase : str = False return options def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' # using the PNDM scheduler by default _UpperCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0 ) _UpperCamelCase : int = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type='np' ) _UpperCamelCase : List[Any] = output.images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase : Tuple = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) _UpperCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Any = 'open neural network exchange' _UpperCamelCase : List[Any] = np.random.RandomState(0 ) _UpperCamelCase : List[Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase__ ,output_type='np' ) _UpperCamelCase : Optional[Any] = output.images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase : Optional[int] = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Any = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) _UpperCamelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : List[Any] = 'open neural network exchange' _UpperCamelCase : Dict = np.random.RandomState(0 ) _UpperCamelCase : Union[str, Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase__ ,output_type='np' ) _UpperCamelCase : Union[str, Any] = output.images _UpperCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase : Optional[Any] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Dict = 0 def test_callback_fn(lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : np.ndarray ) -> None: _UpperCamelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase : Any = latents[0, -3:, -3:, -1] _UpperCamelCase : Dict = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase : Union[str, Any] = latents[0, -3:, -3:, -1] _UpperCamelCase : int = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _UpperCamelCase : Dict = False _UpperCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Tuple = 'Andromeda galaxy in a bottle' _UpperCamelCase : Optional[Any] = np.random.RandomState(0 ) pipe( prompt=lowerCamelCase__ ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=lowerCamelCase__ ,callback=lowerCamelCase__ ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(lowerCamelCase__ ,lowerCamelCase__ ) assert pipe.safety_checker is None _UpperCamelCase : List[Any] = pipe('example prompt' ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCamelCase : Union[str, Any] = pipe('example prompt' ,num_inference_steps=2 ).images[0] assert image is not None
83
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :List[Any] = 3 lowerCAmelCase_ :List[Any] = 250 lowerCAmelCase_ :Any = ids_tensor((batch_size, length) , __A ) lowerCAmelCase_ :List[Any] = torch.ones((batch_size, length) , device=__A , dtype=torch.float ) / length return input_ids, scores def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ :int = self._get_tensors(5 ) lowerCAmelCase_ :Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = self._get_tensors(10 ) self.assertTrue(criteria(__A , __A ) ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[Any] = MaxLengthCriteria(max_length=10 ) lowerCAmelCase_ , lowerCAmelCase_ :Any = self._get_tensors(5 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = self._get_tensors(9 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(__A , __A ) ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Dict = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = self._get_tensors(5 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :Any = self._get_tensors(9 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(__A , __A ) ) lowerCAmelCase_ :List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ :Any = self._get_tensors(5 ) lowerCAmelCase_ :List[Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__A , __A ) ) lowerCAmelCase_ :Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__A , __A ) ) def __lowerCAmelCase ( self ) -> Tuple: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase_ :Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__A ) , 1 )
84
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class _snake_case ( lowercase_ , lowercase_ ): lowerCAmelCase_ : Tuple = "swin" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=32 , a__=None , a__=None , **a__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = len(a__ ) snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ = int(embed_dim * 2 ** (len(a__ ) - 1) ) snake_case_ = ["stem"] + [F'stage{idx}' for idx in range(1 , len(a__ ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : str = version.parse("1.11" ) @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-4
85
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
"""simple docstring""" from collections.abc import Generator def __lowerCAmelCase (): __lowerCAmelCase , __lowerCAmelCase : List[Any] = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = b, a + b yield b def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : List[str] = fibonacci_generator() while len(str(next(_UpperCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
def lowercase_ ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int]): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def lowercase_ ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : list[int] , _lowerCamelCase : int): # Base Case if curr_ind == len(_lowerCamelCase): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_lowerCamelCase)): if valid_connection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): # Insert current vertex into path as next transition lowercase__ : Any = next_ver # Validate created path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , curr_ind + 1): return True # Backtrack lowercase__ : Optional[Any] = -1 return False def lowercase_ ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int = 0): lowercase__ : Optional[Any] = [-1] * (len(_lowerCamelCase) + 1) # initialize start and end of path with starting index lowercase__ : List[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , 1) else []
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from __future__ import annotations from typing import TypedDict class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 a__ = 42 def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(A_ ) )] def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) __magic_name__ = all_rotations(A_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __magic_name__ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(A_ ), } return response def a__ ( A_, A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: __magic_name__ = int(A_ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(A_ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) __magic_name__ = [""""""] * len(A_ ) for _ in range(len(A_ ) ): for i in range(len(A_ ) ): __magic_name__ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __lowerCAmelCase : Tuple = 'Provide a string that I will generate its BWT transform: ' __lowerCAmelCase : str = input(entry_msg).strip() __lowerCAmelCase : Dict = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result["bwt_string"]}\'''' ) __lowerCAmelCase : Optional[Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' F'''we get original string \'{original_string}\'''' )
88
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[Any] = 'table-transformer' lowerCAmelCase : str = ['past_key_values'] lowerCAmelCase : Any = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : str ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[str]=3 ,_UpperCAmelCase : int=100 ,_UpperCAmelCase : List[Any]=6 ,_UpperCAmelCase : int=2048 ,_UpperCAmelCase : List[str]=8 ,_UpperCAmelCase : Tuple=6 ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : str=8 ,_UpperCAmelCase : str=0.0 ,_UpperCAmelCase : str=0.0 ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Tuple="relu" ,_UpperCAmelCase : Any=256 ,_UpperCAmelCase : Optional[Any]=0.1 ,_UpperCAmelCase : Tuple=0.0 ,_UpperCAmelCase : List[Any]=0.0 ,_UpperCAmelCase : Optional[int]=0.02 ,_UpperCAmelCase : Union[str, Any]=1.0 ,_UpperCAmelCase : Optional[Any]=False ,_UpperCAmelCase : Tuple="sine" ,_UpperCAmelCase : Optional[Any]="resnet50" ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : str=1 ,_UpperCAmelCase : Optional[Any]=5 ,_UpperCAmelCase : Optional[int]=2 ,_UpperCAmelCase : List[Any]=1 ,_UpperCAmelCase : int=1 ,_UpperCAmelCase : Optional[Any]=5 ,_UpperCAmelCase : Dict=2 ,_UpperCAmelCase : int=0.1 ,**_UpperCAmelCase : List[Any] ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _a : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Any = backbone_config.get('model_type' ) _a : List[str] = CONFIG_MAPPING[backbone_model_type] _a : Dict = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None _a , _a , _a : int = None, None, None _a : str = use_timm_backbone _a : List[Any] = backbone_config _a : Tuple = num_channels _a : List[str] = num_queries _a : Tuple = d_model _a : Optional[Any] = encoder_ffn_dim _a : Tuple = encoder_layers _a : List[str] = encoder_attention_heads _a : List[str] = decoder_ffn_dim _a : Tuple = decoder_layers _a : Any = decoder_attention_heads _a : int = dropout _a : Optional[int] = attention_dropout _a : Optional[int] = activation_dropout _a : int = activation_function _a : Optional[int] = init_std _a : List[Any] = init_xavier_std _a : Dict = encoder_layerdrop _a : str = decoder_layerdrop _a : Optional[Any] = encoder_layers _a : Optional[int] = auxiliary_loss _a : List[str] = position_embedding_type _a : Tuple = backbone _a : List[str] = use_pretrained_backbone _a : List[str] = dilation # Hungarian matcher _a : Dict = class_cost _a : Union[str, Any] = bbox_cost _a : str = giou_cost # Loss coefficients _a : str = mask_loss_coefficient _a : Tuple = dice_loss_coefficient _a : Optional[int] = bbox_loss_coefficient _a : List[str] = giou_loss_coefficient _a : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : Tuple ): return self.encoder_attention_heads @property def __lowercase ( self : Tuple ): return self.d_model class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : int = version.parse('1.11' ) @property def __lowercase ( self : int ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __lowercase ( self : Tuple ): return 1E-5 @property def __lowercase ( self : Tuple ): return 12
