code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
# TODO: upload to AWS
a : Optional[int] = {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"
),
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = "retribert"
def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=8 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=1e-12 , snake_case=True , snake_case=1_2_8 , snake_case=0 , **snake_case , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case , **snake_case )
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : str = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = attention_probs_dropout_prob
UpperCAmelCase : int = max_position_embeddings
UpperCAmelCase : Union[str, Any] = type_vocab_size
UpperCAmelCase : List[Any] = initializer_range
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : Tuple = share_encoders
UpperCAmelCase : Optional[int] = projection_dim
| 311
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
| 1
|
'''simple docstring'''
from typing import Any
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not input_list:
return []
UpperCAmelCase : Tuple = [input_list.count(__magic_name__ ) for value in input_list]
UpperCAmelCase : Union[str, Any] = max(__magic_name__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(__magic_name__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Tuple = ["gpt2"]
a : Dict = "gpt2"
if is_tf_available():
class UpperCamelCase__ ( tf.Module ):
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = tokenizer
UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case )
UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case )
UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor()
UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Tuple = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" )
UpperCAmelCase : Any = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Dict = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Optional[Any] = tf.function(snake_case )
for test_inputs in self.test_sentences:
UpperCAmelCase : List[str] = tf.constant(snake_case )
UpperCAmelCase : Dict = compiled_tokenizer(snake_case )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : int = ModelToSave(tokenizer=snake_case )
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model"
tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} )
UpperCAmelCase : int = tf.saved_model.load(snake_case )
UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs
UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config()
UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case )
UpperCAmelCase : Tuple = model_from_config(snake_case )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[str] = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case )
UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 311
| 1
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
a : str = logging.get_logger(__name__)
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , *snake_case , **snake_case ):
'''simple docstring'''
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , snake_case , )
super().__init__(*snake_case , **snake_case )
| 311
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
| 1
|
'''simple docstring'''
from math import factorial, pi
def lowercase ( __magic_name__ , __magic_name__ = 30 ):
'''simple docstring'''
if not isinstance(__magic_name__ , (int, float) ):
raise ValueError("maclaurin_sin() requires either an int or float for theta" )
if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0:
raise ValueError("maclaurin_sin() requires a positive int for accuracy" )
UpperCAmelCase : str = float(__magic_name__ )
UpperCAmelCase : int = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ = 30 ):
'''simple docstring'''
if not isinstance(__magic_name__ , (int, float) ):
raise ValueError("maclaurin_cos() requires either an int or float for theta" )
if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0:
raise ValueError("maclaurin_cos() requires a positive int for accuracy" )
UpperCAmelCase : int = float(__magic_name__ )
UpperCAmelCase : Optional[Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 311
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=2 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Dict = parent
UpperCAmelCase : Optional[int] = 1_3
UpperCAmelCase : Any = 7
UpperCAmelCase : Any = True
UpperCAmelCase : List[Any] = True
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : str = 9_9
UpperCAmelCase : List[Any] = 3_8_4
UpperCAmelCase : Union[str, Any] = 2
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : str = 3_7
UpperCAmelCase : int = "gelu"
UpperCAmelCase : Any = 0.1
UpperCAmelCase : Any = 0.1
UpperCAmelCase : List[str] = 5_1_2
UpperCAmelCase : Dict = 1_6
UpperCAmelCase : Any = 2
UpperCAmelCase : Any = 0.02
UpperCAmelCase : Optional[int] = 3
UpperCAmelCase : Dict = 4
UpperCAmelCase : Any = 1_2_8
UpperCAmelCase : Optional[Any] = 2
UpperCAmelCase : int = 9
UpperCAmelCase : int = 1
UpperCAmelCase : Tuple = None
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = None
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Optional[Any] = None
if self.use_labels:
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Dict = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Tuple = TFConvBertModel(config=snake_case )
UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
UpperCAmelCase : Union[str, Any] = [input_ids, input_mask]
UpperCAmelCase : Optional[Any] = model(snake_case )
UpperCAmelCase : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = TFConvBertForMaskedLM(config=snake_case )
UpperCAmelCase : str = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCAmelCase : Optional[int] = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : List[Any] = TFConvBertForSequenceClassification(config=snake_case )
UpperCAmelCase : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCAmelCase : Any = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.num_choices
UpperCAmelCase : int = TFConvBertForMultipleChoice(config=snake_case )
UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase : str = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase : Any = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase : Tuple = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
UpperCAmelCase : Tuple = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = self.num_labels
UpperCAmelCase : Any = TFConvBertForTokenClassification(config=snake_case )
UpperCAmelCase : int = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCAmelCase : Tuple = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = TFConvBertForQuestionAnswering(config=snake_case )
UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
UpperCAmelCase : str = model(snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : str = config_and_inputs
UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Tuple = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : List[Any] = False
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = TFConvBertModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : int = True
UpperCAmelCase : Tuple = True
if hasattr(snake_case , "use_cache" ):
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
UpperCAmelCase : Optional[Any] = getattr(self.model_tester , "key_length" , snake_case )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = self._prepare_for_class(snake_case , snake_case )
UpperCAmelCase : List[str] = model_class(snake_case )
UpperCAmelCase : Dict = len(model(snake_case ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case , saved_model=snake_case )
UpperCAmelCase : List[Any] = os.path.join(snake_case , "saved_model" , "1" )
UpperCAmelCase : int = tf.keras.models.load_model(snake_case )
UpperCAmelCase : Optional[int] = model(snake_case )
if self.is_encoder_decoder:
UpperCAmelCase : str = outputs["encoder_hidden_states"]
UpperCAmelCase : str = outputs["encoder_attentions"]
else:
UpperCAmelCase : Dict = outputs["hidden_states"]
UpperCAmelCase : str = outputs["attentions"]
self.assertEqual(len(snake_case ) , snake_case )
UpperCAmelCase : List[Any] = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case ) , snake_case )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = True
UpperCAmelCase : Optional[int] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
UpperCAmelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
UpperCAmelCase : int = getattr(self.model_tester , "key_length" , snake_case )
UpperCAmelCase : int = getattr(self.model_tester , "key_length" , snake_case )
def check_decoder_attentions_output(snake_case ):
UpperCAmelCase : Any = len(snake_case )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase : List[str] = outputs.decoder_attentions
self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case ):
UpperCAmelCase : Any = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = True
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[Any] = model_class(snake_case )
UpperCAmelCase : int = model(self._prepare_for_class(snake_case , snake_case ) )
UpperCAmelCase : Optional[Any] = len(snake_case )
self.assertEqual(config.output_hidden_states , snake_case )
check_encoder_attentions_output(snake_case )
if self.is_encoder_decoder:
UpperCAmelCase : int = model_class(snake_case )
UpperCAmelCase : Tuple = model(self._prepare_for_class(snake_case , snake_case ) )
self.assertEqual(config.output_hidden_states , snake_case )
check_decoder_attentions_output(snake_case )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase : Tuple = True
UpperCAmelCase : Optional[Any] = model_class(snake_case )
UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(snake_case , snake_case ) )
self.assertEqual(config.output_hidden_states , snake_case )
check_encoder_attentions_output(snake_case )
# Check attention is always last and order is fine
UpperCAmelCase : Any = True
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : List[str] = model_class(snake_case )
UpperCAmelCase : Tuple = model(self._prepare_for_class(snake_case , snake_case ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case ) )
self.assertEqual(model.config.output_hidden_states , snake_case )
check_encoder_attentions_output(snake_case )
@require_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
UpperCAmelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase : int = model(snake_case )[0]
UpperCAmelCase : Tuple = [1, 6, 7_6_8]
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Optional[Any] = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
| 311
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = ["model.decoder.embed_positions.weights"]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "emb" in name:
UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCAmelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = list(state_dict.keys() )
UpperCAmelCase : List[Any] = {}
for key in keys:
UpperCAmelCase : Any = state_dict.pop(__magic_name__ )
UpperCAmelCase : str = rename_keys(__magic_name__ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase : Optional[int] = val[:hidden_size, :]
UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase : str = val
else:
UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def lowercase ( __magic_name__ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
UpperCAmelCase : List[Any] = 1024
UpperCAmelCase : Tuple = 24
UpperCAmelCase : Union[str, Any] = 16
elif checkpoint == "medium":
UpperCAmelCase : List[Any] = 1536
UpperCAmelCase : Optional[Any] = 48
UpperCAmelCase : List[str] = 24
elif checkpoint == "large":
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : str = 48
UpperCAmelCase : Optional[Any] = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase : Tuple = MusicgenDecoderConfig(
hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , )
return config
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ )
UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ )
UpperCAmelCase : Dict = fairseq_model.lm.state_dict()
UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict(
__magic_name__ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" )
UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__magic_name__ )
if len(__magic_name__ ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(__magic_name__ ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__magic_name__ )
# check we can do a forward pass
UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ )
# set the appropriate bos/pad token ids
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : Tuple = 2048
# set other default generation config params
UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = 3.0
if pytorch_dump_folder is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(__magic_name__ )
processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
a : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
if __name__ == "__main__":
a : Union[str, Any] = Accelerator()
a : str = (accelerator.state.process_index + 2, 10)
a : List[str] = torch.randint(0, 10, shape).to(accelerator.device)
a : Optional[int] = ""
a : int = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 311
| 1
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , ):
'''simple docstring'''
UpperCAmelCase : Any = {}
if train_file is not None:
UpperCAmelCase : int = [train_file]
if eval_file is not None:
UpperCAmelCase : Optional[Any] = [eval_file]
if test_file is not None:
UpperCAmelCase : Union[str, Any] = [test_file]
UpperCAmelCase : Optional[Any] = datasets.load_dataset("csv" , data_files=__magic_name__ )
UpperCAmelCase : List[str] = list(ds[list(files.keys() )[0]].features.keys() )
UpperCAmelCase : Optional[int] = features_name.pop(__magic_name__ )
UpperCAmelCase : Any = list(set(ds[list(files.keys() )[0]][label_name] ) )
UpperCAmelCase : Tuple = {label: i for i, label in enumerate(__magic_name__ )}
UpperCAmelCase : Union[str, Any] = tokenizer.model_input_names
UpperCAmelCase : int = {}
if len(__magic_name__ ) == 1:
for k in files.keys():
UpperCAmelCase : Union[str, Any] = ds[k].map(
lambda __magic_name__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__magic_name__ , max_length=__magic_name__ , padding="max_length" ) , batched=__magic_name__ , )
elif len(__magic_name__ ) == 2:
for k in files.keys():
UpperCAmelCase : Dict = ds[k].map(
lambda __magic_name__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__magic_name__ , max_length=__magic_name__ , padding="max_length" , ) , batched=__magic_name__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
UpperCAmelCase : Dict = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase : List[str] = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
UpperCAmelCase : Tuple = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
UpperCAmelCase : str = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase : str = labelaid[ex[label_name]]
yield (d, label)
UpperCAmelCase : int = (
tf.data.Dataset.from_generator(
__magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
UpperCAmelCase : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
UpperCAmelCase : Any = (
tf.data.Dataset.from_generator(
__magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
UpperCAmelCase : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
UpperCAmelCase : Any = (
tf.data.Dataset.from_generator(
__magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
UpperCAmelCase : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
a : Union[str, Any] = logging.getLogger(__name__)
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = field(metadata={"help": "Which column contains the label"} )
SCREAMING_SNAKE_CASE__ : str = field(default=lowercase__ , metadata={"help": "The path of the training file"} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ , metadata={"help": "The path of the development file"} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ , metadata={"help": "The path of the test file"} )
SCREAMING_SNAKE_CASE__ : int = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
SCREAMING_SNAKE_CASE__ : bool = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE__ : bool = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, "
F"16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__magic_name__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__magic_name__ ) , labelaid=__magic_name__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
UpperCAmelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , )
def compute_metrics(__magic_name__ ) -> Dict:
UpperCAmelCase : Any = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
UpperCAmelCase : int = TFTrainer(
model=__magic_name__ , args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , compute_metrics=__magic_name__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase : List[str] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCAmelCase : Dict = trainer.evaluate()
UpperCAmelCase : str = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(__magic_name__ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(F" {key} = {value}" )
writer.write(F"{key} = {value}\n" )
results.update(__magic_name__ )
return results
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase : Dict = len(snake_case )
self.assertGreater(snake_case , 0 )
self.assertEqual(
snake_case , [
{
"score": ANY(snake_case ),
"label": ANY(snake_case ),
"box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )},
}
for i in range(snake_case )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
UpperCAmelCase : Tuple = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
UpperCAmelCase : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = 0.2
UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : str = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 311
| 1
|
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def lowercase ( __magic_name__ ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowercase ( __magic_name__ ):
'''simple docstring'''
for char in word:
UpperCAmelCase : str = ord(__magic_name__ )
if not _is_chinese_char(__magic_name__ ):
return 0
return 1
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = set()
for token in tokens:
UpperCAmelCase : Union[str, Any] = len(__magic_name__ ) > 1 and is_chinese(__magic_name__ )
if chinese_word:
word_set.add(__magic_name__ )
UpperCAmelCase : Optional[Any] = list(__magic_name__ )
return word_list
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCAmelCase : str = max([len(__magic_name__ ) for w in chinese_word_set] )
UpperCAmelCase : Union[str, Any] = bert_tokens
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, len(__magic_name__ )
while start < end:
UpperCAmelCase : List[Any] = True
if is_chinese(bert_word[start] ):
UpperCAmelCase : List[Any] = min(end - start , __magic_name__ )
for i in range(__magic_name__ , 1 , -1 ):
UpperCAmelCase : List[Any] = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCAmelCase : Optional[int] = "##" + bert_word[j]
UpperCAmelCase : int = start + i
UpperCAmelCase : List[str] = False
break
if single_word:
start += 1
return bert_word
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = []
for i in range(0 , len(__magic_name__ ) , 100 ):
UpperCAmelCase : str = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws
UpperCAmelCase : int = [get_chinese_word(__magic_name__ ) for r in res]
ltp_res.extend(__magic_name__ )
assert len(__magic_name__ ) == len(__magic_name__ )
UpperCAmelCase : int = []
for i in range(0 , len(__magic_name__ ) , 100 ):
UpperCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__magic_name__ , truncation=__magic_name__ , max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__magic_name__ ) == len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(__magic_name__ , __magic_name__ ):
UpperCAmelCase : Tuple = []
for id in input_ids:
UpperCAmelCase : Optional[Any] = bert_tokenizer._convert_id_to_token(__magic_name__ )
input_tokens.append(__magic_name__ )
UpperCAmelCase : List[Any] = add_sub_symbol(__magic_name__ , __magic_name__ )
UpperCAmelCase : str = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__magic_name__ ):
if token[:2] == "##":
UpperCAmelCase : List[str] = token[2:]
# save chinese tokens' pos
if len(__magic_name__ ) == 1 and _is_chinese_char(ord(__magic_name__ ) ):
ref_id.append(__magic_name__ )
ref_ids.append(__magic_name__ )
assert len(__magic_name__ ) == len(__magic_name__ )
return ref_ids
def lowercase ( __magic_name__ ):
'''simple docstring'''
with open(args.file_name , "r" , encoding="utf-8" ) as f:
UpperCAmelCase : Dict = f.readlines()
UpperCAmelCase : List[str] = [line.strip() for line in data if len(__magic_name__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCAmelCase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device
UpperCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained(args.bert )
UpperCAmelCase : Dict = prepare_ref(__magic_name__ , __magic_name__ , __magic_name__ )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
UpperCAmelCase : Tuple = [json.dumps(__magic_name__ ) + "\n" for ref in ref_ids]
f.writelines(__magic_name__ )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
a : Tuple = parser.parse_args()
main(args)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=snake_case , scheduler=snake_case )
@torch.no_grad()
def __call__( self , snake_case = 1 , snake_case = None , snake_case = 5_0 , snake_case = "pil" , snake_case = True , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : int = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case , )
UpperCAmelCase : Dict = image.to(self.device )
# set step values
self.scheduler.set_timesteps(snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase : Optional[int] = self.unet(snake_case , snake_case ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase : List[Any] = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample
UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] = self.numpy_to_pil(snake_case )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=snake_case ), "This is a local test"
| 311
|
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a : int = datasets.load_iris()
a : Union[str, Any] = np.array(data["data"])
a : Optional[Any] = np.array(data["target"])
a : List[Any] = data["target_names"]
a , a , a , a : Dict = train_test_split(X, y)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ):
'''simple docstring'''
UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ )
# List of distances of all points from the point to be classified
UpperCAmelCase : List[Any] = []
for data_point in data:
UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 311
| 1
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = IFInpaintingSuperResolutionPipeline
SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
SCREAMING_SNAKE_CASE__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def A_ ( self ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def A_ ( self , snake_case , snake_case=0 ):
'''simple docstring'''
if str(snake_case ).startswith("mps" ):
UpperCAmelCase : List[str] = torch.manual_seed(snake_case )
else:
UpperCAmelCase : int = torch.Generator(device=snake_case ).manual_seed(snake_case )
UpperCAmelCase : List[str] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(snake_case ) ).to(snake_case )
UpperCAmelCase : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case ) ).to(snake_case )
UpperCAmelCase : int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case ) ).to(snake_case )
UpperCAmelCase : List[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def A_ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def A_ ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def A_ ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1e-1 )
def A_ ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def A_ ( self ):
'''simple docstring'''
self._test_save_load_local()
def A_ ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 311
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311
| 1
|
'''simple docstring'''
a : str = tuple[float, float, float]
a : int = tuple[float, float, float]
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = end_pointa[0] - end_pointa[0]
UpperCAmelCase : Optional[int] = end_pointa[1] - end_pointa[1]
UpperCAmelCase : int = end_pointa[2] - end_pointa[2]
return (x, y, z)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
UpperCAmelCase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
UpperCAmelCase : str = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return tuple(round(__magic_name__ , __magic_name__ ) for x in vector ) == (0, 0, 0)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 10 ):
'''simple docstring'''
UpperCAmelCase : Any = create_vector(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = create_vector(__magic_name__ , __magic_name__ )
return is_zero_vector(get_ad_vectors_cross(__magic_name__ , __magic_name__ ) , __magic_name__ )
| 311
|
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
a : Optional[Any] = logging.get_logger(__name__)
a : Tuple = "T5Config"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ )
UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ )
UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ )
return shifted_input_ids
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : Dict = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
| 311
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "facebook/bart-large-mnli"
SCREAMING_SNAKE_CASE__ : List[str] = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
SCREAMING_SNAKE_CASE__ : List[str] = "text_classifier"
SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer
SCREAMING_SNAKE_CASE__ : Tuple = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE__ : str = ["text", ["text"]]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["text"]
def A_ ( self ):
'''simple docstring'''
super().setup()
UpperCAmelCase : Optional[int] = self.model.config
UpperCAmelCase : Dict = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
UpperCAmelCase : Optional[int] = int(snake_case )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = labels
return self.pre_processor(
[text] * len(snake_case ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : int = outputs.logits
UpperCAmelCase : Tuple = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 311
|
'''simple docstring'''
from jiwer import compute_measures
import datasets
a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def A_ ( self , snake_case=None , snake_case=None , snake_case=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(snake_case , snake_case )["wer"]
else:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = 0
for prediction, reference in zip(snake_case , snake_case ):
UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 311
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Optional[int] = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = "sew"
def __init__( self , snake_case=3_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case=2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=1e-5 , snake_case="group" , snake_case="gelu" , snake_case=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case=False , snake_case=1_2_8 , snake_case=1_6 , snake_case=True , snake_case=0.05 , snake_case=1_0 , snake_case=2 , snake_case=0.0 , snake_case=1_0 , snake_case=0 , snake_case="mean" , snake_case=False , snake_case=False , snake_case=2_5_6 , snake_case=0 , snake_case=1 , snake_case=2 , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case )
UpperCAmelCase : List[Any] = hidden_size
UpperCAmelCase : List[Any] = feat_extract_norm
UpperCAmelCase : Tuple = feat_extract_activation
UpperCAmelCase : str = list(snake_case )
UpperCAmelCase : Union[str, Any] = list(snake_case )
UpperCAmelCase : Optional[int] = list(snake_case )
UpperCAmelCase : Any = conv_bias
UpperCAmelCase : Optional[int] = num_conv_pos_embeddings
UpperCAmelCase : Optional[Any] = num_conv_pos_embedding_groups
UpperCAmelCase : Optional[int] = len(self.conv_dim )
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : str = squeeze_factor
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : int = hidden_dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : List[str] = activation_dropout
UpperCAmelCase : Dict = feat_proj_dropout
UpperCAmelCase : Optional[Any] = final_dropout
UpperCAmelCase : str = layerdrop
UpperCAmelCase : Dict = layer_norm_eps
UpperCAmelCase : List[Any] = initializer_range
UpperCAmelCase : List[Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : Tuple = mask_time_length
UpperCAmelCase : Union[str, Any] = mask_time_min_masks
UpperCAmelCase : List[Any] = mask_feature_prob
UpperCAmelCase : int = mask_feature_length
UpperCAmelCase : Dict = mask_feature_min_masks
# ctc loss
UpperCAmelCase : Dict = ctc_loss_reduction
UpperCAmelCase : Tuple = ctc_zero_infinity
# sequence classification
UpperCAmelCase : Optional[int] = use_weighted_layer_sum
UpperCAmelCase : List[Any] = classifier_proj_size
@property
def A_ ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
|
'''simple docstring'''
from functools import lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = 2
UpperCAmelCase : str = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__magic_name__ )
if n > 1:
factors.add(__magic_name__ )
return factors
@lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(unique_prime_factors(__magic_name__ ) )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(set(__magic_name__ ) ) in (0, 1)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
while True:
# Increment each value of a generated range
UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group]
checker.append(__magic_name__ )