89
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters __A = False __A = False def lowerCamelCase_ ( UpperCamelCase__ : Namespace ) -> Optional[int]: """simple docstring""" return TrainCommand(UpperCamelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @staticmethod def lowercase_ ( lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=lowerCamelCase__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=lowerCamelCase__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=lowerCamelCase__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=lowerCamelCase__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=lowerCamelCase__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=lowerCamelCase__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=lowerCamelCase__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=lowerCamelCase__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=lowerCamelCase__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=lowerCamelCase__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=lowerCamelCase__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=lowerCamelCase__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = logging.get_logger('transformers-cli/training' ) __lowerCamelCase = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=lowerCamelCase__ ) __lowerCamelCase = args.output __lowerCamelCase = args.column_label __lowerCamelCase = args.column_text __lowerCamelCase = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": __lowerCamelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) __lowerCamelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) __lowerCamelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase = args.validation_split __lowerCamelCase = args.train_batch_size __lowerCamelCase = args.valid_batch_size __lowerCamelCase = args.learning_rate __lowerCamelCase = args.adam_epsilon def lowercase_ ( self ) -> int: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' raise NotImplementedError def lowercase_ ( self ) -> List[str]: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
90
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = data SCREAMING_SNAKE_CASE_ : int = None class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = None def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.head while temp is not None: print(temp.data , end=''' ''') SCREAMING_SNAKE_CASE_ : Optional[Any] = temp.next print() def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = Node(lowercase_) SCREAMING_SNAKE_CASE_ : int = self.head SCREAMING_SNAKE_CASE_ : List[str] = new_node def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE_ : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE_ : List[Any] = node_a.next SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE_ : Union[str, Any] = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = node_a.data, node_a.data if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
91
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
from jiwer import compute_measures import datasets UpperCamelCase__ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ UpperCamelCase__ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ UpperCamelCase__ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def __SCREAMING_SNAKE_CASE( self , _A=None , _A=None , _A=False ): """simple docstring""" if concatenate_texts: return compute_measures(_A , _A )["wer"] else: __lowerCAmelCase = 0 __lowerCAmelCase = 0 for prediction, reference in zip(_A , _A ): __lowerCAmelCase = compute_measures(_A , _A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
92
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
'''simple docstring''' from math import ceil def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 1001 ): """simple docstring""" lowercase_ : Tuple = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase_ : Optional[Any] = 2 * i + 1 lowercase_ : Any = 2 * i lowercase_ : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowercase : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
93
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['image_processor'] SCREAMING_SNAKE_CASE__ = 'SamImageProcessor' def __init__( self , _lowerCamelCase ): super().__init__(_lowerCamelCase ) a :Dict = self.image_processor a :str = -10 a :List[str] = self.image_processor.size['''longest_edge'''] def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , **_lowerCamelCase , ): a :List[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # pop arguments that are not used in the foward but used nevertheless a :Any = encoding_image_processor['''original_sizes'''] if hasattr(_lowerCamelCase , '''numpy''' ): # Checks if Torch or TF tensor a :Union[str, Any] = original_sizes.numpy() a , a , a :Optional[Any] = self._check_and_preprocess_points( input_points=_lowerCamelCase , input_labels=_lowerCamelCase , input_boxes=_lowerCamelCase , ) a :Optional[Any] = self._normalize_and_convert( _lowerCamelCase , _lowerCamelCase , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , input_boxes=_lowerCamelCase , return_tensors=_lowerCamelCase , ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="pt" , ): if input_points is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): a :Tuple = [ self._normalize_coordinates(self.target_size , _lowerCamelCase , original_sizes[0] ) for point in input_points ] else: a :str = [ self._normalize_coordinates(self.target_size , _lowerCamelCase , _lowerCamelCase ) for point, original_size in zip(_lowerCamelCase , _lowerCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: a , a :Tuple = self._pad_points_and_labels(_lowerCamelCase , _lowerCamelCase ) a :List[str] = np.array(_lowerCamelCase ) if input_labels is not None: a :Tuple = np.array(_lowerCamelCase ) if input_boxes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): a :Dict = [ self._normalize_coordinates(self.target_size , _lowerCamelCase , original_sizes[0] , is_bounding_box=_lowerCamelCase ) for box in input_boxes ] else: a :str = [ self._normalize_coordinates(self.target_size , _lowerCamelCase , _lowerCamelCase , is_bounding_box=_lowerCamelCase ) for box, original_size in zip(_lowerCamelCase , _lowerCamelCase ) ] a :Union[str, Any] = np.array(_lowerCamelCase ) if input_boxes is not None: if return_tensors == "pt": a :Optional[Any] = torch.from_numpy(_lowerCamelCase ) # boxes batch size of 1 by default a :Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": a :Dict = tf.convert_to_tensor(_lowerCamelCase ) # boxes batch size of 1 by default a :Tuple = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": a :List[Any] = torch.from_numpy(_lowerCamelCase ) # point batch size of 1 by default a :Any = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": a :Tuple = tf.convert_to_tensor(_lowerCamelCase ) # point batch size of 1 by default a :int = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": a :Dict = torch.from_numpy(_lowerCamelCase ) # point batch size of 1 by default a :int = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": a :Union[str, Any] = tf.convert_to_tensor(_lowerCamelCase ) # point batch size of 1 by default a :Dict = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = max([point.shape[0] for point in input_points] ) a :Union[str, Any] = [] for i, point in enumerate(_lowerCamelCase ): if point.shape[0] != expected_nb_points: a :int = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) a :Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_lowerCamelCase ) a :Any = processed_input_points return input_points, input_labels def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): a , a :str = original_size a , a :Optional[Any] = self.image_processor._get_preprocess_shape(_lowerCamelCase , longest_edge=_lowerCamelCase ) a :List[Any] = deepcopy(_lowerCamelCase ).astype(_lowerCamelCase ) if is_bounding_box: a :Dict = coords.reshape(-1 , 2 , 2 ) a :Tuple = coords[..., 0] * (new_w / old_w) a :Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: a :Any = coords.reshape(-1 , 4 ) return coords