# If all numbers in the list are equal, return the group variable.
if equality(__magic_name__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase ( __magic_name__ = 4 ):
'''simple docstring'''
UpperCAmelCase : int = run(__magic_name__ )
return results[0] if len(__magic_name__ ) else None
if __name__ == "__main__":
print(solution())
| 311
| 1
|
'''simple docstring'''
import argparse
import copy
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase : Any = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ ) as f:
UpperCAmelCase : List[str] = f.read(1 )
UpperCAmelCase : List[Any] = start_node
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Any = start_node
UpperCAmelCase : Optional[Any] = 0
while visiting not in first_solution:
UpperCAmelCase : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
UpperCAmelCase : Tuple = k[1]
UpperCAmelCase : Dict = k[0]
first_solution.append(__magic_name__ )
UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ )
UpperCAmelCase : str = best_node
first_solution.append(__magic_name__ )
UpperCAmelCase : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase : str = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
UpperCAmelCase : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
UpperCAmelCase : Dict = solution.index(__magic_name__ )
if n == kn:
continue
UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ )
UpperCAmelCase : Optional[int] = kn
UpperCAmelCase : List[str] = n
UpperCAmelCase : str = 0
for k in _tmp[:-1]:
UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase : List[Any] = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = first_solution
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = distance_of_first_solution
UpperCAmelCase : Union[str, Any] = solution
while count <= iters:
UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = 0
UpperCAmelCase : List[str] = neighborhood[index_of_best_solution]
UpperCAmelCase : Dict = len(__magic_name__ ) - 1
UpperCAmelCase : Dict = False
while not found:
UpperCAmelCase : List[Any] = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
UpperCAmelCase : int = best_solution[i]
UpperCAmelCase : Optional[int] = solution[i]
break
UpperCAmelCase : List[str] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = best_solution[:-1]
UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase : Union[str, Any] = cost
UpperCAmelCase : Tuple = solution
else:
UpperCAmelCase : Optional[Any] = index_of_best_solution + 1
UpperCAmelCase : str = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
UpperCAmelCase : int = count + 1
return best_solution_ever, best_cost
def lowercase ( __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Dict = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution(
args.File , __magic_name__ )
UpperCAmelCase , UpperCAmelCase : Any = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ):
'''simple docstring'''
model.train()
UpperCAmelCase : List[str] = model(__magic_name__ )
UpperCAmelCase : Union[str, Any] = F.mse_loss(__magic_name__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__=False ):
'''simple docstring'''
set_seed(42 )
UpperCAmelCase : str = RegressionModel()
UpperCAmelCase : Optional[Any] = deepcopy(__magic_name__ )
UpperCAmelCase : Any = RegressionDataset(length=80 )
UpperCAmelCase : Optional[Any] = DataLoader(__magic_name__ , batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=1e-3 )
UpperCAmelCase : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1e-3 )
UpperCAmelCase : int = LambdaLR(__magic_name__ , lr_lambda=lambda __magic_name__ : epoch**0.6_5 )
UpperCAmelCase : List[Any] = LambdaLR(__magic_name__ , lr_lambda=lambda __magic_name__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
else:
UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare(__magic_name__ , __magic_name__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = get_training_setup(__magic_name__ )
# Use a single batch
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = next(iter(__magic_name__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Optional[int] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__magic_name__ ):
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
else:
# Sync grads
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : Any = ddp_input[torch.randperm(len(__magic_name__ ) )]
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_training_setup(__magic_name__ )
# Use a single batch
UpperCAmelCase , UpperCAmelCase : List[str] = next(iter(__magic_name__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__magic_name__ ):
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
else:
# Sync grads
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : Tuple = ddp_input[torch.randperm(len(__magic_name__ ) )]
def lowercase ( __magic_name__=False , __magic_name__=False ):
'''simple docstring'''
UpperCAmelCase : Tuple = Accelerator(
split_batches=__magic_name__ , dispatch_batches=__magic_name__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = get_training_setup(__magic_name__ )
for iteration, batch in enumerate(__magic_name__ ):
UpperCAmelCase , UpperCAmelCase : Any = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__magic_name__ ):
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__magic_name__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : Tuple = ddp_input[torch.randperm(len(__magic_name__ ) )]
GradientState._reset_state()
def lowercase ( __magic_name__=False , __magic_name__=False ):
'''simple docstring'''
UpperCAmelCase : str = Accelerator(
split_batches=__magic_name__ , dispatch_batches=__magic_name__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = get_training_setup(__magic_name__ , __magic_name__ )
for iteration, batch in enumerate(__magic_name__ ):
UpperCAmelCase , UpperCAmelCase : List[str] = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__magic_name__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__magic_name__ ):
step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"
UpperCAmelCase : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__magic_name__ ))
if accelerator.num_processes > 1:
check_model_parameters(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = Accelerator()
UpperCAmelCase : Optional[int] = RegressionDataset(length=80 )
UpperCAmelCase : int = DataLoader(__magic_name__ , batch_size=16 )
UpperCAmelCase : Optional[int] = RegressionDataset(length=96 )
UpperCAmelCase : Optional[int] = DataLoader(__magic_name__ , batch_size=16 )
UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(__magic_name__ , __magic_name__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__magic_name__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__magic_name__ )
if iteration < len(__magic_name__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__magic_name__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__magic_name__ )
if batch_num < len(__magic_name__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = Accelerator()
UpperCAmelCase : List[str] = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(__magic_name__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(__magic_name__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation(__magic_name__ , __magic_name__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation_with_opt_and_scheduler(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])")
a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])")
a : str = re.compile(R"(?<!_)_(?!_)")
a : List[Any] = re.compile(R"(_{2,})")
a : List[Any] = R"^\w+(\.\w+)*$"
a : Dict = R"<>:/\|?*"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
return name.lower()
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ )
UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , __magic_name__ ):
raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." )
return F"{filename_prefix_for_name(__magic_name__ )}-{split}"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
if filetype_suffix:
prefix += F".{filetype_suffix}"
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
return F"{filepath}*"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
if shard_lengths:
UpperCAmelCase : Tuple = len(__magic_name__ )
UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )]
if filetype_suffix:
UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames]
return filenames
else:
UpperCAmelCase : int = prefix
if filetype_suffix:
filename += F".{filetype_suffix}"
return [filename]
| 311
| 1
|
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Dict = logging.get_logger(__name__)
a : Union[str, Any] = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = "data2vec-audio"
def __init__( self , snake_case=3_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=1e-5 , snake_case="gelu" , snake_case=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case=(5, 2, 2, 2, 2, 2, 2) , snake_case=(1_0, 3, 3, 3, 3, 2, 2) , snake_case=False , snake_case=1_6 , snake_case=1_9 , snake_case=5 , snake_case=0.05 , snake_case=1_0 , snake_case=2 , snake_case=0.0 , snake_case=1_0 , snake_case=0 , snake_case="sum" , snake_case=False , snake_case=False , snake_case=2_5_6 , snake_case=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case=(5, 3, 3, 1, 1) , snake_case=(1, 2, 3, 1, 1) , snake_case=5_1_2 , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=False , snake_case=3 , snake_case=2 , snake_case=3 , snake_case=None , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case )
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : List[Any] = feat_extract_activation
UpperCAmelCase : List[str] = list(snake_case )
UpperCAmelCase : Optional[Any] = list(snake_case )
UpperCAmelCase : Optional[int] = list(snake_case )
UpperCAmelCase : List[str] = conv_bias
UpperCAmelCase : Tuple = num_conv_pos_embeddings
UpperCAmelCase : List[Any] = num_conv_pos_embedding_groups
UpperCAmelCase : Tuple = conv_pos_kernel_size
UpperCAmelCase : Optional[int] = len(self.conv_dim )
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : int = hidden_dropout
UpperCAmelCase : List[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : List[Any] = feat_proj_dropout
UpperCAmelCase : int = final_dropout
UpperCAmelCase : Any = layerdrop
UpperCAmelCase : Dict = layer_norm_eps
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : List[str] = mask_time_prob
UpperCAmelCase : str = mask_time_length
UpperCAmelCase : Tuple = mask_time_min_masks
UpperCAmelCase : str = mask_feature_prob
UpperCAmelCase : List[str] = mask_feature_length
UpperCAmelCase : Union[str, Any] = mask_feature_min_masks
# ctc loss
UpperCAmelCase : List[Any] = ctc_loss_reduction
UpperCAmelCase : str = ctc_zero_infinity
# adapter
UpperCAmelCase : Optional[int] = add_adapter
UpperCAmelCase : Union[str, Any] = adapter_kernel_size
UpperCAmelCase : List[Any] = adapter_stride
UpperCAmelCase : str = num_adapter_layers
UpperCAmelCase : Tuple = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : int = list(snake_case )
UpperCAmelCase : Optional[int] = list(snake_case )
UpperCAmelCase : Union[str, Any] = list(snake_case )
UpperCAmelCase : Tuple = xvector_output_dim
@property
def A_ ( self ):
'''simple docstring'''
return math.prod(self.conv_stride )
| 311
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311
| 1
|
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,)
SCREAMING_SNAKE_CASE__ : Optional[Any] = (("eta", 0.0), ("num_inference_steps", 50))
def A_ ( self , **snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = {
"num_train_timesteps": 1_0_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**snake_case )
return config
def A_ ( self , **snake_case ):
'''simple docstring'''
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config(**snake_case )
UpperCAmelCase : List[str] = scheduler_class(**snake_case )
UpperCAmelCase , UpperCAmelCase : Any = 1_0, 0.0
UpperCAmelCase : Any = self.dummy_model()
UpperCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(snake_case )
for t in scheduler.timesteps:
UpperCAmelCase : Optional[int] = model(snake_case , snake_case )
UpperCAmelCase : List[Any] = scheduler.step(snake_case , snake_case , snake_case , snake_case ).prev_sample
return sample
def A_ ( self ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=snake_case )
def A_ ( self ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=snake_case )
UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
UpperCAmelCase : Any = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase : Dict = scheduler_class(**snake_case )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def A_ ( self ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=snake_case , beta_end=snake_case )
def A_ ( self ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=snake_case )
def A_ ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case )
def A_ ( self ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=snake_case )
def A_ ( self ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=snake_case )
def A_ ( self ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=snake_case )
def A_ ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=snake_case )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , )
def A_ ( self ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=snake_case )
def A_ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=snake_case , num_inference_steps=snake_case )
def A_ ( self ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=snake_case , eta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : Dict = self.get_scheduler_config()
UpperCAmelCase : str = scheduler_class(**snake_case )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : Union[str, Any] = self.get_scheduler_config()
UpperCAmelCase : Dict = scheduler_class(**snake_case )
UpperCAmelCase , UpperCAmelCase : Dict = 1_0, 0.0
scheduler.set_timesteps(snake_case )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : List[Any] = self.dummy_sample_deter
UpperCAmelCase : Tuple = self.dummy_sample_deter + 0.1
UpperCAmelCase : List[Any] = self.dummy_sample_deter - 0.1
UpperCAmelCase : Any = samplea.shape[0]
UpperCAmelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase : str = torch.arange(snake_case )[0:3, None].repeat(1 , snake_case )
UpperCAmelCase : Optional[int] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase : str = scheduler.batch_step_no_noise(snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , snake_case )
UpperCAmelCase : Optional[int] = torch.sum(torch.abs(snake_case ) )
UpperCAmelCase : Tuple = torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.full_loop()
UpperCAmelCase : Any = torch.sum(torch.abs(snake_case ) )
UpperCAmelCase : int = torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.22_3967 ) < 1e-3
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase : Tuple = torch.sum(torch.abs(snake_case ) )
UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.full_loop(set_alpha_to_one=snake_case , beta_start=0.01 )
UpperCAmelCase : Any = torch.sum(torch.abs(snake_case ) )
UpperCAmelCase : List[Any] = torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=snake_case , beta_start=0.01 )
UpperCAmelCase : Dict = torch.sum(torch.abs(snake_case ) )
UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(snake_case ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 311
|
'''simple docstring'''
import argparse
import copy
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase : Any = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ ) as f:
UpperCAmelCase : List[str] = f.read(1 )
UpperCAmelCase : List[Any] = start_node
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Any = start_node
UpperCAmelCase : Optional[Any] = 0
while visiting not in first_solution:
UpperCAmelCase : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
UpperCAmelCase : Tuple = k[1]
UpperCAmelCase : Dict = k[0]
first_solution.append(__magic_name__ )
UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ )
UpperCAmelCase : str = best_node
first_solution.append(__magic_name__ )
UpperCAmelCase : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase : str = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
UpperCAmelCase : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
UpperCAmelCase : Dict = solution.index(__magic_name__ )
if n == kn:
continue
UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ )
UpperCAmelCase : Optional[int] = kn
UpperCAmelCase : List[str] = n
UpperCAmelCase : str = 0
for k in _tmp[:-1]:
UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase : List[Any] = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = first_solution
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = distance_of_first_solution
UpperCAmelCase : Union[str, Any] = solution
while count <= iters:
UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = 0
UpperCAmelCase : List[str] = neighborhood[index_of_best_solution]
UpperCAmelCase : Dict = len(__magic_name__ ) - 1
UpperCAmelCase : Dict = False
while not found:
UpperCAmelCase : List[Any] = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
UpperCAmelCase : int = best_solution[i]
UpperCAmelCase : Optional[int] = solution[i]
break
UpperCAmelCase : List[str] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = best_solution[:-1]
UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase : Union[str, Any] = cost
UpperCAmelCase : Tuple = solution
else:
UpperCAmelCase : Optional[Any] = index_of_best_solution + 1
UpperCAmelCase : str = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
UpperCAmelCase : int = count + 1
return best_solution_ever, best_cost
def lowercase ( __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Dict = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution(
args.File , __magic_name__ )
UpperCAmelCase , UpperCAmelCase : Any = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
| 1
|
'''simple docstring'''
import math
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if initial_intensity < 0:
raise ValueError("The value of intensity cannot be negative" )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(__magic_name__ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="malus_law")
| 311
|
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase : Union[str, Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:]
UpperCAmelCase : List[str] = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = b""
for char in message:
bit_string += format(__magic_name__ , "08b" ).encode("utf-8" )
UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512]
UpperCAmelCase : Tuple = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Any = format(__magic_name__ , "032b" )
UpperCAmelCase : int = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = preprocess(__magic_name__ )
UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase : List[str] = 0X67452301
UpperCAmelCase : Tuple = 0XEFCDAB89
UpperCAmelCase : List[Any] = 0X98BADCFE
UpperCAmelCase : List[str] = 0X10325476
UpperCAmelCase : Dict = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : List[Any] = ba
UpperCAmelCase : Optional[Any] = ca
UpperCAmelCase : Any = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : int = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ ))
UpperCAmelCase : Dict = (7 * i) % 16
UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase : List[Any] = d
UpperCAmelCase : Any = c
UpperCAmelCase : Dict = b
UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
a : Tuple = logging.get_logger(__name__)
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , *snake_case , **snake_case ):
'''simple docstring'''
warnings.warn(
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DonutImageProcessor instead." , snake_case , )
super().__init__(*snake_case , **snake_case )
| 311
|
'''simple docstring'''
a : List[str] = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 311
| 1
|
'''simple docstring'''
import os
from pathlib import Path
def lowercase ( ):
'''simple docstring'''
from torch.utils.cpp_extension import load
UpperCAmelCase : Optional[Any] = Path(__magic_name__ ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
UpperCAmelCase : List[str] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , __magic_name__ , with_cuda=__magic_name__ , extra_include_paths=[str(__magic_name__ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
a : Optional[Any] = 2_56
# Modulus to hash a string
a : str = 1_00_00_03
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = len(__magic_name__ )
UpperCAmelCase : Tuple = len(__magic_name__ )
if p_len > t_len:
return False
UpperCAmelCase : Union[str, Any] = 0
UpperCAmelCase : str = 0
UpperCAmelCase : Union[str, Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(__magic_name__ ):
UpperCAmelCase : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
UpperCAmelCase : Optional[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
UpperCAmelCase : List[str] = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
UpperCAmelCase : Optional[int] = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : List[str] = "abc1abc12"
UpperCAmelCase : Any = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCAmelCase : int = "alskfjaldsk23adsfabcabc"
assert rabin_karp(__magic_name__ , __magic_name__ ) and not rabin_karp(__magic_name__ , __magic_name__ )
# Test 2)
UpperCAmelCase : str = "ABABX"
UpperCAmelCase : Optional[int] = "ABABZABABYABABX"
assert rabin_karp(__magic_name__ , __magic_name__ )
# Test 3)
UpperCAmelCase : int = "AAAB"
UpperCAmelCase : Tuple = "ABAAAAAB"
assert rabin_karp(__magic_name__ , __magic_name__ )
# Test 4)
UpperCAmelCase : str = "abcdabcy"
UpperCAmelCase : Optional[Any] = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(__magic_name__ , __magic_name__ )
# Test 5)
UpperCAmelCase : int = "Lü"
UpperCAmelCase : List[Any] = "Lüsai"
assert rabin_karp(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[Any] = "Lue"
assert not rabin_karp(__magic_name__ , __magic_name__ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 311
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
| 1
|
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = None
SCREAMING_SNAKE_CASE__ : Tuple = None
@property
def A_ ( self ):
'''simple docstring'''
return self.feat_extract_tester.prepare_feat_extract_dict()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case , "feature_size" ) )
self.assertTrue(hasattr(snake_case , "sampling_rate" ) )
self.assertTrue(hasattr(snake_case , "padding_value" ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0]
UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case , processed_features[input_name] ) ) )
UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" )
UpperCAmelCase : str = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase : Tuple = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : int = feat_extract.model_input_names[0]
UpperCAmelCase : str = BatchFeature({input_name: speech_inputs} , tensor_type="pt" )
UpperCAmelCase : List[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase : Any = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Union[str, Any] = feat_extract.model_input_names[0]
UpperCAmelCase : str = BatchFeature({input_name: speech_inputs} , tensor_type="tf" )
UpperCAmelCase : Dict = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase : Tuple = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def A_ ( self , snake_case=False ):
'''simple docstring'''
def _inputs_have_equal_length(snake_case ):
UpperCAmelCase : Dict = len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case , snake_case ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case , snake_case ):
if not np.allclose(np.asarray(snake_case ) , np.asarray(snake_case ) , atol=1e-3 ):
return False
return True
UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
UpperCAmelCase : List[Any] = feat_extract.model_input_names[0]
UpperCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase : str = self.feat_extract_tester.seq_length_diff
UpperCAmelCase : str = self.feat_extract_tester.max_seq_length + pad_diff
UpperCAmelCase : int = self.feat_extract_tester.min_seq_length
UpperCAmelCase : Dict = self.feat_extract_tester.batch_size
UpperCAmelCase : Any = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
UpperCAmelCase : Union[str, Any] = feat_extract.pad(snake_case , padding=snake_case )
UpperCAmelCase : int = input_a[input_name]
UpperCAmelCase : Any = feat_extract.pad(snake_case , padding="longest" )
UpperCAmelCase : Dict = input_a[input_name]
UpperCAmelCase : Union[str, Any] = feat_extract.pad(snake_case , padding="max_length" , max_length=len(speech_inputs[-1] ) )
UpperCAmelCase : int = input_a[input_name]
UpperCAmelCase : Optional[int] = feat_extract.pad(snake_case , padding="longest" , return_tensors="np" )
UpperCAmelCase : Any = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case , padding="max_length" )[input_name]
UpperCAmelCase : Dict = feat_extract.pad(
snake_case , padding="max_length" , max_length=snake_case , return_tensors="np" )
UpperCAmelCase : Tuple = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case , snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
UpperCAmelCase : Tuple = feat_extract.pad(snake_case , pad_to_multiple_of=1_0 )
UpperCAmelCase : str = input_a[input_name]
UpperCAmelCase : str = feat_extract.pad(snake_case , padding="longest" , pad_to_multiple_of=1_0 )
UpperCAmelCase : str = input_a[input_name]
UpperCAmelCase : List[str] = feat_extract.pad(
snake_case , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case )
UpperCAmelCase : str = input_a[input_name]
UpperCAmelCase : Union[str, Any] = feat_extract.pad(
snake_case , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case , return_tensors="np" , )
UpperCAmelCase : Union[str, Any] = input_a[input_name]
self.assertTrue(all(len(snake_case ) % 1_0 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case , snake_case ) )