def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): if input_points is not None: if hasattr(_lowerCamelCase , '''numpy''' ): # Checks for TF or Torch tensor a :int = input_points.numpy().tolist() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(input_points[0] , _lowerCamelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) a :Dict = [np.array(_lowerCamelCase ) for input_point in input_points] else: a :List[str] = None if input_labels is not None: if hasattr(_lowerCamelCase , '''numpy''' ): a :Optional[int] = input_labels.numpy().tolist() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(input_labels[0] , _lowerCamelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) a :List[Any] = [np.array(_lowerCamelCase ) for label in input_labels] else: a :Optional[Any] = None if input_boxes is not None: if hasattr(_lowerCamelCase , '''numpy''' ): a :int = input_boxes.numpy().tolist() if ( not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(input_boxes[0] , _lowerCamelCase ) or not isinstance(input_boxes[0][0] , _lowerCamelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) a :Optional[int] = [np.array(_lowerCamelCase ).astype(np.floataa ) for box in input_boxes] else: a :Optional[int] = None return input_points, input_labels, input_boxes @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.image_processor.model_input_names return list(dict.fromkeys(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.image_processor.post_process_masks(*_lowerCamelCase , **_lowerCamelCase )
94
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" while a != 0: a__ , a__ : Optional[Any] =b % a, a return b def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) != 1: a__ : Optional[Any] =f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE ) a__ , a__ , a__ : Dict =1, 0, a a__ , a__ , a__ : List[Any] =0, 1, m while va != 0: a__ : str =ua // va a__ , a__ , a__ , a__ , a__ , a__ : Dict =(ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
95
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
96
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class lowercase ( A__ ): """simple docstring""" _a = 'layoutlmv3' def __init__( self , UpperCamelCase_=50265 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-5 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=1024 , UpperCamelCase_=128 , UpperCamelCase_=128 , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=128 , UpperCamelCase_=64 , UpperCamelCase_=256 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=224 , UpperCamelCase_=3 , UpperCamelCase_=16 , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( vocab_size=UpperCamelCase_ , hidden_size=UpperCamelCase_ , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , intermediate_size=UpperCamelCase_ , hidden_act=UpperCamelCase_ , hidden_dropout_prob=UpperCamelCase_ , attention_probs_dropout_prob=UpperCamelCase_ , max_position_embeddings=UpperCamelCase_ , type_vocab_size=UpperCamelCase_ , initializer_range=UpperCamelCase_ , layer_norm_eps=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Tuple = max_ad_position_embeddings UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Union[str, Any] = shape_size UpperCamelCase__ :int = has_relative_attention_bias UpperCamelCase__ :Any = rel_pos_bins UpperCamelCase__ :Tuple = max_rel_pos UpperCamelCase__ :Optional[Any] = has_spatial_attention_bias UpperCamelCase__ :Union[str, Any] = rel_ad_pos_bins UpperCamelCase__ :Union[str, Any] = max_rel_ad_pos UpperCamelCase__ :Dict = text_embed UpperCamelCase__ :Optional[Any] = visual_embed UpperCamelCase__ :Dict = input_size UpperCamelCase__ :List[Any] = num_channels UpperCamelCase__ :Optional[int] = patch_size UpperCamelCase__ :str = classifier_dropout class lowercase ( A__ ): """simple docstring""" _a = version.parse('1.12' ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 1e-5 @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 12 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 3 , UpperCamelCase_ = 40 , UpperCamelCase_ = 40 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ :Optional[int] = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ :Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ :Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ :str = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ :Optional[Any] = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Any = dict( processor( UpperCamelCase_ , text=UpperCamelCase_ , boxes=UpperCamelCase_ , return_tensors=UpperCamelCase_ , ) ) return inputs
97
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase__ : Dict = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase__ : int = '=======\n>>>>>>>\n' lowerCAmelCase__ : Optional[int] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase__ : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def a_ ( lowerCamelCase ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class snake_case ( __UpperCAmelCase ): """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : ArgumentParser ): UpperCAmelCase__ = parser.add_parser( 'convert' ,help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' ,) train_parser.add_argument( '--tfds_path' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' ,) train_parser.add_argument( '--datasets_directory' ,type=lowerCamelCase__ ,required=lowerCamelCase__ ,help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,*lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = get_logger('datasets-cli/converting' ) UpperCAmelCase__ = tfds_path UpperCAmelCase__ = datasets_directory def __lowerCAmelCase ( self : List[Any] ): if os.path.isdir(self._tfds_path ): UpperCAmelCase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCAmelCase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase__ = os.listdir(lowerCamelCase__ ) else: UpperCAmelCase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCamelCase__ ,encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [] UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = [] for line in lines: UpperCAmelCase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase__ = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase__ = '' continue elif "from absl import logging" in out_line: UpperCAmelCase__ = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCAmelCase__ = out_line.replace('getLogger' ,'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase__ = True UpperCAmelCase__ = list(filter(lambda lowerCamelCase__ : e in out_line ,lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + '\n' ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase__ = re.sub(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase__ = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' ,lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCAmelCase__ = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase__ = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase__ = f_name.replace('.py' ,'' ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: UpperCAmelCase__ = os.path.basename(lowerCamelCase__ ) UpperCAmelCase__ = imports_to_builder_map[f_name.replace('.py' ,'' )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ ,lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
98
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0
from __future__ import annotations import pandas as pd def A_ ( A__ , A__ , A__ ) -> list[int]: a__ : Optional[Any] = [0] * no_of_processes a__ : Tuple = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(A__ ): a__ : Optional[Any] = burst_time[i] a__ : Optional[int] = 0 a__ : int = 0 a__ : int = 9_9999_9999 a__ : Optional[int] = 0 a__ : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(A__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: a__ : Dict = remaining_time[j] a__ : int = j a__ : Tuple = True if not check: increment_time += 1 continue remaining_time[short] -= 1 a__ : Tuple = remaining_time[short] if minm == 0: a__ : Optional[Any] = 9_9999_9999 if remaining_time[short] == 0: complete += 1 a__ : Optional[int] = False # Find finish time of current process a__ : Optional[Any] = increment_time + 1 # Calculate waiting time a__ : Optional[Any] = finish_time - arrival_time[short] a__ : Any = finar - burst_time[short] if waiting_time[short] < 0: a__ : int = 0 # Increment time increment_time += 1 return waiting_time def A_ ( A__ , A__ , A__ ) -> list[int]: a__ : List[str] = [0] * no_of_processes for i in range(A__ ): a__ : Dict = burst_time[i] + waiting_time[i] return turn_around_time def A_ ( A__ , A__ , A__ ) -> None: a__ : List[Any] = 0 a__ : Any = 0 for i in range(A__ ): a__ : str = total_waiting_time + waiting_time[i] a__ : Tuple = total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") lowercase : str = int(input()) lowercase : List[str] = [0] * no_of_processes lowercase : int = [0] * no_of_processes lowercase : List[Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) lowercase , lowercase : Optional[int] = map(int, input().split()) lowercase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase : Dict = burst_time lowercase : int = no_of_processes lowercase : Any = waiting_time lowercase : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowercase : Any = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