UpperCAmelCase : Any = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
UpperCAmelCase : Dict = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def A_ ( self , snake_case=False ):
'''simple docstring'''
def _inputs_have_equal_length(snake_case ):
UpperCAmelCase : int = len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case , snake_case ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case , snake_case ):
if not np.allclose(np.asarray(snake_case ) , np.asarray(snake_case ) , atol=1e-3 ):
return False
return True
UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
UpperCAmelCase : Union[str, Any] = feat_extract.model_input_names[0]
UpperCAmelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
UpperCAmelCase : Union[str, Any] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=snake_case )
UpperCAmelCase : Optional[int] = input_a[input_name]
UpperCAmelCase : int = feat_extract.pad(snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) )
UpperCAmelCase : Any = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
UpperCAmelCase : Tuple = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=snake_case , )
UpperCAmelCase : List[Any] = input_a[input_name]
UpperCAmelCase : List[Any] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" )
UpperCAmelCase : Dict = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
UpperCAmelCase : List[str] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case , return_tensors="np" , )
UpperCAmelCase : Optional[Any] = input_a[input_name]
UpperCAmelCase : Union[str, Any] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case )
UpperCAmelCase : List[Any] = input_a[input_name]
UpperCAmelCase : Dict = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" )
UpperCAmelCase : Tuple = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case , snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case , truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case , padding="longest" , truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case , padding="longest" , truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case , padding="max_length" , truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
UpperCAmelCase : List[Any] = 1_2
UpperCAmelCase : Optional[int] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case , truncation=snake_case , )
UpperCAmelCase : Optional[int] = input_a[input_name]
UpperCAmelCase : Optional[int] = feat_extract.pad(
snake_case , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case , )
UpperCAmelCase : Union[str, Any] = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
UpperCAmelCase : Any = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
UpperCAmelCase : Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def A_ ( self ):
'''simple docstring'''
self._check_padding(numpify=snake_case )
def A_ ( self ):
'''simple docstring'''
self._check_padding(numpify=snake_case )
def A_ ( self ):
'''simple docstring'''
self._check_truncation(numpify=snake_case )
def A_ ( self ):
'''simple docstring'''
self._check_truncation(numpify=snake_case )
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase : int = feat_extract.model_input_names[0]
UpperCAmelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase : int = feat_extract.pad(snake_case , padding="longest" , return_tensors="np" )[input_name]
UpperCAmelCase : str = feat_extract.pad(snake_case , padding="longest" , return_tensors="pt" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase : Any = feat_extract.model_input_names[0]
UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase : int = feat_extract.pad(snake_case , padding="longest" , return_tensors="np" )[input_name]
UpperCAmelCase : Dict = feat_extract.pad(snake_case , padding="longest" , return_tensors="tf" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.feat_extract_dict
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**snake_case )
UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase : List[str] = [len(snake_case ) for x in speech_inputs]
UpperCAmelCase : Any = feat_extract.model_input_names[0]
UpperCAmelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase : int = feat_extract.pad(snake_case , padding="longest" , return_tensors="np" )
self.assertIn("attention_mask" , snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.feat_extract_dict
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : str = self.feature_extraction_class(**snake_case )
UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase : Optional[int] = [len(snake_case ) for x in speech_inputs]
UpperCAmelCase : str = feat_extract.model_input_names[0]
UpperCAmelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase : Optional[int] = min(snake_case )
UpperCAmelCase : Any = feat_extract.pad(
snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="np" )
self.assertIn("attention_mask" , snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 311
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Tuple = ["gpt2"]
a : Dict = "gpt2"
if is_tf_available():
class UpperCamelCase__ ( tf.Module ):
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = tokenizer
UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case )
UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case )
UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor()
UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Tuple = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" )
UpperCAmelCase : Any = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Dict = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Optional[Any] = tf.function(snake_case )
for test_inputs in self.test_sentences:
UpperCAmelCase : List[str] = tf.constant(snake_case )
UpperCAmelCase : Dict = compiled_tokenizer(snake_case )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : int = ModelToSave(tokenizer=snake_case )
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model"
tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} )
UpperCAmelCase : int = tf.saved_model.load(snake_case )
UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs
UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config()
UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case )
UpperCAmelCase : Tuple = model_from_config(snake_case )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[str] = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case )
UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
a : Tuple = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase : dict[str, str | None] = {}
UpperCAmelCase : Optional[Any] = source_vertex
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = {self.source_vertex}
UpperCAmelCase : int = None
UpperCAmelCase : Any = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase : List[str] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(snake_case )
UpperCAmelCase : Dict = vertex
queue.append(snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase : int = self.parent.get(snake_case )
if target_vertex_parent is None:
UpperCAmelCase : Optional[int] = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(snake_case )
return self.shortest_path(snake_case ) + f"->{target_vertex}"
if __name__ == "__main__":
a : Tuple = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 311
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import re
def lowercase ( __magic_name__ ):
'''simple docstring'''
return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )]
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = split_input(str_ )
return "".join(
["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
try:
UpperCAmelCase : Optional[int] = split_input(__magic_name__ )
if upper:
UpperCAmelCase : str = "".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
UpperCAmelCase : Union[str, Any] = "".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def lowercase ( __magic_name__ ):
'''simple docstring'''
return to_simple_case(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
try:
UpperCAmelCase : List[str] = to_simple_case(__magic_name__ )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return to_complex_case(__magic_name__ , __magic_name__ , "_" )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return to_complex_case(__magic_name__ , __magic_name__ , "-" )
if __name__ == "__main__":
__import__("doctest").testmod()
| 311
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
a : str = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
a : Dict = TaTokenizerFast
a : List[Any] = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
a : List[Any] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 311
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
| 1
|
'''simple docstring'''
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
a : Any = logging.getLogger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=__magic_name__ )
UpperCAmelCase : int = {
"repo_id": str(__magic_name__ ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(__magic_name__ , "git_log.json" ) , "w" ) as f:
json.dump(__magic_name__ , __magic_name__ , indent=4 )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if params.n_gpu <= 0:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = -1
UpperCAmelCase : Tuple = True
UpperCAmelCase : List[str] = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
UpperCAmelCase : Union[str, Any] = int(os.environ["WORLD_SIZE"] )
UpperCAmelCase : str = int(os.environ["N_GPU_NODE"] )
UpperCAmelCase : Dict = int(os.environ["RANK"] )
# number of nodes / node ID
UpperCAmelCase : str = params.world_size // params.n_gpu_per_node
UpperCAmelCase : Optional[int] = params.global_rank // params.n_gpu_per_node
UpperCAmelCase : Tuple = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
UpperCAmelCase : int = 0
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : Any = 1
UpperCAmelCase : str = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
UpperCAmelCase : List[str] = params.node_id == 0 and params.local_rank == 0
UpperCAmelCase : Optional[Any] = params.n_nodes > 1
# summary
UpperCAmelCase : str = F"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowercase ( __magic_name__ ):
'''simple docstring'''
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 311
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = ["model.decoder.embed_positions.weights"]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "emb" in name:
UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCAmelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = list(state_dict.keys() )
UpperCAmelCase : List[Any] = {}
for key in keys:
UpperCAmelCase : Any = state_dict.pop(__magic_name__ )
UpperCAmelCase : str = rename_keys(__magic_name__ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase : Optional[int] = val[:hidden_size, :]
UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase : str = val
else:
UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def lowercase ( __magic_name__ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
UpperCAmelCase : List[Any] = 1024
UpperCAmelCase : Tuple = 24
UpperCAmelCase : Union[str, Any] = 16
elif checkpoint == "medium":
UpperCAmelCase : List[Any] = 1536
UpperCAmelCase : Optional[Any] = 48
UpperCAmelCase : List[str] = 24
elif checkpoint == "large":
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : str = 48
UpperCAmelCase : Optional[Any] = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase : Tuple = MusicgenDecoderConfig(
hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , )
return config
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ )
UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ )
UpperCAmelCase : Dict = fairseq_model.lm.state_dict()
UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict(
__magic_name__ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" )
UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__magic_name__ )
if len(__magic_name__ ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(__magic_name__ ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__magic_name__ )
# check we can do a forward pass
UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ )
# set the appropriate bos/pad token ids
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : Tuple = 2048
# set other default generation config params
UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = 3.0
if pytorch_dump_folder is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(__magic_name__ )
processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
a : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
if __name__ == "__main__":
a : Union[str, Any] = Accelerator()
a : str = (accelerator.state.process_index + 2, 10)
a : List[str] = torch.randint(0, 10, shape).to(accelerator.device)
a : Optional[int] = ""
a : int = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def lowercase ( __magic_name__ ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
a : Union[str, Any] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase : int = []
for num in range(len(__magic_name__ ) ):
UpperCAmelCase : int = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase : int = odd_composites[num] - 2 * i * i
if is_prime(__magic_name__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__magic_name__ ) == n:
return list_nums
return []
def lowercase ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 311
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase : Dict = len(snake_case )
self.assertGreater(snake_case , 0 )
self.assertEqual(
snake_case , [
{
"score": ANY(snake_case ),
"label": ANY(snake_case ),
"box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )},
}
for i in range(snake_case )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
UpperCAmelCase : Tuple = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
UpperCAmelCase : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = 0.2
UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : str = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : List[str] = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty" )
UpperCAmelCase : Union[str, Any] = sum(__magic_name__ ) / len(__magic_name__ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a : int = datasets.load_iris()
a : Union[str, Any] = np.array(data["data"])
a : Optional[Any] = np.array(data["target"])
a : List[Any] = data["target_names"]
a , a , a , a : Dict = train_test_split(X, y)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ):
'''simple docstring'''
UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ )
# List of distances of all points from the point to be classified
UpperCAmelCase : List[Any] = []
for data_point in data:
UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a : Optional[Any] = {
"configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"],
"tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = [
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"AdaptiveEmbedding",
"TransfoXLForSequenceClassification",
"TransfoXLLMHeadModel",
"TransfoXLModel",
"TransfoXLPreTrainedModel",
"load_tf_weights_in_transfo_xl",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAdaptiveEmbedding",
"TFTransfoXLForSequenceClassification",
"TFTransfoXLLMHeadModel",
"TFTransfoXLMainLayer",
"TFTransfoXLModel",
"TFTransfoXLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(">=", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
a : str = get_logger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0 ):
'''simple docstring'''
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
with FSDP.state_dict_type(
__magic_name__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
UpperCAmelCase : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
UpperCAmelCase : Optional[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
UpperCAmelCase : str = os.path.join(__magic_name__ , __magic_name__ )
if accelerator.process_index == 0:
logger.info(F"Saving model to {output_model_file}" )
torch.save(__magic_name__ , __magic_name__ )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
UpperCAmelCase : str = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
UpperCAmelCase : Any = os.path.join(__magic_name__ , __magic_name__ )
logger.info(F"Saving model to {output_model_file}" )
torch.save(__magic_name__ , __magic_name__ )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
UpperCAmelCase : Optional[Any] = os.path.join(__magic_name__ , F"{MODEL_NAME}_{model_index}" )
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
logger.info(F"Saving model to {ckpt_dir}" )
UpperCAmelCase : Dict = {"model": state_dict}
dist_cp.save_state_dict(
state_dict=__magic_name__ , storage_writer=dist_cp.FileSystemWriter(__magic_name__ ) , planner=DefaultSavePlanner() , )
logger.info(F"Model saved to {ckpt_dir}" )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__magic_name__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__magic_name__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
"initializing FSDP object" )
return
UpperCAmelCase : List[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
UpperCAmelCase : Dict = os.path.join(__magic_name__ , __magic_name__ )
logger.info(F"Loading model from {input_model_file}" )
UpperCAmelCase : Dict = torch.load(__magic_name__ )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
UpperCAmelCase : Any = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
UpperCAmelCase : Union[str, Any] = os.path.join(__magic_name__ , __magic_name__ )
logger.info(F"Loading model from {input_model_file}" )
UpperCAmelCase : Dict = torch.load(__magic_name__ )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
UpperCAmelCase : Any = (
os.path.join(__magic_name__ , F"{MODEL_NAME}_{model_index}" )
if F"{MODEL_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading model from {ckpt_dir}" )
UpperCAmelCase : List[Any] = {"model": model.state_dict()}
dist_cp.load_state_dict(
state_dict=__magic_name__ , storage_reader=dist_cp.FileSystemReader(__magic_name__ ) , planner=DefaultLoadPlanner() , )
UpperCAmelCase : Any = state_dict["model"]
logger.info(F"Model loaded from {ckpt_dir}" )
model.load_state_dict(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0 ):
'''simple docstring'''
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
with FSDP.state_dict_type(
__magic_name__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
UpperCAmelCase : int = FSDP.optim_state_dict(__magic_name__ , __magic_name__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
UpperCAmelCase : Optional[int] = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
UpperCAmelCase : List[str] = os.path.join(__magic_name__ , __magic_name__ )
logger.info(F"Saving Optimizer state to {output_optimizer_file}" )
torch.save(__magic_name__ , __magic_name__ )
logger.info(F"Optimizer state saved in {output_optimizer_file}" )
else:
UpperCAmelCase : Any = os.path.join(__magic_name__ , F"{OPTIMIZER_NAME}_{optimizer_index}" )
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
logger.info(F"Saving Optimizer state to {ckpt_dir}" )
dist_cp.save_state_dict(
state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(__magic_name__ ) , planner=DefaultSavePlanner() , )
logger.info(F"Optimizer state saved in {ckpt_dir}" )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__magic_name__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
UpperCAmelCase : Union[str, Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
UpperCAmelCase : Any = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
logger.info(F"Loading Optimizer state from {input_optimizer_file}" )
UpperCAmelCase : Optional[Any] = torch.load(__magic_name__ )
logger.info(F"Optimizer state loaded from {input_optimizer_file}" )
else:
UpperCAmelCase : Tuple = (
os.path.join(__magic_name__ , F"{OPTIMIZER_NAME}_{optimizer_index}" )
if F"{OPTIMIZER_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading Optimizer from {ckpt_dir}" )
UpperCAmelCase : int = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(__magic_name__ ) , )
UpperCAmelCase : int = optim_state["optimizer"]
logger.info(F"Optimizer loaded from {ckpt_dir}" )
UpperCAmelCase : str = FSDP.optim_state_dict_to_load(__magic_name__ , __magic_name__ , __magic_name__ )
optimizer.load_state_dict(__magic_name__ )
| 311
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311
| 1
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(__magic_name__ , __magic_name__ ):
raise TypeError("Input value must be a 'int' type" )
return bin(__magic_name__ ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
a : Optional[Any] = logging.get_logger(__name__)
a : Tuple = "T5Config"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ )
UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ )
UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ )
return shifted_input_ids
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : Dict = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = SwinConfig()
UpperCAmelCase : Tuple = swin_name.split("_" )
UpperCAmelCase : Tuple = name_split[1]
UpperCAmelCase : Union[str, Any] = int(name_split[4] )
UpperCAmelCase : Any = int(name_split[3][-1] )
if model_size == "tiny":
UpperCAmelCase : Optional[Any] = 96
UpperCAmelCase : Tuple = (2, 2, 6, 2)
UpperCAmelCase : List[str] = (3, 6, 12, 24)
elif model_size == "small":
UpperCAmelCase : List[Any] = 96
UpperCAmelCase : Union[str, Any] = (2, 2, 18, 2)
UpperCAmelCase : str = (3, 6, 12, 24)
elif model_size == "base":
UpperCAmelCase : str = 128
UpperCAmelCase : Optional[int] = (2, 2, 18, 2)
UpperCAmelCase : Dict = (4, 8, 16, 32)
else:
UpperCAmelCase : Dict = 192
UpperCAmelCase : Dict = (2, 2, 18, 2)
UpperCAmelCase : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
UpperCAmelCase : Any = 2_1841
else:
UpperCAmelCase : Any = 1000
UpperCAmelCase : Optional[Any] = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json"
UpperCAmelCase : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = img_size
UpperCAmelCase : Tuple = num_classes
UpperCAmelCase : Any = embed_dim
UpperCAmelCase : str = depths
UpperCAmelCase : List[Any] = num_heads
UpperCAmelCase : Union[str, Any] = window_size
return config
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
UpperCAmelCase : List[str] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
UpperCAmelCase : str = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
UpperCAmelCase : str = "encoder." + name
if "attn.proj" in name:
UpperCAmelCase : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : Any = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : Tuple = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : int = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if name == "norm.weight":
UpperCAmelCase : Any = "layernorm.weight"
if name == "norm.bias":
UpperCAmelCase : List[Any] = "layernorm.bias"
if "head" in name:
UpperCAmelCase : List[Any] = name.replace("head" , "classifier" )
else:
UpperCAmelCase : List[str] = "swin." + name
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "mask" in key:
continue
elif "qkv" in key:
UpperCAmelCase : Dict = key.split("." )
UpperCAmelCase : Optional[Any] = int(key_split[1] )
UpperCAmelCase : Dict = int(key_split[3] )
UpperCAmelCase : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase : Dict = val[:dim, :]
UpperCAmelCase : str = val[
dim : dim * 2, :
]
UpperCAmelCase : Tuple = val[-dim:, :]
else:
UpperCAmelCase : Optional[int] = val[
:dim
]
UpperCAmelCase : List[Any] = val[
dim : dim * 2
]
UpperCAmelCase : Tuple = val[
-dim:
]
else:
UpperCAmelCase : str = val
return orig_state_dict
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = timm.create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
UpperCAmelCase : str = get_swin_config(__magic_name__ )
UpperCAmelCase : Any = SwinForImageClassification(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(timm_model.state_dict() , __magic_name__ )
model.load_state_dict(__magic_name__ )
UpperCAmelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : int = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) )
UpperCAmelCase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
UpperCAmelCase : Optional[int] = image_processor(images=__magic_name__ , return_tensors="pt" )
UpperCAmelCase : List[Any] = timm_model(inputs["pixel_values"] )
UpperCAmelCase : Tuple = model(**__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 )
print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swin_name",
default="swin_tiny_patch4_window7_224",
type=str,
help="Name of the Swin timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
a : Optional[Any] = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
from jiwer import compute_measures
import datasets
a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def A_ ( self , snake_case=None , snake_case=None , snake_case=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(snake_case , snake_case )["wer"]
else:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = 0
for prediction, reference in zip(snake_case , snake_case ):
UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 311
| 1
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
a : Tuple = [
"kernels/rwkv/wkv_cuda.cu",
"kernels/rwkv/wkv_op.cpp",
"kernels/deformable_detr/ms_deform_attn.h",
"kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh",
"models/graphormer/algos_graphormer.pyx",
]
def lowercase ( __magic_name__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.")
a : Optional[Any] = parser.parse_args()
if args.check_lib:
a : List[str] = importlib.import_module("transformers")
a : Tuple = Path(transformers_module.__file__).parent
else:
a : Optional[Any] = Path.cwd() / "build/lib/transformers"
if not test_custom_files_are_present(transformers_path):
raise ValueError("The built release does not contain the custom files. Fix this before going further!")