99
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "spiece.model"} __magic_name__ = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } __magic_name__ = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] __lowercase : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase__) @property def snake_case_ ( self): return self.sp_model.get_piece_size() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case_ ( self , lowerCAmelCase__): return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): return self.sp_model.piece_to_id(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(lowerCAmelCase__) return token def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(lowerCAmelCase__) return out_string.strip() def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = [] sub_texts.append(lowerCAmelCase__) else: current_sub_text.append(lowerCAmelCase__) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __SCREAMING_SNAKE_CASE = re.sub(R""" (\[(MASK|SEP)\])""" , R"""\1""" , """ """.join(lowerCAmelCase__)) else: __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __SCREAMING_SNAKE_CASE = self.clean_up_tokenization(lowerCAmelCase__) return clean_text else: return text def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(lowerCAmelCase__): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__ , """wb""") as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
100
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [False] * len(lowerCAmelCase__ ) lowercase = [-1] * len(lowerCAmelCase__ ) def dfs(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = True lowercase = c for u in graph[v]: if not visited[u]: dfs(lowerCAmelCase__ , 1 - c ) for i in range(len(lowerCAmelCase__ ) ): if not visited[i]: dfs(lowerCAmelCase__ , 0 ) for i in range(len(lowerCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ :Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
101
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='pix2struct_text_model' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={ 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=5_02_44 , a_=7_68 , a_=64 , a_=20_48 , a_=12 , a_=12 , a_=32 , a_=1_28 , a_=0.1 , a_=1E-6 , a_=1.0 , a_="gelu_new" , a_=0 , a_=False , a_=0 , a_=1 , a_=False , a_=True , **a_ , ): '''simple docstring''' __snake_case : Tuple = vocab_size __snake_case : Any = hidden_size __snake_case : List[Any] = d_kv __snake_case : Optional[Any] = d_ff __snake_case : Union[str, Any] = num_layers __snake_case : int = num_heads __snake_case : Optional[Any] = relative_attention_num_buckets __snake_case : Union[str, Any] = relative_attention_max_distance __snake_case : Dict = dropout_rate __snake_case : Any = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_factor __snake_case : Tuple = use_cache __snake_case : str = eos_token_id __snake_case : Any = decoder_start_token_id # for backwards compatibility __snake_case : List[str] = dense_act_fn super().__init__( pad_token_id=a_ , eos_token_id=a_ , decoder_start_token_id=a_ , tie_word_embeddings=a_ , is_decoder=a_ , **a_ , ) @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(a_ , **a_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __snake_case : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='pix2struct_vision_model' def __init__(self , a_=7_68 , a_=7_68 , a_=20_48 , a_=64 , a_=12 , a_=12 , a_="gelu_new" , a_=1E-6 , a_=0.0 , a_=0.0 , a_=1E-10 , a_=1.0 , a_=40_96 , a_=32 , a_=1_28 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Any = hidden_size __snake_case : Tuple = patch_embed_hidden_size __snake_case : int = d_ff __snake_case : str = dropout_rate __snake_case : str = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : List[Any] = initializer_range __snake_case : int = initializer_factor __snake_case : Dict = attention_dropout __snake_case : Any = layer_norm_eps __snake_case : int = dense_act_fn __snake_case : Union[str, Any] = seq_len __snake_case : int = relative_attention_num_buckets __snake_case : Optional[Any] = relative_attention_max_distance __snake_case : List[str] = d_kv @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case : Optional[Any] = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __snake_case : List[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='pix2struct' lowerCamelCase__ =True def __init__(self , a_=None , a_=None , a_=1.0 , a_=0.02 , a_=False , a_=False , a_=True , **a_ , ): '''simple docstring''' super().__init__(tie_word_embeddings=a_ , is_encoder_decoder=a_ , **a_ ) if text_config is None: __snake_case : List[str] = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __snake_case : Dict = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __snake_case : Dict = PixaStructTextConfig(**a_ ) __snake_case : Optional[int] = PixaStructVisionConfig(**a_ ) __snake_case : Any = self.text_config.decoder_start_token_id __snake_case : Tuple = self.text_config.pad_token_id __snake_case : Optional[int] = self.text_config.eos_token_id __snake_case : str = initializer_factor __snake_case : Tuple = initializer_range __snake_case : Tuple = self.initializer_range __snake_case : str = self.initializer_range __snake_case : Union[str, Any] = is_vqa @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ , **a_ ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : Dict = self.vision_config.to_dict() __snake_case : str = self.__class__.model_type return output
102
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Tuple = 1_0 def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[str] = [1, 2, 3, 4] lowerCAmelCase_ : Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowerCAmelCase_ , lowerCAmelCase_ : Dict = process_story(A_) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[Any] = '''''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) self.assertEqual(A_ , []) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) lowerCAmelCase_ : str = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(A_ , A_) lowerCAmelCase_ : Dict = ['''It was the best of times.'''] self.assertEqual(A_ , A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : int = torch.tensor([1, 2, 3, 4]) lowerCAmelCase_ : List[Any] = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(A_ , 0).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : str = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3]) lowerCAmelCase_ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 2_3).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1]) lowerCAmelCase_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 1).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Optional[Any] = 1_0_1 lowerCAmelCase_ : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]]) lowerCAmelCase_ : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) lowerCAmelCase_ : Optional[int] = compute_token_type_ids(A_ , A_) np.testing.assert_array_equal(A_ , A_)
103
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""DPTFeatureExtractor"""] UpperCamelCase_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _lowerCamelCase : list[float] ) -> Dict: return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> None: a : str = order # a_{0} ... a_{k} a : int = [1.0] + [0.0] * order # b_{0} ... b_{k} a : Union[str, Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] a : Any = [0.0] * self.order # y[n-1] ... y[n-k] a : Tuple = [0.0] * self.order def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if len(lowerCAmelCase__ ) < self.order: a : Dict = [1.0, *a_coeffs] if len(lowerCAmelCase__ ) != self.order + 1: a : Optional[int] = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != self.order + 1: a : Optional[Any] = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) a : Any = a_coeffs a : int = b_coeffs def __a ( self , lowerCAmelCase__ ) -> float: a : List[str] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) a : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] a : Optional[Any] = self.input_history[:-1] a : str = self.output_history[:-1] a : int = sample a : List[Any] = result return result
105