| 311
|
'''simple docstring'''
from functools import lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = 2
UpperCAmelCase : str = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__magic_name__ )
if n > 1:
factors.add(__magic_name__ )
return factors
@lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(unique_prime_factors(__magic_name__ ) )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(set(__magic_name__ ) ) in (0, 1)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
while True:
# Increment each value of a generated range
UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group]
checker.append(__magic_name__ )
# If all numbers in the list are equal, return the group variable.
if equality(__magic_name__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase ( __magic_name__ = 4 ):
'''simple docstring'''
UpperCAmelCase : int = run(__magic_name__ )
return results[0] if len(__magic_name__ ) else None
if __name__ == "__main__":
print(solution())
| 311
| 1
|
'''simple docstring'''
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split()
UpperCAmelCase : str = [sys.executable] + distributed_args
execute_subprocess_async(snake_case , env=os.environ.copy() )
| 311
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
UpperCAmelCase : Any = {
"do_resize": True,
"size": {"height": 1_8, "width": 1_8},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , snake_case )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(snake_case , snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
UpperCAmelCase : Tuple = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.get_tokenizer()
UpperCAmelCase : Any = self.get_image_processor()
UpperCAmelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase : Optional[Any] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 )
UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.get_image_processor()
UpperCAmelCase : List[str] = self.get_tokenizer()
UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Any = self.prepare_image_inputs()
UpperCAmelCase : int = image_processor(snake_case , return_tensors="np" )
UpperCAmelCase : Tuple = processor(images=snake_case , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = self.get_image_processor()
UpperCAmelCase : Dict = self.get_tokenizer()
UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : List[Any] = "lower newer"
UpperCAmelCase : Union[str, Any] = processor(text=snake_case )
UpperCAmelCase : List[Any] = tokenizer(snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.get_image_processor()
UpperCAmelCase : Dict = self.get_tokenizer()
UpperCAmelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Dict = "lower newer"
UpperCAmelCase : str = self.prepare_image_inputs()
UpperCAmelCase : Optional[Any] = processor(text=snake_case , images=snake_case )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(snake_case ):
processor()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.get_image_processor()
UpperCAmelCase : str = self.get_tokenizer()
UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase : Union[str, Any] = processor.batch_decode(snake_case )
UpperCAmelCase : Any = tokenizer.batch_decode(snake_case )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = self.get_image_processor()
UpperCAmelCase : Tuple = self.get_tokenizer()
UpperCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Tuple = "lower newer"
UpperCAmelCase : Tuple = self.prepare_image_inputs()
UpperCAmelCase : Optional[Any] = processor(text=snake_case , images=snake_case )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 311
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])")
a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])")
a : str = re.compile(R"(?<!_)_(?!_)")
a : List[Any] = re.compile(R"(_{2,})")
a : List[Any] = R"^\w+(\.\w+)*$"
a : Dict = R"<>:/\|?*"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
return name.lower()
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ )
UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , __magic_name__ ):
raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." )
return F"{filename_prefix_for_name(__magic_name__ )}-{split}"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
if filetype_suffix:
prefix += F".{filetype_suffix}"
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
return F"{filepath}*"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
if shard_lengths:
UpperCAmelCase : Tuple = len(__magic_name__ )
UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )]
if filetype_suffix:
UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames]
return filenames
else:
UpperCAmelCase : int = prefix
if filetype_suffix:
filename += F".{filetype_suffix}"
return [filename]
| 311
| 1
|
'''simple docstring'''
a : Dict = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
a : List[str] = [{"type": "code", "content": INSTALL_CONTENT}]
a : int = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 311
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311
| 1
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=9_9 , snake_case=0 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_2 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case="last" , snake_case=None , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : str = parent
UpperCAmelCase : Optional[int] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : Optional[int] = use_input_lengths
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Tuple = gelu_activation
UpperCAmelCase : Optional[int] = sinusoidal_embeddings
UpperCAmelCase : Union[str, Any] = causal
UpperCAmelCase : int = asm
UpperCAmelCase : Optional[int] = n_langs
UpperCAmelCase : Optional[int] = vocab_size
UpperCAmelCase : List[Any] = n_special
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Dict = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = hidden_dropout_prob
UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Dict = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[int] = initializer_range
UpperCAmelCase : Union[str, Any] = num_labels
UpperCAmelCase : Any = num_choices
UpperCAmelCase : str = summary_type
UpperCAmelCase : List[str] = use_proj
UpperCAmelCase : List[Any] = scope
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : List[Any] = None
if self.use_input_lengths:
UpperCAmelCase : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCAmelCase : List[Any] = None
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = None
if self.use_labels:
UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , 2 ).float()
UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Any = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def A_ ( self ):
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = FlaubertModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[str] = model(snake_case , lengths=snake_case , langs=snake_case )
UpperCAmelCase : List[str] = model(snake_case , langs=snake_case )
UpperCAmelCase : List[Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : List[str] = FlaubertWithLMHeadModel(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : int = FlaubertForQuestionAnsweringSimple(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : str = model(snake_case )
UpperCAmelCase : List[str] = model(snake_case , start_positions=snake_case , end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = FlaubertForQuestionAnswering(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : int = model(snake_case )
UpperCAmelCase : Any = model(
snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , )
UpperCAmelCase : List[str] = model(
snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , )
((UpperCAmelCase) , ) : List[Any] = result_with_labels.to_tuple()
UpperCAmelCase : Union[str, Any] = model(snake_case , start_positions=snake_case , end_positions=snake_case )
((UpperCAmelCase) , ) : Any = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : Dict = FlaubertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[str] = model(snake_case )
UpperCAmelCase : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : str = self.num_labels
UpperCAmelCase : Optional[int] = FlaubertForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.num_choices
UpperCAmelCase : Union[str, Any] = FlaubertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Any = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : List[str] = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def A_ ( self , snake_case , snake_case , snake_case=False ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
UpperCAmelCase : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case )
UpperCAmelCase : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case )
return inputs_dict
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = FlaubertModelTester(self )
UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case , emb_dim=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Tuple = FlaubertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@slow
@require_torch_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
UpperCAmelCase : Dict = True
UpperCAmelCase : Optional[int] = model_class(config=snake_case )
UpperCAmelCase : List[str] = self._prepare_for_class(snake_case , snake_case )
UpperCAmelCase : List[str] = torch.jit.trace(
snake_case , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(snake_case , os.path.join(snake_case , "traced_model.pt" ) )
UpperCAmelCase : Union[str, Any] = torch.jit.load(os.path.join(snake_case , "traced_model.pt" ) , map_location=snake_case )
loaded(inputs_dict["input_ids"].to(snake_case ) , inputs_dict["attention_mask"].to(snake_case ) )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
UpperCAmelCase : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
with torch.no_grad():
UpperCAmelCase : Any = model(snake_case )[0]
UpperCAmelCase : List[Any] = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Dict = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import argparse
import copy
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase : Any = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ ) as f:
UpperCAmelCase : List[str] = f.read(1 )
UpperCAmelCase : List[Any] = start_node
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Any = start_node
UpperCAmelCase : Optional[Any] = 0
while visiting not in first_solution:
UpperCAmelCase : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
UpperCAmelCase : Tuple = k[1]
UpperCAmelCase : Dict = k[0]
first_solution.append(__magic_name__ )
UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ )
UpperCAmelCase : str = best_node
first_solution.append(__magic_name__ )
UpperCAmelCase : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase : str = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
UpperCAmelCase : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
UpperCAmelCase : Dict = solution.index(__magic_name__ )
if n == kn:
continue
UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ )
UpperCAmelCase : Optional[int] = kn
UpperCAmelCase : List[str] = n
UpperCAmelCase : str = 0
for k in _tmp[:-1]:
UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase : List[Any] = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = first_solution
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = distance_of_first_solution
UpperCAmelCase : Union[str, Any] = solution
while count <= iters:
UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = 0
UpperCAmelCase : List[str] = neighborhood[index_of_best_solution]
UpperCAmelCase : Dict = len(__magic_name__ ) - 1
UpperCAmelCase : Dict = False
while not found:
UpperCAmelCase : List[Any] = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
UpperCAmelCase : int = best_solution[i]
UpperCAmelCase : Optional[int] = solution[i]
break
UpperCAmelCase : List[str] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = best_solution[:-1]
UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase : Union[str, Any] = cost
UpperCAmelCase : Tuple = solution
else:
UpperCAmelCase : Optional[Any] = index_of_best_solution + 1
UpperCAmelCase : str = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
UpperCAmelCase : int = count + 1
return best_solution_ever, best_cost
def lowercase ( __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Dict = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution(
args.File , __magic_name__ )
UpperCAmelCase , UpperCAmelCase : Any = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
| 1
|
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = tempfile.mkdtemp()
UpperCAmelCase : List[Any] = 8
# DPR tok
UpperCAmelCase : Union[str, Any] = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , "dpr_tokenizer" )
os.makedirs(snake_case , exist_ok=snake_case )
UpperCAmelCase : Optional[int] = os.path.join(snake_case , DPR_VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase : int = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase : Any = dict(zip(snake_case , range(len(snake_case ) ) ) )
UpperCAmelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase : Dict = {"unk_token": "<unk>"}
UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , "bart_tokenizer" )
os.makedirs(snake_case , exist_ok=snake_case )
UpperCAmelCase : Optional[Any] = os.path.join(snake_case , BART_VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase : int = os.path.join(snake_case , BART_VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(snake_case ) )
def A_ ( self ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def A_ ( self ):
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def A_ ( self ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) )
def A_ ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_dummy_dataset()
UpperCAmelCase : Optional[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
UpperCAmelCase : Dict = dataset
UpperCAmelCase : int = RagRetriever(
snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.get_dummy_dataset()
UpperCAmelCase : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , )
if from_disk:
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , "dataset" )
UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , "index.faiss" )
dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) )
dataset.drop_index("embeddings" )
dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) )
del dataset
UpperCAmelCase : int = RagRetriever(
snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase : str = RagRetriever(
snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case ) , )
return retriever
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase : int = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" )
dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" )
pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) )
UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" )
UpperCAmelCase : str = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
pickle.dump(snake_case , open(snake_case , "wb" ) )
UpperCAmelCase : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , )
UpperCAmelCase : Dict = RagRetriever(
snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = 1
UpperCAmelCase : int = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever.retrieve(snake_case , n_docs=snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , snake_case )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
UpperCAmelCase : Tuple = self.get_dummy_dataset()
retriever.save_pretrained(snake_case )
UpperCAmelCase : Any = RagRetriever.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Union[str, Any] = retriever.retrieve(snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = retriever.retrieve(snake_case , n_docs=snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , snake_case )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case )
UpperCAmelCase : Dict = RagRetriever.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Any = retriever.retrieve(snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 1
UpperCAmelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case )
UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = retriever.retrieve(snake_case , n_docs=snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , snake_case )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case )
UpperCAmelCase : Union[str, Any] = RagRetriever.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
UpperCAmelCase : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[str] = retriever.retrieve(snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever()
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = retriever.retrieve(snake_case , n_docs=snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] )
self.assertEqual(len(doc_dicts[0]["text"] ) , snake_case )
self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(snake_case )
UpperCAmelCase : Tuple = RagRetriever.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Dict = retriever.retrieve(snake_case , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def A_ ( self ):
'''simple docstring'''
import torch
UpperCAmelCase : Any = 1
UpperCAmelCase : Any = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : List[Any] = [[5, 7], [1_0, 1_1]]
UpperCAmelCase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[Any] = retriever(snake_case , snake_case , prefix=retriever.config.generator.prefix , n_docs=snake_case )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(snake_case , snake_case )
self.assertIsInstance(snake_case , snake_case )
self.assertIsInstance(snake_case , np.ndarray )
UpperCAmelCase : List[Any] = retriever(
snake_case , snake_case , prefix=retriever.config.generator.prefix , n_docs=snake_case , return_tensors="pt" , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = ( # noqa: F841
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
out["doc_ids"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(snake_case , torch.Tensor )
self.assertIsInstance(snake_case , torch.Tensor )
self.assertIsInstance(snake_case , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase : int = 1
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=snake_case )
retriever.set_ctx_encoder_tokenizer(snake_case )
UpperCAmelCase : Dict = [[5, 7], [1_0, 1_1]]
UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[str] = retriever(snake_case , snake_case , prefix=retriever.config.generator.prefix , n_docs=snake_case )
self.assertEqual(
len(snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , snake_case ) # check for doc token related keys in dictionary.
| 311
|
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase : Union[str, Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:]
UpperCAmelCase : List[str] = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = b""
for char in message:
bit_string += format(__magic_name__ , "08b" ).encode("utf-8" )
UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512]
UpperCAmelCase : Tuple = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Any = format(__magic_name__ , "032b" )
UpperCAmelCase : int = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = preprocess(__magic_name__ )
UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase : List[str] = 0X67452301
UpperCAmelCase : Tuple = 0XEFCDAB89
UpperCAmelCase : List[Any] = 0X98BADCFE
UpperCAmelCase : List[str] = 0X10325476
UpperCAmelCase : Dict = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : List[Any] = ba
UpperCAmelCase : Optional[Any] = ca
UpperCAmelCase : Any = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : int = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ ))
UpperCAmelCase : Dict = (7 * i) % 16
UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase : List[Any] = d
UpperCAmelCase : Any = c
UpperCAmelCase : Dict = b
UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def lowercase ( __magic_name__ = True , *__magic_name__ , **__magic_name__ ):
'''simple docstring'''
if not is_tqdm_available():
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." )
UpperCAmelCase : List[str] = False
if main_process_only:
UpperCAmelCase : str = PartialState().local_process_index == 0
return _tqdm(*__magic_name__ , **__magic_name__ , disable=__magic_name__ )
| 311
|
'''simple docstring'''
a : List[str] = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 311
| 1
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
a : Optional[int] = 0 # The first color of the flag.
a : Union[str, Any] = 1 # The second color of the flag.
a : Any = 2 # The third color of the flag.
a : List[str] = (red, white, blue)
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not sequence:
return []
if len(__magic_name__ ) == 1:
return list(__magic_name__ )
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : List[str] = len(__magic_name__ ) - 1
UpperCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
UpperCAmelCase , UpperCAmelCase : str = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
UpperCAmelCase , UpperCAmelCase : Dict = sequence[high], sequence[mid]
high -= 1
else:
UpperCAmelCase : Optional[Any] = F"The elements inside the sequence must contains only {colors} values"
raise ValueError(__magic_name__ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Optional[int] = input("Enter numbers separated by commas:\n").strip()
a : Tuple = [int(item.strip()) for item in user_input.split(",")]
print(F'{dutch_national_flag_sort(unsorted)}')
| 311
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[Any] = set(__magic_name__ ), [start]
while stack:
UpperCAmelCase : List[Any] = stack.pop()
explored.add(__magic_name__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(__magic_name__ )
return explored
a : int = {
"A": ["B", "C", "D"],
"B": ["A", "D", "E"],
"C": ["A", "F"],
"D": ["B", "D"],
"E": ["B", "F"],
"F": ["C", "E", "G"],
"G": ["F"],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, "A"))
| 311
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Tuple = ["gpt2"]
a : Dict = "gpt2"
if is_tf_available():
class UpperCamelCase__ ( tf.Module ):
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = tokenizer
UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case )
UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case )
UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor()
UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Tuple = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" )
UpperCAmelCase : Any = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Dict = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Optional[Any] = tf.function(snake_case )
for test_inputs in self.test_sentences:
UpperCAmelCase : List[str] = tf.constant(snake_case )
UpperCAmelCase : Dict = compiled_tokenizer(snake_case )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : int = ModelToSave(tokenizer=snake_case )
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model"
tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} )
UpperCAmelCase : int = tf.saved_model.load(snake_case )
UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs
UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config()
UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case )
UpperCAmelCase : Tuple = model_from_config(snake_case )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[str] = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case )
UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 311
| 1
|
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = 3
UpperCAmelCase : Tuple = 2_5_0
UpperCAmelCase : Union[str, Any] = ids_tensor((batch_size, length) , snake_case )
UpperCAmelCase : int = torch.ones((batch_size, length) , device=snake_case , dtype=torch.float ) / length
return input_ids, scores
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Tuple = self._get_tensors(5 )
UpperCAmelCase : str = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=1_0 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(9 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case , snake_case ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 )
UpperCAmelCase , UpperCAmelCase : Dict = self._get_tensors(5 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case , snake_case ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(5 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_tensors(9 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case , snake_case ) )
UpperCAmelCase : str = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 1_0 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : str = self._get_tensors(5 )
UpperCAmelCase : Optional[int] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(snake_case , snake_case ) )
UpperCAmelCase : Any = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(snake_case , snake_case ) )
def A_ ( self ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 )
with self.assertWarns(snake_case ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 )
UpperCAmelCase : List[Any] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 )
self.assertEqual(len(snake_case ) , 1 )
| 311
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=6_4 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : List[str] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : int = is_training
UpperCAmelCase : Optional[int] = use_input_mask
UpperCAmelCase : int = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : Optional[int] = vocab_size
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : List[Any] = embedding_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : List[str] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : str = max_position_embeddings
UpperCAmelCase : Optional[int] = type_vocab_size
UpperCAmelCase : int = type_sequence_label_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Dict = num_labels
UpperCAmelCase : Any = num_choices
UpperCAmelCase : int = scope
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_input_mask:
UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Any = None
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self ):
'''simple docstring'''
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Tuple = MegatronBertModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case )
UpperCAmelCase : List[Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = MegatronBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = MegatronBertForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MegatronBertForNextSentencePrediction(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = MegatronBertForPreTraining(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , next_sentence_label=snake_case , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = MegatronBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = self.num_labels
UpperCAmelCase : Optional[Any] = MegatronBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = self.num_labels
UpperCAmelCase : Any = MegatronBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.num_choices
UpperCAmelCase : Any = MegatronBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Tuple = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Dict = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Dict = True
# test_resize_embeddings = False
SCREAMING_SNAKE_CASE__ : List[Any] = False
def A_ ( self , snake_case , snake_case , snake_case=False ):
'''simple docstring'''
UpperCAmelCase : str = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case )
if return_labels:
if model_class in get_values(snake_case ):
UpperCAmelCase : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case )
UpperCAmelCase : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case )
return inputs_dict
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = MegatronBertModelTester(self )
UpperCAmelCase : Dict = ConfigTester(self , config_class=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return torch.tensor(
__magic_name__ , dtype=torch.long , device=__magic_name__ , )
a : Tuple = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip("Model is not available." )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = "nvidia/megatron-bert-uncased-345m"
if "MYDIR" in os.environ:
UpperCAmelCase : Union[str, Any] = os.path.join(os.environ["MYDIR"] , snake_case )
UpperCAmelCase : Any = MegatronBertModel.from_pretrained(snake_case )
model.to(snake_case )
model.half()
UpperCAmelCase : Optional[int] = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] )
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size((1, 9, 1_0_2_4) )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Any = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3 ):
for jj in range(3 ):
UpperCAmelCase : Union[str, Any] = output[0, ii, jj]
UpperCAmelCase : Union[str, Any] = expected[3 * ii + jj]
UpperCAmelCase : Any = "ii={} jj={} a={} b={}".format(snake_case , snake_case , snake_case , snake_case )
self.assertTrue(math.isclose(snake_case , snake_case , rel_tol=snake_case , abs_tol=snake_case ) , msg=snake_case )
| 311
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
| 1
|
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , *snake_case , snake_case=None , snake_case=None , **snake_case ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
UpperCAmelCase : Union[str, Any] = eval_examples
UpperCAmelCase : int = post_process_function
def A_ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case = "eval" ):
'''simple docstring'''
UpperCAmelCase : str = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase : Optional[int] = self.get_eval_dataloader(snake_case )
UpperCAmelCase : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : Optional[Any] = self.compute_metrics
UpperCAmelCase : Dict = None
UpperCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase : List[str] = time.time()