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __lowerCAmelCase : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __lowerCAmelCase : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __lowerCAmelCase : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : str = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Dict = DPRContextEncoderTokenizer class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Optional[int] = DPRQuestionEncoderTokenizer __lowerCAmelCase : List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __lowerCAmelCase : Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __lowerCAmelCase : Optional[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCamelCase ) class snake_case__ : """simple docstring""" def __call__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Optional[int] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: a = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) a = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] a = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] a = len(__lowerCamelCase ) a = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages assert len(__lowerCamelCase ) == len( __lowerCamelCase ), f"""There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts.""" a = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] a = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] a = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: a = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ) -> List[DPRSpanPrediction]: a = reader_input["input_ids"] a , a , a = reader_output[:3] a = len(__lowerCamelCase ) a = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) a = [] for doc_id in sorted_docs: a = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a = sequence_ids.index(self.pad_token_id ) else: a = len(__lowerCamelCase ) a = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ) -> List[DPRSpanPrediction]: a = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) a = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" a = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCamelCase ) class snake_case__ (_UpperCamelCase , _UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : int = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Optional[Any] = DPRReaderTokenizer
107
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCamelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } UpperCamelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a_ (_a ): __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : List[Any] = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**snake_case_ ) _lowerCAmelCase : str = do_lower_case def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
309
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" ) lowerCAmelCase : Optional[Any] = chkpt["model"] # We have the base model one level deeper than the original XLM repository lowerCAmelCase : int = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase : Union[str, Any] = v else: lowerCAmelCase : int = v lowerCAmelCase : List[Any] = chkpt["params"] lowerCAmelCase : Tuple = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase : List[str] = chkpt["dico_word2id"] lowerCAmelCase : int = {s + "</w>" if s.find("@@" ) == -1 and i > 1_3 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase : List[Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowerCAmelCase : List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME lowerCAmelCase : Dict = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
108
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self ): _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 2_5_6 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = 0 def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = cva.imread(snake_case_ , 0 ) _lowerCAmelCase : List[str] = copy.deepcopy(self.img ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) _lowerCAmelCase : List[Any] = np.sum(snake_case_ ) for i in range(len(snake_case_ ) ): _lowerCAmelCase : Optional[int] = x[i] / self.k self.sk += prk _lowerCAmelCase : Any = (self.L - 1) * self.sk if self.rem != 0: _lowerCAmelCase : Dict = int(last % last ) _lowerCAmelCase : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case_ ) _lowerCAmelCase : str = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCAmelCase : Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCAmelCase : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _lowerCAmelCase : List[str] = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def __UpperCamelCase ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A: Tuple = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): UpperCAmelCase : int = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase : Optional[int] = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : str = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase : Optional[int] = in_proj_weight[ -encoder_config.hidden_size :, : ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = dct.pop(UpperCamelCase ) UpperCAmelCase : str = val def _snake_case ( UpperCamelCase : Any ): if "handwritten" in checkpoint_url: UpperCAmelCase : int = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Tuple = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" UpperCAmelCase : int = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Dict = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase ) UpperCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase : List[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase : Tuple = 1024 UpperCAmelCase : Any = 4096 UpperCAmelCase : List[str] = 24 UpperCAmelCase : str = 16 UpperCAmelCase : Optional[Any] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Optional[Any] = False UpperCAmelCase : int = """relu""" UpperCAmelCase : Dict = 1024 UpperCAmelCase : List[str] = True UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False # load HuggingFace model UpperCAmelCase : Any = ViTModel(UpperCamelCase , add_pooling_layer=UpperCamelCase ) UpperCAmelCase : Any = TrOCRForCausalLM(UpperCamelCase ) UpperCAmelCase : Dict = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase )["""model"""] UpperCAmelCase : str = create_rename_keys(UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase : Any = state_dict.pop(UpperCamelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: UpperCAmelCase : Union[str, Any] = val else: UpperCAmelCase : List[str] = val # load state dict model.load_state_dict(UpperCamelCase ) # Check outputs on an image UpperCAmelCase : Optional[Any] = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) UpperCAmelCase : Union[str, Any] = TrOCRProcessor(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : Tuple = processor(images=prepare_img(UpperCamelCase ) , return_tensors="""pt""" ).pixel_values # verify logits UpperCAmelCase : Dict = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase : Dict = model(pixel_values=UpperCamelCase , decoder_input_ids=UpperCamelCase ) UpperCAmelCase : List[Any] = outputs.logits UpperCAmelCase : Optional[int] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase : Optional[int] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A: List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=5_6 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=7 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_1_2 , _UpperCAmelCase=1_6 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , _UpperCAmelCase="block_sparse" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=3 , ) -> Optional[Any]: __UpperCamelCase : int = parent __UpperCamelCase : Tuple = batch_size __UpperCamelCase : List[Any] = seq_length __UpperCamelCase : int = is_training __UpperCamelCase : Optional[Any] = use_attention_mask __UpperCamelCase : Tuple = use_token_type_ids __UpperCamelCase : List[Any] = use_labels __UpperCamelCase : Dict = vocab_size __UpperCamelCase : Optional[int] = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Dict = num_attention_heads __UpperCamelCase : Tuple = intermediate_size __UpperCamelCase : List[Any] = hidden_act __UpperCamelCase : List[Any] = hidden_dropout_prob __UpperCamelCase : int = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Optional[int] = type_vocab_size __UpperCamelCase : Optional[int] = type_sequence_label_size __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : str = num_choices __UpperCamelCase : Tuple = rescale_embeddings __UpperCamelCase : Tuple = attention_type __UpperCamelCase : List[str] = use_bias __UpperCamelCase : str = block_size __UpperCamelCase : List[str] = num_random_blocks def a_ (self ) -> Optional[Any]: __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : List[str] = None if self.use_attention_mask: __UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[str] = None if self.use_token_type_ids: __UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCamelCase : List[str] = config_and_inputs __UpperCamelCase : Tuple = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class A ( _a , unittest.TestCase ): '''simple docstring''' A = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A = False A = False def a_ (self ) -> List[Any]: __UpperCamelCase : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a_ (self ) -> Optional[int]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a_ (self ) -> Optional[Any]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a_ (self ) -> Dict: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a_ (self ) -> int: super().test_hidden_states_output() @slow def a_ (self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __UpperCamelCase : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(snake_case_ ) def a_ (self ) -> Tuple: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a_ (self ) -> Optional[Any]: __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : str = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCamelCase : Tuple = model_class(snake_case_ ) @jax.jit def model_jitted(_UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): return model(input_ids=snake_case_ , attention_mask=snake_case_ , **snake_case_ ) with self.subTest("JIT Enabled" ): __UpperCamelCase : Optional[Any] = model_jitted(**snake_case_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase : Any = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1E-5 , _UpperCAmelCase="outputs" , _UpperCAmelCase=None ) -> int: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