try:
UpperCAmelCase : List[str] = eval_loop(
snake_case , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , )
finally:
UpperCAmelCase : str = compute_metrics
UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase : int = self.post_process_function(snake_case , snake_case , output.predictions )
UpperCAmelCase : Optional[int] = self.compute_metrics(snake_case )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase : Union[str, Any] = metrics.pop(snake_case )
metrics.update(output.metrics )
else:
UpperCAmelCase : Tuple = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(snake_case )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case )
return metrics
def A_ ( self , snake_case , snake_case , snake_case=None , snake_case = "test" ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_test_dataloader(snake_case )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : Optional[int] = self.compute_metrics
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase : Optional[Any] = time.time()
try:
UpperCAmelCase : Dict = eval_loop(
snake_case , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , )
finally:
UpperCAmelCase : Tuple = compute_metrics
UpperCAmelCase : Dict = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase : str = self.post_process_function(snake_case , snake_case , output.predictions , "predict" )
UpperCAmelCase : Dict = self.compute_metrics(snake_case )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase : List[Any] = metrics.pop(snake_case )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case )
| 311
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase : Optional[int] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
UpperCAmelCase : Tuple = dict(zip(snake_case , range(len(snake_case ) ) ) )
UpperCAmelCase : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
UpperCAmelCase : List[str] = {"unk_token": "<unk>"}
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(snake_case ) )
UpperCAmelCase : List[str] = {
"do_resize": True,
"size": 2_0,
"do_center_crop": True,
"crop_size": 1_8,
"do_normalize": True,
"image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073],
"image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
UpperCAmelCase : int = os.path.join(self.tmpdirname , snake_case )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(snake_case , snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
UpperCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.get_tokenizer()
UpperCAmelCase : int = self.get_rust_tokenizer()
UpperCAmelCase : List[Any] = self.get_image_processor()
UpperCAmelCase : str = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case )
UpperCAmelCase : int = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , snake_case )
self.assertIsInstance(processor_fast.tokenizer , snake_case )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , snake_case )
self.assertIsInstance(processor_fast.image_processor , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase : List[str] = self.get_image_processor(do_normalize=snake_case )
UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_image_processor()
UpperCAmelCase : Optional[Any] = self.get_tokenizer()
UpperCAmelCase : Optional[Any] = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Optional[int] = self.prepare_image_inputs()
UpperCAmelCase : Any = image_processor(snake_case , return_tensors="np" )
UpperCAmelCase : Union[str, Any] = processor(images=snake_case , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.get_image_processor()
UpperCAmelCase : Any = self.get_tokenizer()
UpperCAmelCase : str = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Optional[int] = "lower newer"
UpperCAmelCase : int = processor(text=snake_case , return_tensors="np" )
UpperCAmelCase : Dict = tokenizer(snake_case , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.get_image_processor()
UpperCAmelCase : List[str] = self.get_tokenizer()
UpperCAmelCase : Union[str, Any] = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Optional[Any] = "lower newer"
UpperCAmelCase : Dict = self.prepare_image_inputs()
UpperCAmelCase : str = processor(text=snake_case , images=snake_case )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "google/owlvit-base-patch32"
UpperCAmelCase : int = OwlViTProcessor.from_pretrained(snake_case )
UpperCAmelCase : Union[str, Any] = ["cat", "nasa badge"]
UpperCAmelCase : str = processor(text=snake_case )
UpperCAmelCase : Dict = 1_6
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "google/owlvit-base-patch32"
UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(snake_case )
UpperCAmelCase : int = [["cat", "nasa badge"], ["person"]]
UpperCAmelCase : str = processor(text=snake_case )
UpperCAmelCase : Tuple = 1_6
UpperCAmelCase : Union[str, Any] = len(snake_case )
UpperCAmelCase : Tuple = max([len(snake_case ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = "google/owlvit-base-patch32"
UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(snake_case )
UpperCAmelCase : Any = ["cat", "nasa badge"]
UpperCAmelCase : str = processor(text=snake_case )
UpperCAmelCase : Union[str, Any] = 1_6
UpperCAmelCase : str = inputs["input_ids"]
UpperCAmelCase : Union[str, Any] = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.get_image_processor()
UpperCAmelCase : int = self.get_tokenizer()
UpperCAmelCase : Any = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : List[str] = self.prepare_image_inputs()
UpperCAmelCase : Tuple = self.prepare_image_inputs()
UpperCAmelCase : List[Any] = processor(images=snake_case , query_images=snake_case )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.get_image_processor()
UpperCAmelCase : Any = self.get_tokenizer()
UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=snake_case , image_processor=snake_case )
UpperCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase : Tuple = processor.batch_decode(snake_case )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case )
self.assertListEqual(snake_case , snake_case )
| 311
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = ["model.decoder.embed_positions.weights"]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "emb" in name:
UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCAmelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = list(state_dict.keys() )
UpperCAmelCase : List[Any] = {}
for key in keys:
UpperCAmelCase : Any = state_dict.pop(__magic_name__ )
UpperCAmelCase : str = rename_keys(__magic_name__ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase : Optional[int] = val[:hidden_size, :]
UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase : str = val
else:
UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def lowercase ( __magic_name__ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
UpperCAmelCase : List[Any] = 1024
UpperCAmelCase : Tuple = 24
UpperCAmelCase : Union[str, Any] = 16
elif checkpoint == "medium":
UpperCAmelCase : List[Any] = 1536
UpperCAmelCase : Optional[Any] = 48
UpperCAmelCase : List[str] = 24
elif checkpoint == "large":
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : str = 48
UpperCAmelCase : Optional[Any] = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase : Tuple = MusicgenDecoderConfig(
hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , )
return config
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ )
UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ )
UpperCAmelCase : Dict = fairseq_model.lm.state_dict()
UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict(
__magic_name__ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" )
UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__magic_name__ )
if len(__magic_name__ ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(__magic_name__ ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__magic_name__ )
# check we can do a forward pass
UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ )
# set the appropriate bos/pad token ids
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : Tuple = 2048
# set other default generation config params
UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = 3.0
if pytorch_dump_folder is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(__magic_name__ )
processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
a : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def lowercase ( __magic_name__ = 3 ):
'''simple docstring'''
if isinstance(__magic_name__ , __magic_name__ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(__magic_name__ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
UpperCAmelCase : Dict = QuantumRegister(__magic_name__ , "qr" )
UpperCAmelCase : Tuple = ClassicalRegister(__magic_name__ , "cr" )
UpperCAmelCase : Tuple = QuantumCircuit(__magic_name__ , __magic_name__ )
UpperCAmelCase : Union[str, Any] = number_of_qubits
for i in range(__magic_name__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(__magic_name__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(__magic_name__ , __magic_name__ )
# simulate with 10000 shots
UpperCAmelCase : int = Aer.get_backend("qasm_simulator" )
UpperCAmelCase : int = execute(__magic_name__ , __magic_name__ , shots=1_0000 )
return job.result().get_counts(__magic_name__ )
if __name__ == "__main__":
print(
F'Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'
)
| 311
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
if __name__ == "__main__":
a : Union[str, Any] = Accelerator()
a : str = (accelerator.state.process_index + 2, 10)
a : List[str] = torch.randint(0, 10, shape).to(accelerator.device)
a : Optional[int] = ""
a : int = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 311
| 1
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"],
"tokenization_cpmant": ["CpmAntTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CpmAntForCausalLM",
"CpmAntModel",
"CpmAntPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase : Dict = len(snake_case )
self.assertGreater(snake_case , 0 )
self.assertEqual(
snake_case , [
{
"score": ANY(snake_case ),
"label": ANY(snake_case ),
"box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )},
}
for i in range(snake_case )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
UpperCAmelCase : Tuple = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
UpperCAmelCase : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = 0.2
UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : str = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 311
| 1
|
'''simple docstring'''
import math
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = [True] * n
UpperCAmelCase : Tuple = False
UpperCAmelCase : str = False
UpperCAmelCase : Any = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
UpperCAmelCase : Union[str, Any] = i * 2
while index < n:
UpperCAmelCase : Dict = False
UpperCAmelCase : int = index + i
UpperCAmelCase : Union[str, Any] = [2]
for i in range(3 , __magic_name__ , 2 ):
if is_prime[i]:
primes.append(__magic_name__ )
return primes
def lowercase ( __magic_name__ = 9999_6666_3333 ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = math.floor(math.sqrt(__magic_name__ ) ) + 100
UpperCAmelCase : List[Any] = prime_sieve(__magic_name__ )
UpperCAmelCase : Tuple = 0
UpperCAmelCase : str = 0
UpperCAmelCase : Optional[Any] = primes[prime_index]
while (last_prime**2) <= limit:
UpperCAmelCase : Optional[int] = primes[prime_index + 1]
UpperCAmelCase : Union[str, Any] = last_prime**2
UpperCAmelCase : List[Any] = next_prime**2
# Get numbers divisible by lps(current)
UpperCAmelCase : int = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
UpperCAmelCase : List[str] = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
UpperCAmelCase : Union[str, Any] = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
UpperCAmelCase : List[Any] = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class UpperCamelCase__ ( lowercase__ , lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "convnextv2"
def __init__( self , snake_case=3 , snake_case=4 , snake_case=4 , snake_case=None , snake_case=None , snake_case="gelu" , snake_case=0.02 , snake_case=1e-12 , snake_case=0.0 , snake_case=2_2_4 , snake_case=None , snake_case=None , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case )
UpperCAmelCase : str = num_channels
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : List[Any] = num_stages
UpperCAmelCase : Any = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase : Dict = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : str = initializer_range
UpperCAmelCase : str = layer_norm_eps
UpperCAmelCase : Any = drop_path_rate
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[Any] = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase : List[str] = get_aligned_output_features_output_indices(
out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
| 311
|
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a : int = datasets.load_iris()
a : Union[str, Any] = np.array(data["data"])
a : Optional[Any] = np.array(data["target"])
a : List[Any] = data["target_names"]
a , a , a , a : Dict = train_test_split(X, y)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ):
'''simple docstring'''
UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ )
# List of distances of all points from the point to be classified
UpperCAmelCase : List[Any] = []
for data_point in data:
UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
UpperCAmelCase : Any = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase : Tuple = torch.permute(__magic_name__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__magic_name__ ):
# linear layer
UpperCAmelCase : Dict = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase : List[str] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCAmelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",)
return flax_key_tuple, flax_tensor
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
if "metadata" in layer:
UpperCAmelCase : Any = layer.split("metadata" )
UpperCAmelCase : Dict = "".join(split_layer[0] )[:-1]
UpperCAmelCase : Optional[int] = [tuple(("metadata" + split_layer[1]).split("/" ) )]
elif "kvstore" in layer:
UpperCAmelCase : List[Any] = layer.split("kvstore" )
UpperCAmelCase : List[str] = "".join(split_layer[0] )[:-1]
UpperCAmelCase : List[str] = [tuple(("kvstore" + split_layer[1]).split("/" ) )]
else:
UpperCAmelCase : Any = layer.split("/" )
UpperCAmelCase : List[Any] = "/".join(split_layer[:-1] )
UpperCAmelCase : int = (split_layer[-1],)
if "kvstore/path" in layer:
UpperCAmelCase : Dict = F"{switch_checkpoint_path}/{checkpoint_info[layer]}"
elif "kvstore/driver" in layer:
UpperCAmelCase : Union[str, Any] = "file"
else:
UpperCAmelCase : Optional[Any] = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = rename_keys(__magic_name__ )
UpperCAmelCase : List[str] = {}
for k, v in current_block.items():
UpperCAmelCase : List[Any] = v
UpperCAmelCase : Any = new_current_block
torch.save(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = WEIGHTS_NAME ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = convert_file_size_to_int(__magic_name__ )
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp:
UpperCAmelCase : List[str] = serialization.msgpack_restore(fp.read() )["optimizer"]["target"]
UpperCAmelCase : Optional[int] = flatten_dict(__magic_name__ , sep="/" )
UpperCAmelCase : Tuple = {}
for layer in checkpoint_info.keys():
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_key_and_tensorstore_dict(
__magic_name__ , __magic_name__ , __magic_name__ )
if curr_real_layer_name in all_layers:
UpperCAmelCase : Optional[int] = content
else:
UpperCAmelCase : Tuple = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
UpperCAmelCase : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
UpperCAmelCase : List[Any] = torch.tensor(__magic_name__ )
UpperCAmelCase : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
UpperCAmelCase , UpperCAmelCase : Any = rename_base_flax_keys(tuple(key.split("/" ) ) , __magic_name__ )
UpperCAmelCase : List[Any] = "/".join(__magic_name__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
UpperCAmelCase : Optional[Any] = os.path.join(
__magic_name__ , weights_name.replace(".bin" , F"-{len(__magic_name__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(__magic_name__ , __magic_name__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
UpperCAmelCase : Optional[int] = {}
UpperCAmelCase : int = 0
UpperCAmelCase : Any = raw_weights.to(getattr(__magic_name__ , __magic_name__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
UpperCAmelCase : Optional[Any] = os.path.join(__magic_name__ , weights_name.replace(".bin" , F"-{len(__magic_name__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(__magic_name__ , __magic_name__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__magic_name__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
UpperCAmelCase : str = {}
UpperCAmelCase : str = {}
for idx, shard in enumerate(__magic_name__ ):
UpperCAmelCase : Union[str, Any] = weights_name.replace(
".bin" , F"-{idx+1:05d}-of-{len(__magic_name__ ):05d}.bin" ) # len(sharded_state_dicts):05d}
UpperCAmelCase : List[Any] = os.path.join(__magic_name__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) )
UpperCAmelCase : Tuple = shard
for key in shard:
UpperCAmelCase : Tuple = shard_file
# Add the metadata
UpperCAmelCase : List[str] = {"total_size": total_size}
UpperCAmelCase : Union[str, Any] = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__magic_name__ , __magic_name__ ) , "w" , encoding="utf-8" ) as f:
UpperCAmelCase : Any = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + "\n"
f.write(__magic_name__ )
return metadata, index
if __name__ == "__main__":
a : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
a : str = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def lowercase ( ):
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained("google/switch-base-8" )
config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" )
UpperCAmelCase : Optional[Any] = SwitchTransformersForConditionalGeneration.from_pretrained(
"/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" )
UpperCAmelCase : Optional[Any] = TaTokenizer.from_pretrained("t5-small" )
UpperCAmelCase : Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
UpperCAmelCase : Any = tokenizer(__magic_name__ , return_tensors="pt" ).input_ids
UpperCAmelCase : List[str] = model.generate(__magic_name__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = x
UpperCAmelCase : Optional[int] = y
for step in range(__magic_name__ ): # noqa: B007
UpperCAmelCase : Optional[Any] = a * a - b * b + x
UpperCAmelCase : List[str] = 2 * a * b + y
UpperCAmelCase : int = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowercase ( __magic_name__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowercase ( __magic_name__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__magic_name__ , 1 , 1 ) )
def lowercase ( __magic_name__ = 800 , __magic_name__ = 600 , __magic_name__ = -0.6 , __magic_name__ = 0 , __magic_name__ = 3.2 , __magic_name__ = 50 , __magic_name__ = True , ):
'''simple docstring'''
UpperCAmelCase : int = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase : List[str] = img.load()
# loop through the image-coordinates
for image_x in range(__magic_name__ ):
for image_y in range(__magic_name__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase : Tuple = figure_width / image_width * image_height
UpperCAmelCase : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase : Dict = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase : Union[str, Any] = get_distance(__magic_name__ , __magic_name__ , __magic_name__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase : Optional[Any] = get_color_coded_rgb(__magic_name__ )
else:
UpperCAmelCase : str = get_black_and_white_rgb(__magic_name__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : Dict = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311
| 1
|
'''simple docstring'''
import os
import sys
import unittest
a : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
a : List[Any] = os.path.join("tests", "models", "bert", "test_modeling_bert.py")
a : Union[str, Any] = os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = get_test_to_tester_mapping(snake_case )
UpperCAmelCase : Union[str, Any] = get_test_to_tester_mapping(snake_case )
UpperCAmelCase : int = {"BertModelTest": "BertModelTester"}
UpperCAmelCase : Union[str, Any] = {
"BlipModelTest": "BlipModelTester",
"BlipTextImageModelTest": "BlipTextImageModelsModelTester",
"BlipTextModelTest": "BlipTextModelTester",
"BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester",
"BlipVQAModelTest": "BlipVQAModelTester",
"BlipVisionModelTest": "BlipVisionModelTester",
}
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_model_to_test_mapping(snake_case )
UpperCAmelCase : Optional[int] = get_model_to_test_mapping(snake_case )
UpperCAmelCase : int = {
"BertForMaskedLM": ["BertModelTest"],
"BertForMultipleChoice": ["BertModelTest"],
"BertForNextSentencePrediction": ["BertModelTest"],
"BertForPreTraining": ["BertModelTest"],
"BertForQuestionAnswering": ["BertModelTest"],
"BertForSequenceClassification": ["BertModelTest"],
"BertForTokenClassification": ["BertModelTest"],
"BertLMHeadModel": ["BertModelTest"],
"BertModel": ["BertModelTest"],
}
UpperCAmelCase : int = {
"BlipForConditionalGeneration": ["BlipTextImageModelTest"],
"BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"],
"BlipForQuestionAnswering": ["BlipVQAModelTest"],
"BlipModel": ["BlipModelTest"],
"BlipTextModel": ["BlipTextModelTest"],
"BlipVisionModel": ["BlipVisionModelTest"],
}
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = get_model_to_tester_mapping(snake_case )
UpperCAmelCase : Dict = get_model_to_tester_mapping(snake_case )
UpperCAmelCase : Tuple = {
"BertForMaskedLM": ["BertModelTester"],
"BertForMultipleChoice": ["BertModelTester"],
"BertForNextSentencePrediction": ["BertModelTester"],
"BertForPreTraining": ["BertModelTester"],
"BertForQuestionAnswering": ["BertModelTester"],
"BertForSequenceClassification": ["BertModelTester"],
"BertForTokenClassification": ["BertModelTester"],
"BertLMHeadModel": ["BertModelTester"],
"BertModel": ["BertModelTester"],
}
UpperCAmelCase : Any = {
"BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"],
"BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"],
"BlipForQuestionAnswering": ["BlipVQAModelTester"],
"BlipModel": ["BlipModelTester"],
"BlipTextModel": ["BlipTextModelTester"],
"BlipVisionModel": ["BlipVisionModelTester"],
}
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
self.assertEqual(get_test_info.to_json(snake_case ) , snake_case )
| 311
|
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
a : Optional[Any] = logging.get_logger(__name__)
a : Tuple = "T5Config"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ )
UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ )
UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ )
return shifted_input_ids
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : Dict = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
a : str = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = DebertaVaTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = DebertaVaTokenizerFast
SCREAMING_SNAKE_CASE__ : str = True
SCREAMING_SNAKE_CASE__ : List[Any] = True
def A_ ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase : Dict = DebertaVaTokenizer(snake_case , unk_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = "this is a test"
UpperCAmelCase : str = "this is a test"
return input_text, output_text
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = "<pad>"
UpperCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "[PAD]" )
self.assertEqual(len(snake_case ) , 3_0_0_0_1 )
def A_ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = " \tHeLLo!how \n Are yoU? "
UpperCAmelCase : Dict = ["▁hello", "!", "how", "▁are", "▁you", "?"]
# fmt: on
UpperCAmelCase : Dict = DebertaVaTokenizer(snake_case , do_lower_case=snake_case )
UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : str = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case )
UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def A_ ( self ):
'''simple docstring'''
pass
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def A_ ( self ):
'''simple docstring'''
pass
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé."
UpperCAmelCase : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
UpperCAmelCase : List[str] = DebertaVaTokenizer(snake_case , split_by_punct=snake_case )
UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = DebertaVaTokenizerFast(snake_case , split_by_punct=snake_case )
UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = "I was born in 92000, and this is falsé."
UpperCAmelCase : Optional[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
UpperCAmelCase : int = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Dict = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = "I was born in 92000, and this is falsé."
UpperCAmelCase : Optional[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
UpperCAmelCase : int = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : int = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = "I was born in 92000, and this is falsé."
UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = " \tHeLLo!how \n Are yoU? "
UpperCAmelCase : Any = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"]
# fmt: on
UpperCAmelCase : Tuple = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case )
UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.get_tokenizer()
UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer()
UpperCAmelCase : Dict = "I was born in 92000, and this is falsé."
UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
UpperCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : int = self.get_rust_tokenizer()
UpperCAmelCase : Tuple = tokenizer.encode(snake_case )
UpperCAmelCase : List[Any] = rust_tokenizer.encode(snake_case )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = "This is a test"
UpperCAmelCase : Tuple = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9]
UpperCAmelCase : Any = ["▁", "T", "his", "▁is", "▁a", "▁test"]
UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"]
UpperCAmelCase : Dict = DebertaVaTokenizer(snake_case , keep_accents=snake_case )
UpperCAmelCase : List[str] = DebertaVaTokenizerFast(snake_case , keep_accents=snake_case )
UpperCAmelCase : str = tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Dict = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Dict = rust_tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(snake_case , snake_case )
# fmt: off
UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
UpperCAmelCase : List[str] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9]
UpperCAmelCase : List[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ]
UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
UpperCAmelCase : List[str] = tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : int = tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Tuple = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = rust_tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = DebertaVaTokenizer(snake_case )
UpperCAmelCase : str = tokenizer.encode("sequence builders" )
UpperCAmelCase : List[str] = tokenizer.encode("multi-sequence build" )
UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case )
UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case , )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
| 311
|
'''simple docstring'''
from jiwer import compute_measures
import datasets
a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def A_ ( self , snake_case=None , snake_case=None , snake_case=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(snake_case , snake_case )["wer"]
else:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = 0
for prediction, reference in zip(snake_case , snake_case ):
UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 311
| 1
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Dict = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" )
UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help="transformers-cli command helpers" )
# Register commands
ConvertCommand.register_subcommand(__magic_name__ )
DownloadCommand.register_subcommand(__magic_name__ )
EnvironmentCommand.register_subcommand(__magic_name__ )
RunCommand.register_subcommand(__magic_name__ )
ServeCommand.register_subcommand(__magic_name__ )
UserCommands.register_subcommand(__magic_name__ )
AddNewModelCommand.register_subcommand(__magic_name__ )
AddNewModelLikeCommand.register_subcommand(__magic_name__ )
LfsCommands.register_subcommand(__magic_name__ )
PTtoTFCommand.register_subcommand(__magic_name__ )
# Let's go
UpperCAmelCase : List[Any] = parser.parse_args()
if not hasattr(__magic_name__ , "func" ):
parser.print_help()
exit(1 )
# Run
UpperCAmelCase : List[str] = args.func(__magic_name__ )
service.run()
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
from functools import lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = 2
UpperCAmelCase : str = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__magic_name__ )
if n > 1:
factors.add(__magic_name__ )
return factors
@lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(unique_prime_factors(__magic_name__ ) )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(set(__magic_name__ ) ) in (0, 1)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
while True:
# Increment each value of a generated range
UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group]
checker.append(__magic_name__ )
# If all numbers in the list are equal, return the group variable.
if equality(__magic_name__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase ( __magic_name__ = 4 ):
'''simple docstring'''
UpperCAmelCase : int = run(__magic_name__ )
return results[0] if len(__magic_name__ ) else None
if __name__ == "__main__":
print(solution())
| 311
| 1
|
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9},
},
{
"framework": "tensorflow",
"script": "run_tf.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9},
},
] )
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=snake_case , )
assert hasattr(self , "env" )
def A_ ( self , snake_case=1 ):
'''simple docstring'''
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , )
def A_ ( self , snake_case ):
'''simple docstring'''
TrainingJobAnalytics(snake_case ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.create_estimator()
# run training
estimator.fit()
# result dataframe
UpperCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
UpperCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase : Dict = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"{estimator.latest_training_job.name}.json" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case )
| 311
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] = emb.weight.shape
UpperCAmelCase : str = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
UpperCAmelCase : int = emb.weight.data
return lin_layer
def lowercase ( __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Tuple = {}
for old_key in state_dict.keys():
UpperCAmelCase : Tuple = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
UpperCAmelCase : Union[str, Any] = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
UpperCAmelCase : List[str] = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
UpperCAmelCase : Any = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
UpperCAmelCase : List[Any] = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
UpperCAmelCase : Optional[Any] = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
UpperCAmelCase : Union[str, Any] = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
UpperCAmelCase : Tuple = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
UpperCAmelCase : int = key.replace("final_layer_norm" , "ff_layer_norm" )
UpperCAmelCase : Optional[Any] = state_dict[old_key]
return new_dict
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = WEIGHTS_NAME ):
'''simple docstring'''
UpperCAmelCase : Any = []
UpperCAmelCase : Any = 0
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
for expert in range(__magic_name__ ):
UpperCAmelCase : List[str] = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(__magic_name__ ):
UpperCAmelCase : Dict = torch.load(__magic_name__ )["model"]
remove_ignore_keys_(__magic_name__ )
UpperCAmelCase : List[str] = rename_fairseq_keys(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = os.path.join(
__magic_name__ , weights_name.replace(".bin" , F"-{len(__magic_name__ )+1:05d}-of-???.bin" ) )
torch.save(__magic_name__ , __magic_name__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__magic_name__ )[0]].dtype )
# Add the last block
UpperCAmelCase : Optional[int] = os.path.join(__magic_name__ , weights_name.replace(".bin" , F"-{len(__magic_name__ )+1:05d}-of-???.bin" ) )
UpperCAmelCase : Optional[Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(__magic_name__ )
UpperCAmelCase : Optional[int] = rename_fairseq_keys(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__magic_name__ ) == 1:
UpperCAmelCase : List[str] = os.path.join(__magic_name__ , __magic_name__ )
torch.save(__magic_name__ , __magic_name__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__magic_name__ , __magic_name__ )
# Otherwise, let's build the index
UpperCAmelCase : str = {}
for idx, shard in enumerate(__magic_name__ ):
UpperCAmelCase : List[Any] = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(__magic_name__ ):05d}.bin" )
UpperCAmelCase : Dict = os.path.join(__magic_name__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) )
for key in shard:
UpperCAmelCase : int = shard_file
# Add the metadata
UpperCAmelCase : List[Any] = {"total_size": total_size}
UpperCAmelCase : Optional[int] = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__magic_name__ , __magic_name__ ) , "w" , encoding="utf-8" ) as f:
UpperCAmelCase : str = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + "\n"
f.write(__magic_name__ )
return metadata, index
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
a : Union[str, Any] = parser.parse_args()
a , a : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a : List[str] = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])")
a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])")
a : str = re.compile(R"(?<!_)_(?!_)")
a : List[Any] = re.compile(R"(_{2,})")
a : List[Any] = R"^\w+(\.\w+)*$"
a : Dict = R"<>:/\|?*"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
return name.lower()
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ )
UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , __magic_name__ ):
raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." )
return F"{filename_prefix_for_name(__magic_name__ )}-{split}"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
if filetype_suffix:
prefix += F".{filetype_suffix}"
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
return F"{filepath}*"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
if shard_lengths:
UpperCAmelCase : Tuple = len(__magic_name__ )
UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )]
if filetype_suffix:
UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames]
return filenames
else:
UpperCAmelCase : int = prefix
if filetype_suffix:
filename += F".{filetype_suffix}"
return [filename]
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
UpperCAmelCase : Dict = dict(zip(snake_case , range(len(snake_case ) ) ) )
UpperCAmelCase : Dict = {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
UpperCAmelCase : Any = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 1_6_0_0_0,
"return_attention_mask": False,
"do_normalize": True,
}
UpperCAmelCase : str = tempfile.mkdtemp()
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , snake_case )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case ) + "\n" )
with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case ) + "\n" )
# load decoder from hub
UpperCAmelCase : Tuple = "hf-internal-testing/ngram-beam-search-decoder"
def A_ ( self , **snake_case ):
'''simple docstring'''
UpperCAmelCase : str = self.add_kwargs_tokens_map.copy()
kwargs.update(snake_case )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self , **snake_case ):
'''simple docstring'''
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **snake_case )
def A_ ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_tokenizer()
UpperCAmelCase : Optional[int] = self.get_feature_extractor()
UpperCAmelCase : Dict = self.get_decoder()
UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , snake_case )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["xx"] )
with self.assertRaisesRegex(snake_case , "include" ):
WavaVecaProcessorWithLM(
tokenizer=snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_feature_extractor()
UpperCAmelCase : Tuple = self.get_tokenizer()
UpperCAmelCase : Tuple = self.get_decoder()
UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : int = floats_list((3, 1_0_0_0) )
UpperCAmelCase : Dict = feature_extractor(snake_case , return_tensors="np" )
UpperCAmelCase : Optional[int] = processor(snake_case , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_feature_extractor()
UpperCAmelCase : Optional[Any] = self.get_tokenizer()
UpperCAmelCase : List[Any] = self.get_decoder()
UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : Optional[Any] = "This is a test string"
UpperCAmelCase : List[str] = processor(text=snake_case )
UpperCAmelCase : List[Any] = tokenizer(snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A_ ( self , snake_case=(2, 1_0, 1_6) , snake_case=7_7 ):
'''simple docstring'''
np.random.seed(snake_case )
return np.random.rand(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.get_feature_extractor()
UpperCAmelCase : int = self.get_tokenizer()
UpperCAmelCase : List[Any] = self.get_decoder()
UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : Optional[Any] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 )
UpperCAmelCase : str = processor.decode(snake_case )
UpperCAmelCase : Optional[int] = decoder.decode_beams(snake_case )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("</s> <s> </s>" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["fork"], ["spawn"]] )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_feature_extractor()
UpperCAmelCase : Dict = self.get_tokenizer()
UpperCAmelCase : Optional[Any] = self.get_decoder()
UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : Dict = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
UpperCAmelCase : int = processor.batch_decode(snake_case )
else:
with get_context(snake_case ).Pool() as pool:
UpperCAmelCase : Tuple = processor.batch_decode(snake_case , snake_case )
UpperCAmelCase : Dict = list(snake_case )
with get_context("fork" ).Pool() as p:
UpperCAmelCase : Optional[int] = decoder.decode_beams_batch(snake_case , snake_case )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(snake_case , decoded_processor.text )
self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text )
self.assertListEqual(snake_case , decoded_processor.logit_score )
self.assertListEqual(snake_case , decoded_processor.lm_score )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_feature_extractor()
UpperCAmelCase : Dict = self.get_tokenizer()
UpperCAmelCase : str = self.get_decoder()
UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : Union[str, Any] = self._get_dummy_logits()
UpperCAmelCase : str = 1_5
UpperCAmelCase : int = -20.0
UpperCAmelCase : Dict = -4.0
UpperCAmelCase : Any = processor.batch_decode(
snake_case , beam_width=snake_case , beam_prune_logp=snake_case , token_min_logp=snake_case , )
UpperCAmelCase : int = decoded_processor_out.text
UpperCAmelCase : Any = list(snake_case )
with get_context("fork" ).Pool() as pool:
UpperCAmelCase : Optional[int] = decoder.decode_beams_batch(
snake_case , snake_case , beam_width=snake_case , beam_prune_logp=snake_case , token_min_logp=snake_case , )
UpperCAmelCase : int = [d[0][0] for d in decoded_decoder_out]
UpperCAmelCase : int = [d[0][2] for d in decoded_decoder_out]
UpperCAmelCase : Any = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , snake_case )
self.assertTrue(np.array_equal(snake_case , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , snake_case , atol=1e-3 ) )
self.assertTrue(np.array_equal(snake_case , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , snake_case , atol=1e-3 ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.get_feature_extractor()
UpperCAmelCase : Optional[int] = self.get_tokenizer()
UpperCAmelCase : Dict = self.get_decoder()
UpperCAmelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
UpperCAmelCase : str = self._get_dummy_logits()
UpperCAmelCase : int = 2.0
UpperCAmelCase : int = 5.0
UpperCAmelCase : List[str] = -20.0
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : str = processor.batch_decode(
snake_case , alpha=snake_case , beta=snake_case , unk_score_offset=snake_case , lm_score_boundary=snake_case , )
UpperCAmelCase : List[Any] = decoded_processor_out.text
UpperCAmelCase : Tuple = list(snake_case )
decoder.reset_params(
alpha=snake_case , beta=snake_case , unk_score_offset=snake_case , lm_score_boundary=snake_case , )
with get_context("fork" ).Pool() as pool:
UpperCAmelCase : int = decoder.decode_beams_batch(
snake_case , snake_case , )
UpperCAmelCase : List[Any] = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , snake_case )
UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
UpperCAmelCase : Union[str, Any] = os.listdir(snake_case )
UpperCAmelCase : Optional[Any] = ["alphabet.json", "language_model"]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = snapshot_download("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(snake_case )
UpperCAmelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase : List[str] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
UpperCAmelCase : Dict = os.listdir(snake_case )
UpperCAmelCase : List[str] = os.listdir(snake_case )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : List[str] = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : int = floats_list((3, 1_0_0_0) )
UpperCAmelCase : List[str] = processor_wavaveca(snake_case , return_tensors="np" )
UpperCAmelCase : str = processor_auto(snake_case , return_tensors="np" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
UpperCAmelCase : Optional[int] = self._get_dummy_logits()
UpperCAmelCase : Optional[int] = processor_wavaveca.batch_decode(snake_case )
UpperCAmelCase : Union[str, Any] = processor_auto.batch_decode(snake_case )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.get_feature_extractor()
UpperCAmelCase : int = self.get_tokenizer()
UpperCAmelCase : Any = self.get_decoder()
UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
@staticmethod
def A_ ( snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = [d[key] for d in offsets]
return retrieved_list
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : List[Any] = self._get_dummy_logits()[0]
UpperCAmelCase : Any = processor.decode(snake_case , output_word_offsets=snake_case )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(snake_case , snake_case ) )
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
UpperCAmelCase : Optional[Any] = self._get_dummy_logits()
UpperCAmelCase : Union[str, Any] = processor.batch_decode(snake_case , output_word_offsets=snake_case )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(snake_case , snake_case ) )
self.assertListEqual(
[" ".join(self.get_from_offsets(snake_case , "word" ) ) for o in outputs["word_offsets"]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def A_ ( self ):
'''simple docstring'''
import torch
UpperCAmelCase : Optional[int] = load_dataset("common_voice" , "en" , split="train" , streaming=snake_case )
UpperCAmelCase : str = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) )
UpperCAmelCase : Tuple = iter(snake_case )
UpperCAmelCase : str = next(snake_case )
UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
UpperCAmelCase : Optional[int] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
UpperCAmelCase : List[str] = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(snake_case ).logits.cpu().numpy()
UpperCAmelCase : Optional[int] = processor.decode(logits[0] , output_word_offsets=snake_case )
UpperCAmelCase : Dict = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
UpperCAmelCase : List[Any] = [
{
"start_time": d["start_offset"] * time_offset,
"end_time": d["end_offset"] * time_offset,
"word": d["word"],
}
for d in output["word_offsets"]
]
UpperCAmelCase : int = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"
# output words
self.assertEqual(" ".join(self.get_from_offsets(snake_case , "word" ) ) , snake_case )
self.assertEqual(" ".join(self.get_from_offsets(snake_case , "word" ) ) , output.text )
# output times
UpperCAmelCase : Dict = torch.tensor(self.get_from_offsets(snake_case , "start_time" ) )
UpperCAmelCase : Dict = torch.tensor(self.get_from_offsets(snake_case , "end_time" ) )
# fmt: off
UpperCAmelCase : str = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
UpperCAmelCase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(snake_case , snake_case , atol=0.01 ) )
self.assertTrue(torch.allclose(snake_case , snake_case , atol=0.01 ) )
| 311
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311
| 1
|
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
a : Tuple = logging.getLogger()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase : List[str] = parser.parse_args()
return args.f
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(snake_case , "argv" , snake_case ):
UpperCAmelCase : int = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(snake_case , 0.666 )
@slow
@require_torch_non_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(snake_case )
UpperCAmelCase : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(snake_case )
UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(snake_case )
| 311
|
'''simple docstring'''
import argparse
import copy
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase : Any = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ ) as f:
UpperCAmelCase : List[str] = f.read(1 )
UpperCAmelCase : List[Any] = start_node
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Any = start_node
UpperCAmelCase : Optional[Any] = 0
while visiting not in first_solution:
UpperCAmelCase : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
UpperCAmelCase : Tuple = k[1]
UpperCAmelCase : Dict = k[0]
first_solution.append(__magic_name__ )
UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ )
UpperCAmelCase : str = best_node
first_solution.append(__magic_name__ )
UpperCAmelCase : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase : str = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
UpperCAmelCase : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
UpperCAmelCase : Dict = solution.index(__magic_name__ )
if n == kn:
continue
UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ )
UpperCAmelCase : Optional[int] = kn
UpperCAmelCase : List[str] = n
UpperCAmelCase : str = 0
for k in _tmp[:-1]:
UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase : List[Any] = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = first_solution
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = distance_of_first_solution
UpperCAmelCase : Union[str, Any] = solution
while count <= iters:
UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = 0
UpperCAmelCase : List[str] = neighborhood[index_of_best_solution]
UpperCAmelCase : Dict = len(__magic_name__ ) - 1
UpperCAmelCase : Dict = False
while not found:
UpperCAmelCase : List[Any] = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
UpperCAmelCase : int = best_solution[i]
UpperCAmelCase : Optional[int] = solution[i]
break
UpperCAmelCase : List[str] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = best_solution[:-1]
UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase : Union[str, Any] = cost
UpperCAmelCase : Tuple = solution
else:
UpperCAmelCase : Optional[Any] = index_of_best_solution + 1
UpperCAmelCase : str = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
UpperCAmelCase : int = count + 1
return best_solution_ever, best_cost
def lowercase ( __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Dict = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution(
args.File , __magic_name__ )
UpperCAmelCase , UpperCAmelCase : Any = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=2 , snake_case=8 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=1_6 , snake_case=5 , snake_case=2 , snake_case=3_6 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Dict = parent
UpperCAmelCase : int = batch_size
UpperCAmelCase : int = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Optional[Any] = use_token_type_ids
UpperCAmelCase : List[Any] = use_labels
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : int = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : str = num_labels
UpperCAmelCase : Union[str, Any] = num_choices
UpperCAmelCase : List[Any] = scope
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_input_mask:
UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : List[str] = None
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Optional[Any] = None
if self.use_labels:
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_config()
UpperCAmelCase : Dict = 3_0_0
return config
def A_ ( self ):
'''simple docstring'''
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase : Tuple = True
UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
UpperCAmelCase : Any = model(snake_case , token_type_ids=snake_case )
UpperCAmelCase : Optional[Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ):
'''simple docstring'''
UpperCAmelCase : Dict = True
UpperCAmelCase : Any = MraModel(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
UpperCAmelCase : List[str] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[str] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.num_labels
UpperCAmelCase : Any = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : List[Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[str] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : int = self.num_choices
UpperCAmelCase : Dict = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
UpperCAmelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Tuple = False
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : Optional[int] = ()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = MraModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : Optional[int] = type
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : List[Any] = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="MRA does not output attentions" )
def A_ ( self ):
'''simple docstring'''
return
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
UpperCAmelCase : List[Any] = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(snake_case )[0]
UpperCAmelCase : Dict = torch.Size((1, 2_5_6, 7_6_8) )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : Tuple = model(snake_case )[0]
UpperCAmelCase : Union[str, Any] = 5_0_2_6_5
UpperCAmelCase : List[Any] = torch.Size((1, 2_5_6, vocab_size) )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Tuple = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
UpperCAmelCase : Optional[Any] = torch.arange(4_0_9_6 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(snake_case )[0]
UpperCAmelCase : Dict = 5_0_2_6_5
UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 311
|
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase : Union[str, Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:]
UpperCAmelCase : List[str] = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = b""
for char in message:
bit_string += format(__magic_name__ , "08b" ).encode("utf-8" )
UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512]
UpperCAmelCase : Tuple = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Any = format(__magic_name__ , "032b" )
UpperCAmelCase : int = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = preprocess(__magic_name__ )
UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase : List[str] = 0X67452301
UpperCAmelCase : Tuple = 0XEFCDAB89
UpperCAmelCase : List[Any] = 0X98BADCFE
UpperCAmelCase : List[str] = 0X10325476
UpperCAmelCase : Dict = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : List[Any] = ba
UpperCAmelCase : Optional[Any] = ca
UpperCAmelCase : Any = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : int = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ ))
UpperCAmelCase : Dict = (7 * i) % 16
UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase : List[Any] = d
UpperCAmelCase : Any = c
UpperCAmelCase : Dict = b
UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a : Any = datasets.utils.logging.get_logger(__name__)
a : Optional[Any] = ["names", "prefix"]
a : Dict = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
a : Optional[Any] = ["encoding_errors", "on_bad_lines"]
a : List[Any] = ["date_format"]
@dataclass
class UpperCamelCase__ ( datasets.BuilderConfig ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = ","
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : Optional[Union[int, List[int], str]] = "infer"
SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None
SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None
SCREAMING_SNAKE_CASE__ : Optional[Union[int, str, List[int], List[str]]] = None
SCREAMING_SNAKE_CASE__ : Optional[Union[List[int], List[str]]] = None
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : Optional[Literal["c", "python", "pyarrow"]] = None
SCREAMING_SNAKE_CASE__ : Dict[Union[int, str], Callable[[Any], Any]] = None
SCREAMING_SNAKE_CASE__ : Optional[list] = None
SCREAMING_SNAKE_CASE__ : Optional[list] = None
SCREAMING_SNAKE_CASE__ : bool = False
SCREAMING_SNAKE_CASE__ : Optional[Union[int, List[int]]] = None
SCREAMING_SNAKE_CASE__ : Optional[int] = None
SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : bool = False
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : str = "."