298
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a_ = logging.get_logger(__name__) # General docstring a_ = 'MobileNetV1Config' # Base docstring a_ = 'google/mobilenet_v1_1.0_224' a_ = [1, 1_024, 7, 7] # Image classification docstring a_ = 'google/mobilenet_v1_1.0_224' a_ = 'tabby, tabby cat' a_ = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int]=None ): UpperCamelCase_ : Optional[int] = {} if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : Union[str, Any] = model.mobilenet_va else: UpperCamelCase_ : Tuple = model UpperCamelCase_ : int = """MobilenetV1/Conv2d_0/""" UpperCamelCase_ : int = backbone.conv_stem.convolution.weight UpperCamelCase_ : int = backbone.conv_stem.normalization.bias UpperCamelCase_ : Tuple = backbone.conv_stem.normalization.weight UpperCamelCase_ : Any = backbone.conv_stem.normalization.running_mean UpperCamelCase_ : List[str] = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCamelCase_ : Any = i + 1 UpperCamelCase_ : str = i * 2 UpperCamelCase_ : Optional[Any] = backbone.layer[pt_index] UpperCamelCase_ : Union[str, Any] = F"MobilenetV1/Conv2d_{tf_index}_depthwise/" UpperCamelCase_ : Dict = pointer.convolution.weight UpperCamelCase_ : int = pointer.normalization.bias UpperCamelCase_ : Optional[int] = pointer.normalization.weight UpperCamelCase_ : Tuple = pointer.normalization.running_mean UpperCamelCase_ : Any = pointer.normalization.running_var UpperCamelCase_ : int = backbone.layer[pt_index + 1] UpperCamelCase_ : Dict = F"MobilenetV1/Conv2d_{tf_index}_pointwise/" UpperCamelCase_ : List[Any] = pointer.convolution.weight UpperCamelCase_ : str = pointer.normalization.bias UpperCamelCase_ : Optional[Any] = pointer.normalization.weight UpperCamelCase_ : Tuple = pointer.normalization.running_mean UpperCamelCase_ : Tuple = pointer.normalization.running_var if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : List[str] = """MobilenetV1/Logits/Conv2d_1c_1x1/""" UpperCamelCase_ : Optional[Any] = model.classifier.weight UpperCamelCase_ : int = model.classifier.bias return tf_to_pt_map def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model UpperCamelCase_ : Optional[int] = tf.train.list_variables(_lowerCamelCase ) UpperCamelCase_ : List[str] = {} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) UpperCamelCase_ : Optional[Any] = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ : Optional[int] = array # Build TF to PyTorch weights loading map UpperCamelCase_ : int = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue UpperCamelCase_ : Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) UpperCamelCase_ : List[str] = np.transpose(_lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer UpperCamelCase_ : Union[str, Any] = array.squeeze().transpose() else: UpperCamelCase_ : Union[str, Any] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) UpperCamelCase_ : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp' , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp_1' , _lowerCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , _lowerCamelCase ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def __lowercase ( lowerCamelCase : torch.Tensor , lowerCamelCase : nn.Convad ): UpperCamelCase_ : Tuple = features.shape[-2:] UpperCamelCase_ : Any = conv_layer.stride UpperCamelCase_ : Optional[Any] = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase_ : Union[str, Any] = max(kernel_height - stride_height , 0 ) else: UpperCamelCase_ : Optional[int] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCamelCase_ : int = max(kernel_width - stride_width , 0 ) else: UpperCamelCase_ : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) UpperCamelCase_ : Dict = pad_along_width // 2 UpperCamelCase_ : Dict = pad_along_width - pad_left UpperCamelCase_ : Optional[Any] = pad_along_height // 2 UpperCamelCase_ : Any = pad_along_height - pad_top UpperCamelCase_ : Dict = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , 'constant' , 0.0 ) class _lowercase ( nn.Module ): def __init__( self : List[Any] , snake_case : str , snake_case : Optional[int] , snake_case : Tuple , snake_case : Optional[int] , snake_case : Union[str, Any] = 1 , snake_case : Union[str, Any] = 1 , snake_case : Any = False , snake_case : Union[str, Any] = True , snake_case : List[str] = True , ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase_ : Any = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) UpperCamelCase_ : int = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase_ : List[str] = nn.Convad( in_channels=snake_case_ , out_channels=snake_case_ , kernel_size=snake_case_ , stride=snake_case_ , padding=snake_case_ , groups=snake_case_ , bias=snake_case_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase_ : Union[str, Any] = nn.BatchNormad( num_features=snake_case_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=snake_case_ , track_running_stats=snake_case_ , ) else: UpperCamelCase_ : Optional[int] = None if use_activation: if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_ : List[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , snake_case_ ): UpperCamelCase_ : Optional[int] = ACTaFN[config.hidden_act] else: UpperCamelCase_ : int = config.hidden_act else: UpperCamelCase_ : Dict = None def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[str] ) -> str: """simple docstring""" if self.config.tf_padding: UpperCamelCase_ : int = apply_tf_padding(snake_case_ , self.convolution ) UpperCamelCase_ : Tuple = self.convolution(snake_case_ ) if self.normalization is not None: UpperCamelCase_ : Dict = self.normalization(snake_case_ ) if self.activation is not None: UpperCamelCase_ : Optional[Any] = self.activation(snake_case_ ) return features class _lowercase ( _a ): lowercase = MobileNetVaConfig lowercase = load_tf_weights_in_mobilenet_va lowercase = """mobilenet_v1""" lowercase = """pixel_values""" lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : str ) -> List[str]: """simple docstring""" if isinstance(snake_case_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a_ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a_ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , _a , ) class _lowercase ( _a ): def __init__( self : Optional[int] , snake_case : Dict , snake_case : List[str] = True ) -> List[Any]: """simple docstring""" super().__init__(snake_case_ ) UpperCamelCase_ : Optional[int] = config UpperCamelCase_ : List[Any] = 3_2 UpperCamelCase_ : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase_ : List[str] = MobileNetVaConvLayer( snake_case_ , in_channels=config.num_channels , out_channels=snake_case_ , kernel_size=3 , stride=2 , ) UpperCamelCase_ : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase_ : Tuple = nn.ModuleList() for i in range(1_3 ): UpperCamelCase_ : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase_ : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , kernel_size=3 , stride=strides[i] , groups=snake_case_ , ) ) self.layer.append( MobileNetVaConvLayer( snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , kernel_size=1 , ) ) UpperCamelCase_ : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : str ) -> Tuple: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Dict = None , snake_case : List[str] = None , snake_case : Tuple = None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase_ : Dict = self.conv_stem(snake_case_ ) UpperCamelCase_ : Optional[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase_ : Any = layer_module(snake_case_ ) if output_hidden_states: UpperCamelCase_ : Union[str, Any] = all_hidden_states + (hidden_states,) UpperCamelCase_ : Union[str, Any] = hidden_states if self.pooler is not None: UpperCamelCase_ : List[Any] = torch.flatten(self.pooler(snake_case_ ) , start_dim=1 ) else: UpperCamelCase_ : int = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=snake_case_ , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _a , ) class _lowercase ( _a ): def __init__( self : Union[str, Any] , snake_case : Dict ) -> int: """simple docstring""" super().__init__(snake_case_ ) UpperCamelCase_ : Tuple = config.num_labels UpperCamelCase_ : List[str] = MobileNetVaModel(snake_case_ ) UpperCamelCase_ : str = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase_ : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=snake_case_ ) UpperCamelCase_ : Dict = nn.Linear(snake_case_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int = None , snake_case : Any = None , snake_case : Dict = None , snake_case : List[Any] = None , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ : List[Any] = self.mobilenet_va(snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) UpperCamelCase_ : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_ : Tuple = self.classifier(self.dropout(snake_case_ ) ) UpperCamelCase_ : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase_ : str = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase_ : Tuple = """single_label_classification""" else: UpperCamelCase_ : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": UpperCamelCase_ : Optional[int] = MSELoss() if self.num_labels == 1: UpperCamelCase_ : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase_ : List[Any] = loss_fct(snake_case_ , snake_case_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase_ : str = CrossEntropyLoss() UpperCamelCase_ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase_ : Union[str, Any] = BCEWithLogitsLoss() UpperCamelCase_ : str = loss_fct(snake_case_ , snake_case_ ) if not return_dict: UpperCamelCase_ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states , )