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : str = '"'
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : bool = True
SCREAMING_SNAKE_CASE__ : bool = False
SCREAMING_SNAKE_CASE__ : Optional[str] = None
SCREAMING_SNAKE_CASE__ : int = 1_00_00
SCREAMING_SNAKE_CASE__ : Optional[datasets.Features] = None
SCREAMING_SNAKE_CASE__ : Optional[str] = "strict"
SCREAMING_SNAKE_CASE__ : Literal["error", "warn", "skip"] = "error"
SCREAMING_SNAKE_CASE__ : Optional[str] = None
def A_ ( self ):
'''simple docstring'''
if self.delimiter is not None:
UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
UpperCAmelCase : Optional[Any] = self.column_names
@property
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class UpperCamelCase__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = CsvConfig
def A_ ( self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A_ ( self , snake_case ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
UpperCAmelCase : List[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(snake_case , (str, list, tuple) ):
UpperCAmelCase : List[str] = data_files
if isinstance(snake_case , snake_case ):
UpperCAmelCase : List[str] = [files]
UpperCAmelCase : Tuple = [dl_manager.iter_files(snake_case ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
UpperCAmelCase : Any = []
for split_name, files in data_files.items():
if isinstance(snake_case , snake_case ):
UpperCAmelCase : str = [files]
UpperCAmelCase : Dict = [dl_manager.iter_files(snake_case ) for file in files]
splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={"files": files} ) )
return splits
def A_ ( self , snake_case ):
'''simple docstring'''
if self.config.features is not None:
UpperCAmelCase : List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(snake_case ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase : Union[str, Any] = table_cast(snake_case , snake_case )
return pa_table
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ):
UpperCAmelCase : List[str] = pd.read_csv(snake_case , iterator=snake_case , dtype=snake_case , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(snake_case ):
UpperCAmelCase : int = pa.Table.from_pandas(snake_case )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(snake_case )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(snake_case )}: {e}" )
raise
| 311
|
'''simple docstring'''
a : List[str] = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
a : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : Dict = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) )
] # the reference grid
UpperCAmelCase : Optional[Any] = 1
UpperCAmelCase : str = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) )
] # the action grid
UpperCAmelCase : int = init[0]
UpperCAmelCase : Dict = init[1]
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell
UpperCAmelCase : List[Any] = [[f, g, x, y]]
UpperCAmelCase : Union[str, Any] = False # flag that is set when search is complete
UpperCAmelCase : int = False # flag set if we can't find expand
while not found and not resign:
if len(__magic_name__ ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
UpperCAmelCase : int = cell.pop()
UpperCAmelCase : Dict = next_cell[2]
UpperCAmelCase : Dict = next_cell[3]
UpperCAmelCase : List[Any] = next_cell[1]
if x == goal[0] and y == goal[1]:
UpperCAmelCase : List[str] = True
else:
for i in range(len(__magic_name__ ) ): # to try out different valid actions
UpperCAmelCase : Optional[int] = x + DIRECTIONS[i][0]
UpperCAmelCase : Union[str, Any] = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__magic_name__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
UpperCAmelCase : Any = g + cost
UpperCAmelCase : Optional[Any] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
UpperCAmelCase : Dict = 1
UpperCAmelCase : int = i
UpperCAmelCase : Dict = []
UpperCAmelCase : Tuple = goal[0]
UpperCAmelCase : List[str] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
UpperCAmelCase : Tuple = x - DIRECTIONS[action[x][y]][0]
UpperCAmelCase : Dict = y - DIRECTIONS[action[x][y]][1]
UpperCAmelCase : Optional[int] = xa
UpperCAmelCase : List[Any] = ya
invpath.append([x, y] )
UpperCAmelCase : Optional[Any] = []
for i in range(len(__magic_name__ ) ):
path.append(invpath[len(__magic_name__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
a : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
a : Tuple = [0, 0]
# all coordinates are given in format [y,x]
a : int = [len(grid) - 1, len(grid[0]) - 1]
a : Tuple = 1
# the cost map which pushes the path closer to the goal
a : Optional[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
a : Dict = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
a : List[Any] = 99
a , a : Optional[Any] = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_0 , snake_case=0.02 , snake_case=True , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Tuple = parent
UpperCAmelCase : str = batch_size
UpperCAmelCase : int = seq_length
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : List[Any] = use_input_mask
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : List[Any] = num_hidden_layers
UpperCAmelCase : List[str] = num_attention_heads
UpperCAmelCase : List[Any] = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Optional[Any] = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : str = initializer_range
UpperCAmelCase : int = use_labels
UpperCAmelCase : Dict = scope
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Tuple = None
if self.use_input_mask:
UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] = self.get_config()
return config, input_ids, input_mask, token_labels
def A_ ( self ):
'''simple docstring'''
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case , initializer_range=self.initializer_range , )
def A_ ( self ):
'''simple docstring'''
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : int = self.prepare_config_and_inputs()
UpperCAmelCase : Tuple = True
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A_ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : str = BertGenerationEncoder(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Optional[Any] = model(snake_case , attention_mask=snake_case )
UpperCAmelCase : Tuple = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : int = BertGenerationEncoder(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
UpperCAmelCase : Dict = model(
snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : Tuple = True
UpperCAmelCase : int = True
UpperCAmelCase : Union[str, Any] = BertGenerationDecoder(config=snake_case ).to(snake_case ).eval()
# first forward pass
UpperCAmelCase : List[Any] = model(
snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , use_cache=snake_case , )
UpperCAmelCase : Any = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : str = model(
snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , output_hidden_states=snake_case , )["hidden_states"][0]
UpperCAmelCase : Optional[int] = model(
snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["hidden_states"][0]
# select random slice
UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def A_ ( self , snake_case , snake_case , snake_case , snake_case , *snake_case , ):
'''simple docstring'''
UpperCAmelCase : Tuple = BertGenerationDecoder(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (BertGenerationDecoder,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : List[str] = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = BertGenerationEncoderTester(self )
UpperCAmelCase : Any = ConfigTester(self , config_class=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase : Dict = "bert"
self.model_tester.create_and_check_model(snake_case , snake_case , snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case )
def A_ ( self ):
'''simple docstring'''
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCAmelCase : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
self.assertIsNotNone(snake_case )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
UpperCAmelCase : str = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
UpperCAmelCase : Optional[int] = model(snake_case )[0]
UpperCAmelCase : Any = torch.Size([1, 8, 1_0_2_4] )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : Optional[int] = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
UpperCAmelCase : str = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size([1, 8, 5_0_3_5_8] )
self.assertEqual(output.shape , snake_case )
UpperCAmelCase : List[str] = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=3_0 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=2 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=3 , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Optional[int] = batch_size
UpperCAmelCase : Optional[int] = image_size
UpperCAmelCase : int = patch_size
UpperCAmelCase : str = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Tuple = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2
UpperCAmelCase : Optional[int] = num_patches + 1
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : int = self.get_config()
return config, pixel_values, labels
def A_ ( self ):
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = TFViTModel(config=snake_case )
UpperCAmelCase : List[str] = model(snake_case , training=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase : Dict = self.image_size // 2
UpperCAmelCase : Dict = pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase : Dict = model(snake_case , interpolate_pos_encoding=snake_case , training=snake_case )
UpperCAmelCase : List[str] = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = self.type_sequence_label_size
UpperCAmelCase : Tuple = TFViTForImageClassification(snake_case )
UpperCAmelCase : int = model(snake_case , labels=snake_case , training=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase : Any = self.image_size // 2
UpperCAmelCase : str = pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase : Optional[Any] = model(snake_case , interpolate_pos_encoding=snake_case , training=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase : Dict = 1
UpperCAmelCase : str = TFViTForImageClassification(snake_case )
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ : Any = (
{"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : str = False
SCREAMING_SNAKE_CASE__ : Dict = False
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = TFViTModelTester(self )
UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def A_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def A_ ( self ):
'''simple docstring'''
pass
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[int] = model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case , tf.keras.layers.Layer ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[int] = model_class(snake_case )
UpperCAmelCase : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : str = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(snake_case )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A_ ( self ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=snake_case , return_tensors="tf" )
# forward pass
UpperCAmelCase : List[str] = model(**snake_case )
# verify the logits
UpperCAmelCase : Optional[int] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , snake_case )
UpperCAmelCase : Optional[Any] = tf.constant([-0.2744, 0.8215, -0.0836] )
tf.debugging.assert_near(outputs.logits[0, :3] , snake_case , atol=1e-4 )
| 311
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Tuple = ["gpt2"]
a : Dict = "gpt2"
if is_tf_available():
class UpperCamelCase__ ( tf.Module ):
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = tokenizer
UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case )
UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case )
UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor()
UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Tuple = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" )
UpperCAmelCase : Any = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Dict = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Optional[Any] = tf.function(snake_case )
for test_inputs in self.test_sentences:
UpperCAmelCase : List[str] = tf.constant(snake_case )
UpperCAmelCase : Dict = compiled_tokenizer(snake_case )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : int = ModelToSave(tokenizer=snake_case )
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model"
tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} )
UpperCAmelCase : int = tf.saved_model.load(snake_case )
UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs
UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config()
UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case )
UpperCAmelCase : Tuple = model_from_config(snake_case )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[str] = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case )
UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 311
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : str = {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json",
"google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json",
"google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "big_bird"
def __init__( self , snake_case=5_0_3_5_8 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu_new" , snake_case=0.1 , snake_case=0.1 , snake_case=4_0_9_6 , snake_case=2 , snake_case=0.02 , snake_case=1e-12 , snake_case=True , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=6_6 , snake_case="block_sparse" , snake_case=True , snake_case=False , snake_case=6_4 , snake_case=3 , snake_case=None , **snake_case , ):
'''simple docstring'''
super().__init__(
pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , sep_token_id=snake_case , **snake_case , )
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : int = max_position_embeddings
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = initializer_range
UpperCAmelCase : Union[str, Any] = type_vocab_size
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : List[Any] = use_cache
UpperCAmelCase : List[str] = rescale_embeddings
UpperCAmelCase : Dict = attention_type
UpperCAmelCase : Dict = use_bias
UpperCAmelCase : Dict = block_size
UpperCAmelCase : Any = num_random_blocks
UpperCAmelCase : Tuple = classifier_dropout
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
@property
def A_ ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase : List[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 311
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=3_0 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=2 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=3 , snake_case=None , snake_case=2 , ):
'''simple docstring'''
UpperCAmelCase : Any = parent
UpperCAmelCase : str = batch_size
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Optional[Any] = num_channels
UpperCAmelCase : Any = is_training
UpperCAmelCase : str = use_labels
UpperCAmelCase : str = hidden_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : List[Any] = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : str = scope
UpperCAmelCase : Optional[int] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2
UpperCAmelCase : Any = num_patches + 2
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def A_ ( self ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = TFDeiTModel(config=snake_case )
UpperCAmelCase : Any = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = TFDeiTForMaskedImageModeling(config=snake_case )
UpperCAmelCase : int = model(snake_case )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Optional[int] = TFDeiTForMaskedImageModeling(snake_case )
UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(snake_case )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Tuple = self.type_sequence_label_size
UpperCAmelCase : Optional[Any] = TFDeiTForImageClassification(snake_case )
UpperCAmelCase : Optional[int] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase : int = 1
UpperCAmelCase : Dict = TFDeiTForImageClassification(snake_case )
UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : Dict = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Tuple = False
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : int = False
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = TFDeiTModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def A_ ( self ):
'''simple docstring'''
pass
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case , tf.keras.layers.Dense ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(snake_case )
UpperCAmelCase : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def A_ ( self , snake_case , snake_case , snake_case=False ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def A_ ( self ):
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = TFDeiTModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A_ ( self ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
UpperCAmelCase : Any = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : int = image_processor(images=snake_case , return_tensors="tf" )
# forward pass
UpperCAmelCase : Dict = model(**snake_case )
# verify the logits
UpperCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , snake_case )
UpperCAmelCase : Dict = tf.constant([-1.0266, 0.1912, -1.2861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
| 311
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=3 , snake_case=3_2 , snake_case=3 , snake_case=1_0 , snake_case=[1_0, 2_0, 3_0, 4_0] , snake_case=[1, 1, 2, 1] , snake_case=True , snake_case=True , snake_case="relu" , snake_case=3 , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Dict = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : List[str] = embeddings_size
UpperCAmelCase : Dict = hidden_sizes
UpperCAmelCase : int = depths
UpperCAmelCase : Optional[Any] = is_training
UpperCAmelCase : List[str] = use_labels
UpperCAmelCase : int = hidden_act
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Any = scope
UpperCAmelCase : Dict = len(snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Optional[int] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : Any = self.get_config()
return config, pixel_values, labels
def A_ ( self ):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = TFResNetModel(config=snake_case )
UpperCAmelCase : Optional[Any] = model(snake_case )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.num_labels
UpperCAmelCase : Union[str, Any] = TFResNetForImageClassification(snake_case )
UpperCAmelCase : int = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs
UpperCAmelCase : List[str] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ : List[str] = False
SCREAMING_SNAKE_CASE__ : Union[str, Any] = False
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Any = False
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = TFResNetModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case )
def A_ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A_ ( self ):
'''simple docstring'''
return
@unittest.skip(reason="ResNet does not use inputs_embeds" )
def A_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="ResNet does not support input and output embeddings" )
def A_ ( self ):
'''simple docstring'''
pass
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Union[str, Any] = model_class(snake_case )
UpperCAmelCase : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : List[str] = [*signature.parameters.keys()]
UpperCAmelCase : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
def check_hidden_states_output(snake_case , snake_case , snake_case ):
UpperCAmelCase : Optional[int] = model_class(snake_case )
UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) )
UpperCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Dict = self.model_tester.num_stages
self.assertEqual(len(snake_case ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase : List[Any] = layer_type
UpperCAmelCase : str = True
check_hidden_states_output(snake_case , snake_case , snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Optional[int] = True
check_hidden_states_output(snake_case , snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
@slow
def A_ ( self ):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[int] = TFResNetModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A_ ( self ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCAmelCase : Union[str, Any] = self.default_image_processor
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=snake_case , return_tensors="tf" )
# forward pass
UpperCAmelCase : List[Any] = model(**snake_case )
# verify the logits
UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , snake_case )
UpperCAmelCase : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
| 1
|
'''simple docstring'''
from math import isclose, sqrt
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = point_y / 4 / point_x
UpperCAmelCase : Union[str, Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Tuple = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : List[Any] = outgoing_gradient**2 + 4
UpperCAmelCase : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : Dict = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Any = x_minus if isclose(__magic_name__ , __magic_name__ ) else x_plus
UpperCAmelCase : Dict = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowercase ( __magic_name__ = 1.4 , __magic_name__ = -9.6 ):
'''simple docstring'''
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = next_point(__magic_name__ , __magic_name__ , __magic_name__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'{solution() = }')
| 311
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = ["model.decoder.embed_positions.weights"]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "emb" in name:
UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCAmelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = list(state_dict.keys() )
UpperCAmelCase : List[Any] = {}
for key in keys:
UpperCAmelCase : Any = state_dict.pop(__magic_name__ )
UpperCAmelCase : str = rename_keys(__magic_name__ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase : Optional[int] = val[:hidden_size, :]
UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase : str = val
else:
UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def lowercase ( __magic_name__ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
UpperCAmelCase : List[Any] = 1024
UpperCAmelCase : Tuple = 24
UpperCAmelCase : Union[str, Any] = 16
elif checkpoint == "medium":
UpperCAmelCase : List[Any] = 1536
UpperCAmelCase : Optional[Any] = 48
UpperCAmelCase : List[str] = 24
elif checkpoint == "large":
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : str = 48
UpperCAmelCase : Optional[Any] = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase : Tuple = MusicgenDecoderConfig(
hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , )
return config
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ )
UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ )
UpperCAmelCase : Dict = fairseq_model.lm.state_dict()
UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict(
__magic_name__ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" )
UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__magic_name__ )
if len(__magic_name__ ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(__magic_name__ ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__magic_name__ )
# check we can do a forward pass
UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ )
# set the appropriate bos/pad token ids
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : Tuple = 2048
# set other default generation config params
UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = 3.0
if pytorch_dump_folder is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(__magic_name__ )
processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
a : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
a : Dict = get_tests_dir("fixtures/test_sentencepiece.model")
a : str = {"target_lang": "fi", "source_lang": "en"}
a : Tuple = ">>zh<<"
a : int = "Helsinki-NLP/"
if is_torch_available():
a : Any = "pt"
elif is_tf_available():
a : List[str] = "tf"
else:
a : Optional[Any] = "jax"
@require_sentencepiece
class UpperCamelCase__ ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MarianTokenizer
SCREAMING_SNAKE_CASE__ : str = False
SCREAMING_SNAKE_CASE__ : Tuple = True
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : List[str] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
UpperCAmelCase : str = dict(zip(snake_case , range(len(snake_case ) ) ) )
UpperCAmelCase : Union[str, Any] = Path(self.tmpdirname )
save_json(snake_case , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(snake_case , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(snake_case , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(snake_case , save_dir / VOCAB_FILES_NAMES["target_spm"] )
UpperCAmelCase : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def A_ ( self , **snake_case ):
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = "</s>"
UpperCAmelCase : Optional[int] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(snake_case ) , 9 )
def A_ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" )
UpperCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=snake_case )
self.assertIsInstance(snake_case , snake_case )
UpperCAmelCase : List[Any] = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0]
self.assertListEqual(snake_case , batch.input_ids[0] )
UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(snake_case )
UpperCAmelCase : Union[str, Any] = [x.name for x in Path(snake_case ).glob("*" )]
self.assertIn("source.spm" , snake_case )
MarianTokenizer.from_pretrained(snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.get_tokenizer()
UpperCAmelCase : Union[str, Any] = tok(
["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=snake_case , truncation=snake_case , return_tensors=snake_case )
self.assertIsInstance(snake_case , snake_case )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.get_tokenizer()
UpperCAmelCase : List[str] = tok(["I am a tiny frog", "I am a small frog"] , padding=snake_case , return_tensors=snake_case )
self.assertIsInstance(snake_case , snake_case )
self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
UpperCAmelCase : Optional[Any] = "Tämä on testi"
UpperCAmelCase : List[Any] = "This is a test"
UpperCAmelCase : Tuple = [7_6, 7, 2_0_4_7, 2]
UpperCAmelCase : int = [6_9, 1_2, 1_1, 9_4_0, 2]
UpperCAmelCase : Any = tokenizer(snake_case ).input_ids
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = tokenizer(text_target=snake_case ).input_ids
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : str = tokenizer.decode(snake_case , skip_special_tokens=snake_case )
self.assertEqual(snake_case , snake_case )
| 311
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
if __name__ == "__main__":
a : Union[str, Any] = Accelerator()
a : str = (accelerator.state.process_index + 2, 10)
a : List[str] = torch.randint(0, 10, shape).to(accelerator.device)
a : Optional[int] = ""
a : int = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 311
| 1
|
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Optional[Any] = image.size
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase : int = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] )
UpperCAmelCase : Tuple = np.array(__magic_name__ ).astype(np.floataa ) / 2_5_5.0
UpperCAmelCase : Tuple = image[None].transpose(0 , 3 , 1 , 2 )
UpperCAmelCase : Optional[Any] = torch.from_numpy(__magic_name__ )
return 2.0 * image - 1.0
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case , snake_case , ):
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=snake_case , unet=snake_case , scheduler=snake_case )
@torch.no_grad()
def __call__( self , snake_case = None , snake_case = 1 , snake_case = 1_0_0 , snake_case = 0.0 , snake_case = None , snake_case = "pil" , snake_case = True , ):
'''simple docstring'''
if isinstance(snake_case , PIL.Image.Image ):
UpperCAmelCase : str = 1
elif isinstance(snake_case , torch.Tensor ):
UpperCAmelCase : Optional[int] = image.shape[0]
else:
raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case )}" )
if isinstance(snake_case , PIL.Image.Image ):
UpperCAmelCase : Union[str, Any] = preprocess(snake_case )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
UpperCAmelCase : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width)
UpperCAmelCase : Optional[int] = next(self.unet.parameters() ).dtype
UpperCAmelCase : Any = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=snake_case )
UpperCAmelCase : Optional[Any] = image.to(device=self.device , dtype=snake_case )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(snake_case , device=self.device )
UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase : Optional[Any] = {}
if accepts_eta:
UpperCAmelCase : Tuple = eta
for t in self.progress_bar(snake_case ):