175
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : str ) -> list[int]: _lowerCAmelCase : List[Any] = int(_lowerCamelCase ) # Initialize Result _lowerCAmelCase : Any = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
309
0
import copy import random from transformers import CLIPTokenizer class __snake_case ( _a ): def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) UpperCAmelCase : List[Any] ={} def UpperCAmelCase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =super().add_tokens(snake_case_ , *snake_case_ , **snake_case_ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def UpperCAmelCase__ ( self , snake_case__ , *snake_case__ , snake_case__=1 , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : str =[] if num_vec_per_token == 1: self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) else: UpperCAmelCase : Optional[Any] =[] for i in range(snake_case_ ): UpperCAmelCase : Any =placeholder_token + f'''_{i}''' self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) UpperCAmelCase : int =output def UpperCAmelCase__ ( self , snake_case__ , snake_case__=False , snake_case__=1.0 ) -> Dict: '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase : List[Any] =[] for i in range(len(snake_case_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase : Optional[Any] =self.token_map[placeholder_token] UpperCAmelCase : Union[str, Any] =tokens[: 1 + int(len(snake_case_ ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase : Dict =copy.copy(snake_case_ ) random.shuffle(snake_case_ ) UpperCAmelCase : Optional[Any] =text.replace(snake_case_ , ''' '''.join(snake_case_ ) ) return text def __call__( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ) -> List[str]: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , ) def UpperCAmelCase__ ( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ) -> List[str]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , )
348
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : complex , __lowerCAmelCase : str = "x" , __lowerCAmelCase : float = 1_0**-1_0 , __lowerCAmelCase : int = 1 , ): a__ = symbols(_lowerCamelCase ) a__ = lambdify(_lowerCamelCase , _lowerCamelCase ) a__ = lambdify(_lowerCamelCase , diff(_lowerCamelCase , _lowerCamelCase ) ) a__ = starting_point while True: if diff_function(_lowerCamelCase ) != 0: a__ = prev_guess - multiplicity * func(_lowerCamelCase ) / diff_function( _lowerCamelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess a__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
240
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
0
import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None,**snake_case_ ): _A : List[str] = [x.strip() for x in open(_lowerCamelCase ).readlines()] _A : int = [x.strip() for x in open(_lowerCamelCase ).readlines()][: len(_lowerCamelCase )] _A : int = calculate_rouge(_lowerCamelCase,_lowerCamelCase,**_lowerCamelCase ) if save_path is not None: save_json(_lowerCamelCase,_lowerCamelCase,indent=_lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
26
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 a__ = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class snake_case ( _a ): '''simple docstring''' snake_case_ : Optional[Any] = VOCAB_FILES_NAMES snake_case_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Optional[Any] = ["""input_ids""", """attention_mask"""] snake_case_ : List[str] = TaTokenizer snake_case_ : List[int] = [] def __init__( self : Optional[int] , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : List[Any]="<pad>" , lowerCAmelCase : List[Any]=100 , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: _snake_case : int = [F'''<extra_id_{i}>''' for i in range(snake_case_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _snake_case : int = len(set(filter(lambda lowerCAmelCase: bool("""extra_id_""" in str(snake_case_)) , snake_case_))) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""") super().__init__( snake_case_ , tokenizer_file=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) _snake_case : Union[str, Any] = vocab_file _snake_case : List[str] = False if not self.vocab_file else True _snake_case : Any = extra_ids @staticmethod def UpperCamelCase_ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str) -> List[str]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _snake_case : Tuple = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , snake_case_ , ) return max_model_length def UpperCamelCase_ ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Any = None) -> Dict: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(snake_case_): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _snake_case : List[str] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(snake_case_): copyfile(self.vocab_file , snake_case_) logger.info(F'''Copy vocab file to {out_vocab_file}''') return (out_vocab_file,) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : str = None) -> Tuple: """simple docstring""" _snake_case : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _snake_case : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any = None) -> Dict: """simple docstring""" _snake_case : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" return list( set(filter(lambda lowerCAmelCase: bool(re.search(r"""<extra_id_\d+>""" , snake_case_)) is not None , self.additional_special_tokens))) def UpperCamelCase_ ( self : List[Any]) -> List[Any]: """simple docstring""" return [self.convert_tokens_to_ids(snake_case_) for token in self.get_sentinel_tokens()]
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_lowerCamelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_lowerCamelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_lowerCamelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_lowerCamelCase , default=0 , help='cuda_id.' , ) UpperCAmelCase_ : str = parser.parse_args() return args def lowercase__ ( __snake_case : List[str] , __snake_case : Dict , __snake_case : List[str] ): '''simple docstring''' if not len(_lowerCamelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) UpperCAmelCase_ : Union[str, Any] = imgs[0].size UpperCAmelCase_ : Tuple = Image.new('RGB' , size=(cols * w, rows * h) ) UpperCAmelCase_ : Any = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def lowercase__ ( __snake_case : List[str] , __snake_case : Optional[int]="robotic cat with wings" , __snake_case : List[Any]=7.5 , __snake_case : List[Any]=50 , __snake_case : Optional[Any]=1 , __snake_case : List[str]=42 , ): '''simple docstring''' UpperCAmelCase_ : int = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images UpperCAmelCase_ : int = int(math.sqrt(_lowerCamelCase ) ) UpperCAmelCase_ : List[str] = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCAmelCase = parse_args() # Load models and create wrapper for stable diffusion __UpperCAmelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __UpperCAmelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __UpperCAmelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __UpperCAmelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __UpperCAmelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCAmelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __UpperCAmelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __UpperCAmelCase = unet.to(torch.device('cuda', args.cuda_id)) __UpperCAmelCase = pipeline.to(unet.device) __UpperCAmelCase , __UpperCAmelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __UpperCAmelCase = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
29
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Union[str, Any]: # ===== initialization ===== _lowerCAmelCase : Tuple = Mock() _lowerCAmelCase : Any = conn, Mock() _lowerCAmelCase : Optional[Any] = iter([1, None] ) _lowerCAmelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
309
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger() @dataclass class lowerCamelCase : lowerCamelCase__ : nn.Module lowerCamelCase__ : List[nn.Module] = field(default_factory=_a ) lowerCamelCase__ : list = field(default_factory=_a ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = len(list(m.modules() ) ) == 1 or isinstance(snake_case_ , nn.Convad ) or isinstance(snake_case_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case_ ) def __call__( self : str , __UpperCAmelCase : int ) -> List[str]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case_ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCamelCase : lowerCamelCase__ : nn.Module lowerCamelCase__ : nn.Module lowerCamelCase__ : int = 0 lowerCamelCase__ : List = field(default_factory=_a ) lowerCamelCase__ : List = field(default_factory=_a ) def __call__( self : int , __UpperCAmelCase : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = Tracker(self.dest )(snake_case_ ).parametrized SCREAMING_SNAKE_CASE__ = Tracker(self.src )(snake_case_ ).parametrized SCREAMING_SNAKE_CASE__ = list(filter(lambda __UpperCAmelCase : type(snake_case_ ) not in self.src_skip , snake_case_ ) ) SCREAMING_SNAKE_CASE__ = list(filter(lambda __UpperCAmelCase : type(snake_case_ ) not in self.dest_skip , snake_case_ ) ) if len(snake_case_ ) != len(snake_case_ ): raise Exception( F"""Numbers of operations are different. Source module has {len(snake_case_ )} operations while""" F""" destination module has {len(snake_case_ )}.""" ) for dest_m, src_m in zip(snake_case_ , snake_case_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ).eval() SCREAMING_SNAKE_CASE__ = ResNetForImageClassification(_lowerCamelCase ).eval() SCREAMING_SNAKE_CASE__ = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_lowerCamelCase ) assert torch.allclose(from_model(_lowerCamelCase ) , our_model(_lowerCamelCase ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE__ = f"""resnet{"-".join(name.split("resnet" ) )}""" print(_lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) # we can use the convnext one SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) print(f"""Pushed {checkpoint_name}""" ) def A ( snake_case__ , snake_case__ = None , snake_case__ = True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = (1, num_labels) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(_lowerCamelCase , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, expected_shape if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) A_ : Union[str, Any] = parser.parse_args() A_ : List[Any] = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
165
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
271
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a_ (_a ): __lowerCAmelCase : List[Any] = """microsoft/speecht5_tts""" __lowerCAmelCase : List[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __lowerCAmelCase : List[str] = """text_reader""" __lowerCAmelCase : Optional[Any] = SpeechTaProcessor __lowerCAmelCase : str = SpeechTaForTextToSpeech __lowerCAmelCase : int = SpeechTaHifiGan __lowerCAmelCase : int = ["""text"""] __lowerCAmelCase : int = ["""audio"""] def __UpperCamelCase ( self ): if self.post_processor is None: _lowerCAmelCase : int = """microsoft/speecht5_hifigan""" super().setup() def __UpperCamelCase ( self , snake_case_ , snake_case_=None ): _lowerCAmelCase : Tuple = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase : Any = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
309
0
from __future__ import annotations from fractions import Fraction def A ( _lowercase , _lowercase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = 11 SCREAMING_SNAKE_CASE : Optional[int] = int('''1''' + '''0''' * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : List[Any] = 10 return solutions def A ( _lowercase = 2 ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A__ : Optional[Any] =deepcopy(snake_case_ ) elif os.path.exists(snake_case_ ): with io.open(snake_case_ , """r""" , encoding="""utf-8""" ) as f: A__ : Optional[Any] =json.load(snake_case_ ) else: try: A__ : Any =baseaa.urlsafe_baadecode(snake_case_ ).decode("""utf-8""" ) A__ : Tuple =json.loads(snake_case_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) A__ : Any =config self.set_stage_and_offload() def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. A__ : Tuple =self.get_value("""zero_optimization.stage""" , -1 ) # offload A__ : Any =False if self.is_zeroa() or self.is_zeroa(): A__ : List[Any] =set(["""cpu""", """nvme"""] ) A__ : Optional[Any] =set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A__ : List[str] =True def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> int: '''simple docstring''' A__ : Union[str, Any] =self.config # find the config node of interest if it exists A__ : List[str] =ds_key_long.split(""".""" ) A__ : List[Any] =nodes.pop() for node in nodes: A__ : Dict =config.get(snake_case_ ) if config is None: return None, ds_key return config, ds_key def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=None ) -> Dict: '''simple docstring''' A__ : Any =self.find_config_node(snake_case_ ) if config is None: return default return config.get(snake_case_ , snake_case_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=False ) -> Optional[int]: '''simple docstring''' A__ : int =self.config # find the config node of interest if it exists A__ : Tuple =ds_key_long.split(""".""" ) for node in nodes: A__ : List[str] =config A__ : int =config.get(snake_case_ ) if config is None: if must_exist: raise ValueError(f"Can\'t find {ds_key_long} entry in the config: {self.config}" ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' A__ : Any =self.get_value(snake_case_ ) return False if value is None else bool(snake_case_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' A__ : Dict =self.get_value(snake_case_ ) return False if value is None else not bool(snake_case_ ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' return self._stage == 2 def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' return self._stage == 3 def lowercase__ ( self : str ) -> Any: '''simple docstring''' return self._offload class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' A__ : Dict =engine def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' # runs backpropagation and handles mixed precision self.engine.backward(snake_case_ , **snake_case_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCamelCase ( _a ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' super().__init__(snake_case_ , device_placement=snake_case_ , scaler=snake_case_ ) A__ : Dict =hasattr(self.optimizer , """overflow""" ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str=None ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class lowerCamelCase ( _a ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(snake_case_ , snake_case_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=0.001 , lowerCAmelCase_ : Tuple=0 , **lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Any =params A__ : Optional[int] =lr A__ : List[Any] =weight_decay A__ : int =kwargs class lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=0 , **lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' A__ : Any =optimizer A__ : Any =total_num_steps A__ : str =warmup_num_steps A__ : int =kwargs
134
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Dict = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]="" , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=None ) -> str: _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCAmelCase : List[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Dict = [] else: blocks.append("""\n""".join(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("""\n""".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Any: def _inner(_lowerCamelCase : Any ): return key(_lowerCamelCase ).lower().replace("""_""" , """""" ) return _inner def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(_lowerCamelCase : List[Any] ): return x if key is None: _lowerCAmelCase : Union[str, Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : Any = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCAmelCase : List[str] = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Optional[Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : List[str] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCAmelCase : Optional[int] = import_statement.split("""\n""" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Tuple = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Tuple = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Dict = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True ) -> List[str]: with open(_lowerCamelCase , """r""" ) as f: _lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : List[str] = main_blocks[block_idx] _lowerCAmelCase : int = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Any = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : List[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : Tuple = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[str] = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCAmelCase : List[str] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : str = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_lowerCamelCase , """w""" ) as f: f.write("""\n""".join(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any]=True ) -> Any: _lowerCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : List[Any] = sort_imports(os.path.join(_lowerCamelCase , """__init__.py""" ) , check_only=_lowerCamelCase ) if result: _lowerCAmelCase : str = [os.path.join(_lowerCamelCase , """__init__.py""" )] if len(_lowerCamelCase ) > 0: raise ValueError(f'Would overwrite {len(_lowerCamelCase )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
309
0