# concat latents and low resolution image in the channel dimension.
UpperCAmelCase : str = torch.cat([latents, image] , dim=1 )
UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(snake_case , snake_case )
# predict the noise residual
UpperCAmelCase : Tuple = self.unet(snake_case , snake_case ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : str = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
# decode the image latents with the VQVAE
UpperCAmelCase : int = self.vqvae.decode(snake_case ).sample
UpperCAmelCase : Union[str, Any] = torch.clamp(snake_case , -1.0 , 1.0 )
UpperCAmelCase : Dict = image / 2 + 0.5
UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[Any] = self.numpy_to_pil(snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case )
| 311
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase : Dict = len(snake_case )
self.assertGreater(snake_case , 0 )
self.assertEqual(
snake_case , [
{
"score": ANY(snake_case ),
"label": ANY(snake_case ),
"box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )},
}
for i in range(snake_case )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
UpperCAmelCase : Tuple = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
UpperCAmelCase : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = 0.2
UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : str = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 311
| 1
|
'''simple docstring'''
from collections import defaultdict
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
UpperCAmelCase : Tuple = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case ) )
]
UpperCAmelCase : Union[str, Any] = defaultdict(snake_case ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
UpperCAmelCase : Tuple = (1 << len(snake_case )) - 1
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
UpperCAmelCase : List[Any] = self.count_ways_until(snake_case , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
UpperCAmelCase : Optional[int] = total_ways_util
return self.dp[mask][task_no]
def A_ ( self , snake_case ):
'''simple docstring'''
for i in range(len(snake_case ) ):
for j in task_performed[i]:
self.task[j].append(snake_case )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
a : Dict = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
a : Any = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
a : Dict = ""
a : List[str] = ""
a : List[str] = ""
a : Tuple = ""
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = tweepy.OAuthHandler(__magic_name__ , __magic_name__ )
auth.set_access_token(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = tweepy.API(__magic_name__ )
# initialize a list to hold all the tweepy Tweets
UpperCAmelCase : List[Any] = []
# make initial request for most recent tweets (200 is the maximum allowed count)
UpperCAmelCase : int = api.user_timeline(screen_name=__magic_name__ , count=200 )
# save most recent tweets
alltweets.extend(__magic_name__ )
# save the id of the oldest tweet less one
UpperCAmelCase : str = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(__magic_name__ ) > 0:
print(F"getting tweets before {oldest}" )
# all subsequent requests use the max_id param to prevent duplicates
UpperCAmelCase : str = api.user_timeline(
screen_name=__magic_name__ , count=200 , max_id=__magic_name__ )
# save most recent tweets
alltweets.extend(__magic_name__ )
# update the id of the oldest tweet less one
UpperCAmelCase : Dict = alltweets[-1].id - 1
print(F"...{len(__magic_name__ )} tweets downloaded so far" )
# transform the tweepy tweets into a 2D array that will populate the csv
UpperCAmelCase : Tuple = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F"new_{screen_name}_tweets.csv" , "w" ) as f:
UpperCAmelCase : Optional[int] = csv.writer(__magic_name__ )
writer.writerow(["id", "created_at", "text"] )
writer.writerows(__magic_name__ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 311
|
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a : int = datasets.load_iris()
a : Union[str, Any] = np.array(data["data"])
a : Optional[Any] = np.array(data["target"])
a : List[Any] = data["target_names"]
a , a , a , a : Dict = train_test_split(X, y)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ):
'''simple docstring'''
UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ )
# List of distances of all points from the point to be classified
UpperCAmelCase : List[Any] = []
for data_point in data:
UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 311
| 1
|
'''simple docstring'''
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
a : Tuple = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
UpperCAmelCase : int = cached_file(__magic_name__ , __magic_name__ , force_download=not use_cached_models )
UpperCAmelCase : Optional[Any] = config_class.from_json_file(__magic_name__ )
UpperCAmelCase : List[Any] = True
UpperCAmelCase : Tuple = True
print(F"Building TensorFlow model from configuration: {config}" )
UpperCAmelCase : int = model_class(__magic_name__ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
UpperCAmelCase : Union[str, Any] = cached_file(
__magic_name__ , __magic_name__ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
UpperCAmelCase : Any = load_pytorch_checkpoint_in_tfa_model(__magic_name__ , __magic_name__ )
if compare_with_pt_model:
UpperCAmelCase : int = tf_model(tf_model.dummy_inputs , training=__magic_name__ ) # build the network
UpperCAmelCase : Dict = torch.load(__magic_name__ , map_location="cpu" )
UpperCAmelCase : str = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__magic_name__ , config=__magic_name__ , state_dict=__magic_name__ )
with torch.no_grad():
UpperCAmelCase : Optional[int] = pt_model(**pt_model.dummy_inputs )
UpperCAmelCase : str = pto[0].numpy()
UpperCAmelCase : str = tfo[0].numpy()
UpperCAmelCase : Any = np.amax(np.abs(np_pt - np_tf ) )
print(F"Max absolute difference between models outputs {diff}" )
assert diff <= 2e-2, F"Error, model absolute difference is >2e-2: {diff}"
# Save pytorch-model
print(F"Save TensorFlow model to {tf_dump_path}" )
tf_model.save_weights(__magic_name__ , save_format="h5" )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=False , ):
'''simple docstring'''
if args_model_type is None:
UpperCAmelCase : Optional[Any] = list(MODEL_CLASSES.keys() )
else:
UpperCAmelCase : int = [args_model_type]
for j, model_type in enumerate(__magic_name__ , start=1 ):
print("=" * 100 )
print(F" Converting model type {j}/{len(__magic_name__ )}: {model_type}" )
print("=" * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(F"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
UpperCAmelCase : Dict = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
UpperCAmelCase : str = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__magic_name__ , __magic_name__ ) , start=1 ):
print("-" * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F" Skipping finetuned checkpoint {model_shortcut_name}" )
continue
UpperCAmelCase : Optional[int] = model_shortcut_name
elif only_convert_finetuned_models:
print(F" Skipping not finetuned checkpoint {model_shortcut_name}" )
continue
print(
F" Converting checkpoint {i}/{len(__magic_name__ )}: {model_shortcut_name} - model_type {model_type}" )
print("-" * 100 )
if config_shortcut_name in aws_config_map:
UpperCAmelCase : Dict = cached_file(__magic_name__ , __magic_name__ , force_download=not use_cached_models )
else:
UpperCAmelCase : Union[str, Any] = config_shortcut_name
if model_shortcut_name in aws_model_maps:
UpperCAmelCase : Optional[Any] = cached_file(__magic_name__ , __magic_name__ , force_download=not use_cached_models )
else:
UpperCAmelCase : str = model_shortcut_name
if os.path.isfile(__magic_name__ ):
UpperCAmelCase : List[str] = "converted_model"
convert_pt_checkpoint_to_tf(
model_type=__magic_name__ , pytorch_checkpoint_path=__magic_name__ , config_file=__magic_name__ , tf_dump_path=os.path.join(__magic_name__ , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=__magic_name__ , )
if remove_cached_files:
os.remove(__magic_name__ )
os.remove(__magic_name__ )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
a : Tuple = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = str(__magic_name__ )
return n == n[::-1]
def lowercase ( __magic_name__ = 100_0000 ):
'''simple docstring'''
UpperCAmelCase : Tuple = 0
for i in range(1 , __magic_name__ ):
if is_palindrome(__magic_name__ ) and is_palindrome(bin(__magic_name__ ).split("b" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 311
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
a : Optional[Any] = logging.get_logger(__name__)
a : Tuple = "T5Config"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ )
UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ )
UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ )
return shifted_input_ids
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : Dict = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = "mt5"
SCREAMING_SNAKE_CASE__ : str = MTaConfig
| 311
| 1
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Optional[int] = logging.get_logger(__name__)
a : str = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = "pix2struct_text_model"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["past_key_values"]
SCREAMING_SNAKE_CASE__ : int = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case=5_0_2_4_4 , snake_case=7_6_8 , snake_case=6_4 , snake_case=2_0_4_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_2 , snake_case=1_2_8 , snake_case=0.1 , snake_case=1e-6 , snake_case=1.0 , snake_case="gelu_new" , snake_case=0 , snake_case=False , snake_case=0 , snake_case=1 , snake_case=False , snake_case=True , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = d_kv
UpperCAmelCase : Tuple = d_ff
UpperCAmelCase : Union[str, Any] = num_layers
UpperCAmelCase : Optional[Any] = num_heads
UpperCAmelCase : Tuple = relative_attention_num_buckets
UpperCAmelCase : Optional[Any] = relative_attention_max_distance
UpperCAmelCase : Optional[Any] = dropout_rate
UpperCAmelCase : List[str] = layer_norm_epsilon
UpperCAmelCase : Tuple = initializer_factor
UpperCAmelCase : Optional[Any] = use_cache
UpperCAmelCase : int = eos_token_id
UpperCAmelCase : Union[str, Any] = decoder_start_token_id
# for backwards compatibility
UpperCAmelCase : Union[str, Any] = dense_act_fn
super().__init__(
pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , tie_word_embeddings=snake_case , is_decoder=snake_case , **snake_case , )
@classmethod
def A_ ( cls , snake_case , **snake_case ):
'''simple docstring'''
cls._set_token_in_kwargs(snake_case )
UpperCAmelCase , UpperCAmelCase : int = cls.get_config_dict(snake_case , **snake_case )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get("model_type" ) == "pix2struct":
UpperCAmelCase : Dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(snake_case , **snake_case )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = "pix2struct_vision_model"
def __init__( self , snake_case=7_6_8 , snake_case=7_6_8 , snake_case=2_0_4_8 , snake_case=6_4 , snake_case=1_2 , snake_case=1_2 , snake_case="gelu_new" , snake_case=1e-6 , snake_case=0.0 , snake_case=0.0 , snake_case=1e-10 , snake_case=1.0 , snake_case=4_0_9_6 , snake_case=3_2 , snake_case=1_2_8 , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case )
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = patch_embed_hidden_size
UpperCAmelCase : int = d_ff
UpperCAmelCase : Tuple = dropout_rate
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : str = initializer_range
UpperCAmelCase : Tuple = initializer_factor
UpperCAmelCase : Any = attention_dropout
UpperCAmelCase : Optional[Any] = layer_norm_eps
UpperCAmelCase : int = dense_act_fn
UpperCAmelCase : Dict = seq_len
UpperCAmelCase : Optional[int] = relative_attention_num_buckets
UpperCAmelCase : List[Any] = relative_attention_max_distance
UpperCAmelCase : Dict = d_kv
@classmethod
def A_ ( cls , snake_case , **snake_case ):
'''simple docstring'''
cls._set_token_in_kwargs(snake_case )
UpperCAmelCase , UpperCAmelCase : str = cls.get_config_dict(snake_case , **snake_case )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get("model_type" ) == "pix2struct":
UpperCAmelCase : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(snake_case , **snake_case )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "pix2struct"
SCREAMING_SNAKE_CASE__ : Any = True
def __init__( self , snake_case=None , snake_case=None , snake_case=1.0 , snake_case=0.02 , snake_case=False , snake_case=False , snake_case=True , **snake_case , ):
'''simple docstring'''
super().__init__(tie_word_embeddings=snake_case , is_encoder_decoder=snake_case , **snake_case )
if text_config is None:
UpperCAmelCase : Optional[Any] = {}
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." )
if vision_config is None:
UpperCAmelCase : Union[str, Any] = {}
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." )
UpperCAmelCase : str = PixaStructTextConfig(**snake_case )
UpperCAmelCase : List[Any] = PixaStructVisionConfig(**snake_case )
UpperCAmelCase : List[str] = self.text_config.decoder_start_token_id
UpperCAmelCase : Any = self.text_config.pad_token_id
UpperCAmelCase : str = self.text_config.eos_token_id
UpperCAmelCase : Dict = initializer_factor
UpperCAmelCase : str = initializer_range
UpperCAmelCase : Optional[Any] = self.initializer_range
UpperCAmelCase : Union[str, Any] = self.initializer_range
UpperCAmelCase : List[str] = is_vqa
@classmethod
def A_ ( cls , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
UpperCAmelCase : Union[str, Any] = self.text_config.to_dict()
UpperCAmelCase : List[Any] = self.vision_config.to_dict()
UpperCAmelCase : Any = self.__class__.model_type
return output
| 311
|
'''simple docstring'''
from jiwer import compute_measures
import datasets
a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def A_ ( self , snake_case=None , snake_case=None , snake_case=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(snake_case , snake_case )["wer"]
else:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = 0
for prediction, reference in zip(snake_case , snake_case ):
UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 311
| 1
|
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
a : Dict = logging.getLogger(__name__)
a : Tuple = {"facebook/bart-base": BartForConditionalGeneration}
a : Optional[Any] = {"facebook/bart-base": BartTokenizer}
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Dict = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=__magic_name__ , default=__magic_name__ , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=__magic_name__ , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=__magic_name__ , default=__magic_name__ , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=__magic_name__ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__magic_name__ , )
parser.add_argument(
"--config_name" , type=__magic_name__ , default=__magic_name__ , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=__magic_name__ , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=__magic_name__ , default=__magic_name__ , help="Where to store the final ONNX file." )
UpperCAmelCase : str = parser.parse_args()
return args
def lowercase ( __magic_name__ , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : str = model_dict[model_name].from_pretrained(__magic_name__ ).to(__magic_name__ )
UpperCAmelCase : Tuple = tokenizer_dict[model_name].from_pretrained(__magic_name__ )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase : Optional[int] = 0
UpperCAmelCase : List[str] = None
UpperCAmelCase : Optional[int] = 0
return huggingface_model, tokenizer
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
model.eval()
UpperCAmelCase : List[str] = None
UpperCAmelCase : Dict = torch.jit.script(BARTBeamSearchGenerator(__magic_name__ ) )
with torch.no_grad():
UpperCAmelCase : Any = "My friends are cool but they eat too many carbs."
UpperCAmelCase : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
UpperCAmelCase : int = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=__magic_name__ , max_length=__magic_name__ , early_stopping=__magic_name__ , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
__magic_name__ , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , __magic_name__ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=__magic_name__ , )
logger.info("Model exported to {}".format(__magic_name__ ) )
UpperCAmelCase : Any = remove_dup_initializers(os.path.abspath(__magic_name__ ) )
logger.info("Deduplicated and optimized model written to {}".format(__magic_name__ ) )
UpperCAmelCase : List[str] = onnxruntime.InferenceSession(__magic_name__ )
UpperCAmelCase : Union[str, Any] = ort_sess.run(
__magic_name__ , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(__magic_name__ ),
"max_length": np.array(__magic_name__ ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = parse_args()
UpperCAmelCase : Any = 5
UpperCAmelCase : Optional[Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase : str = torch.device(args.device )
UpperCAmelCase , UpperCAmelCase : Tuple = load_model_tokenizer(args.model_name_or_path , __magic_name__ )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(__magic_name__ )
if args.max_length:
UpperCAmelCase : List[Any] = args.max_length
if args.num_beams:
UpperCAmelCase : Dict = args.num_beams
if args.output_file_path:
UpperCAmelCase : int = args.output_file_path
else:
UpperCAmelCase : int = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
from functools import lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = 2
UpperCAmelCase : str = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__magic_name__ )
if n > 1:
factors.add(__magic_name__ )
return factors
@lru_cache
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(unique_prime_factors(__magic_name__ ) )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return len(set(__magic_name__ ) ) in (0, 1)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
while True:
# Increment each value of a generated range
UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group]
checker.append(__magic_name__ )
# If all numbers in the list are equal, return the group variable.
if equality(__magic_name__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase ( __magic_name__ = 4 ):
'''simple docstring'''
UpperCAmelCase : int = run(__magic_name__ )
return results[0] if len(__magic_name__ ) else None
if __name__ == "__main__":
print(solution())
| 311
| 1
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a : Any = logging.get_logger(__name__)
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = ["pixel_values"]
def __init__( self , snake_case = True , snake_case = 1 / 2_5_5 , snake_case = True , snake_case = 8 , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case )
UpperCAmelCase : Optional[Any] = do_rescale
UpperCAmelCase : List[str] = rescale_factor
UpperCAmelCase : Optional[int] = do_pad
UpperCAmelCase : str = pad_size
def A_ ( self , snake_case , snake_case , snake_case = None , **snake_case ):
'''simple docstring'''
return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case )
def A_ ( self , snake_case , snake_case , snake_case = None ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Dict = get_image_size(snake_case )
UpperCAmelCase : Tuple = (old_height // size + 1) * size - old_height
UpperCAmelCase : List[Any] = (old_width // size + 1) * size - old_width
return pad(snake_case , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case )
def A_ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ):
'''simple docstring'''
UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Dict = do_pad if do_pad is not None else self.do_pad
UpperCAmelCase : List[str] = pad_size if pad_size is not None else self.pad_size
UpperCAmelCase : Optional[Any] = make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
# All transformations expect numpy arrays.
UpperCAmelCase : Optional[int] = [to_numpy_array(snake_case ) for image in images]
if do_rescale:
UpperCAmelCase : Tuple = [self.rescale(image=snake_case , scale=snake_case ) for image in images]
if do_pad:
UpperCAmelCase : str = [self.pad(snake_case , size=snake_case ) for image in images]
UpperCAmelCase : Optional[int] = [to_channel_dimension_format(snake_case , snake_case ) for image in images]
UpperCAmelCase : Union[str, Any] = {"pixel_values": images}
return BatchFeature(data=snake_case , tensor_type=snake_case )
| 311
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])")
a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])")
a : str = re.compile(R"(?<!_)_(?!_)")
a : List[Any] = re.compile(R"(_{2,})")
a : List[Any] = R"^\w+(\.\w+)*$"
a : Dict = R"<>:/\|?*"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
return name.lower()
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ )
UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , __magic_name__ ):
raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." )
return F"{filename_prefix_for_name(__magic_name__ )}-{split}"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
if filetype_suffix:
prefix += F".{filetype_suffix}"
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
return F"{filepath}*"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
if shard_lengths:
UpperCAmelCase : Tuple = len(__magic_name__ )
UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )]
if filetype_suffix:
UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames]
return filenames
else:
UpperCAmelCase : int = prefix
if filetype_suffix:
filename += F".{filetype_suffix}"
return [filename]
| 311
| 1
|
'''simple docstring'''
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
assert isinstance(__magic_name__ , __magic_name__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = tmp_path / "cache"
UpperCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = SqlDatasetReader(
"dataset" , "sqlite:///" + sqlite_path , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ ).read()
_check_sql_dataset(__magic_name__ , __magic_name__ )
@require_sqlalchemy
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = tmp_path / "cache"
UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features
UpperCAmelCase : int = (
Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : str = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=__magic_name__ , cache_dir=__magic_name__ ).read()
_check_sql_dataset(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
with contextlib.closing(sqlitea.connect(__magic_name__ ) ) as con:
UpperCAmelCase : Tuple = con.cursor()
cur.execute("SELECT * FROM dataset" )
for row in cur:
yield row
@require_sqlalchemy
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = tmp_path / "cache"
UpperCAmelCase : str = os.path.join(__magic_name__ , "tmp.sql" )
UpperCAmelCase : int = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__magic_name__ ).read()
SqlDatasetWriter(__magic_name__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write()
UpperCAmelCase : Union[str, Any] = iter_sql_file(__magic_name__ )
UpperCAmelCase : List[str] = iter_sql_file(__magic_name__ )
for rowa, rowa in zip(__magic_name__ , __magic_name__ ):
assert rowa == rowa
@require_sqlalchemy
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = tmp_path / "cache"
UpperCAmelCase : List[Any] = os.path.join(__magic_name__ , "tmp.sql" )
UpperCAmelCase : Dict = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__magic_name__ ).read()
SqlDatasetWriter(__magic_name__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write()
UpperCAmelCase : List[Any] = iter_sql_file(__magic_name__ )
UpperCAmelCase : int = iter_sql_file(__magic_name__ )
for rowa, rowa in zip(__magic_name__ , __magic_name__ ):
assert rowa == rowa
@require_sqlalchemy
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tmp_path / "cache"
UpperCAmelCase : Optional[int] = os.path.join(__magic_name__ , "tmp.sql" )
UpperCAmelCase : List[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=__magic_name__ ).read()
with pytest.raises(__magic_name__ ):
SqlDatasetWriter(__magic_name__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
| 311
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase : Tuple = image_classifier(snake_case , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(snake_case ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
UpperCAmelCase : List[str] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(snake_case ) , [
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
] , )
@require_tf
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase : int = image_classifier(snake_case , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(snake_case ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
UpperCAmelCase : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(snake_case ) , [
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
[
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
{"score": 0.333, "label": ANY(snake_case )},
],
] , )
@slow
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase : Any = image_classifier(snake_case , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(snake_case ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
UpperCAmelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(snake_case ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase : Tuple = image_classifier(snake_case , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(snake_case ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
UpperCAmelCase : Dict = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(snake_case ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 311
|
'''simple docstring'''
import argparse
import copy
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase : Tuple = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase : Any = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ ) as f:
UpperCAmelCase : List[str] = f.read(1 )
UpperCAmelCase : List[Any] = start_node
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Any = start_node
UpperCAmelCase : Optional[Any] = 0
while visiting not in first_solution:
UpperCAmelCase : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
UpperCAmelCase : Tuple = k[1]
UpperCAmelCase : Dict = k[0]
first_solution.append(__magic_name__ )
UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ )
UpperCAmelCase : str = best_node
first_solution.append(__magic_name__ )
UpperCAmelCase : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase : str = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = []
for n in solution[1:-1]:
UpperCAmelCase : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
UpperCAmelCase : Dict = solution.index(__magic_name__ )
if n == kn:
continue
UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ )
UpperCAmelCase : Optional[int] = kn
UpperCAmelCase : List[str] = n
UpperCAmelCase : str = 0
for k in _tmp[:-1]:
UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase : List[Any] = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = first_solution
UpperCAmelCase : str = []
UpperCAmelCase : Union[str, Any] = distance_of_first_solution
UpperCAmelCase : Union[str, Any] = solution
while count <= iters:
UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = 0
UpperCAmelCase : List[str] = neighborhood[index_of_best_solution]
UpperCAmelCase : Dict = len(__magic_name__ ) - 1
UpperCAmelCase : Dict = False
while not found:
UpperCAmelCase : List[Any] = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
UpperCAmelCase : int = best_solution[i]
UpperCAmelCase : Optional[int] = solution[i]
break
UpperCAmelCase : List[str] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = best_solution[:-1]
UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase : Union[str, Any] = cost
UpperCAmelCase : Tuple = solution
else:
UpperCAmelCase : Optional[Any] = index_of_best_solution + 1
UpperCAmelCase : str = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
UpperCAmelCase : int = count + 1
return best_solution_ever, best_cost
def lowercase ( __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : Dict = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution(
args.File , __magic_name__ )
UpperCAmelCase , UpperCAmelCase : Any = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
from random import random
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case = None ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = value
UpperCAmelCase : Optional[int] = random()
UpperCAmelCase : Node | None = None
UpperCAmelCase : Node | None = None
def __repr__( self ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return f"'{self.value}: {self.prior:.5}'"
else:
return pformat(
{f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 )
def __str__( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = str(self.value ) + " "
UpperCAmelCase : Dict = str(self.left or "" )
UpperCAmelCase : Optional[Any] = str(self.right or "" )
return value + left + right
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
UpperCAmelCase , UpperCAmelCase : Optional[int] = split(root.left , __magic_name__ )
return left, root
else:
UpperCAmelCase , UpperCAmelCase : List[str] = split(root.right , __magic_name__ )
return root, right
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
UpperCAmelCase : Union[str, Any] = merge(left.right , __magic_name__ )
return left
else:
UpperCAmelCase : Any = merge(__magic_name__ , right.left )
return right
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = Node(__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = split(__magic_name__ , __magic_name__ )
return merge(merge(__magic_name__ , __magic_name__ ) , __magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Tuple = split(__magic_name__ , value - 1 )
UpperCAmelCase , UpperCAmelCase : int = split(__magic_name__ , __magic_name__ )
return merge(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
UpperCAmelCase : Dict = insert(__magic_name__ , int(arg[1:] ) )
elif arg[0] == "-":
UpperCAmelCase : Tuple = erase(__magic_name__ , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : List[Any] = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
UpperCAmelCase : Optional[Any] = input()
while args != "q":
UpperCAmelCase : List[Any] = interact_treap(__magic_name__ , __magic_name__ )
print(__magic_name__ )
UpperCAmelCase : Union[str, Any] = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
|
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase : Union[str, Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:]
UpperCAmelCase : List[str] = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = b""
for char in message:
bit_string += format(__magic_name__ , "08b" ).encode("utf-8" )
UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512]
UpperCAmelCase : Tuple = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Any = format(__magic_name__ , "032b" )
UpperCAmelCase : int = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = preprocess(__magic_name__ )
UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase : List[str] = 0X67452301
UpperCAmelCase : Tuple = 0XEFCDAB89
UpperCAmelCase : List[Any] = 0X98BADCFE
UpperCAmelCase : List[str] = 0X10325476
UpperCAmelCase : Dict = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : List[Any] = ba
UpperCAmelCase : Optional[Any] = ca
UpperCAmelCase : Any = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : int = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ ))
UpperCAmelCase : Dict = (7 * i) % 16
UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase : List[Any] = d
UpperCAmelCase : Any = c
UpperCAmelCase : Dict = b
UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
a : List[Any] = logging.get_logger(__name__)
a : List[Any] = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n"
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
@add_start_docstrings(snake_case )
def __call__( self , snake_case , snake_case , **snake_case ):
'''simple docstring'''
raise NotImplementedError("StoppingCriteria needs to be subclassed" )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case = None ):
'''simple docstring'''
UpperCAmelCase : Tuple = max_length
UpperCAmelCase : Optional[int] = max_position_embeddings
@add_start_docstrings(snake_case )
def __call__( self , snake_case , snake_case , **snake_case ):
'''simple docstring'''
UpperCAmelCase : int = input_ids.shape[-1]
UpperCAmelCase : int = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
"This is a friendly reminder - the current text generation call will exceed the model's predefined "
f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe "
"exceptions, performance degradation, or nothing at all." )
return is_done
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case ):
'''simple docstring'''
warnings.warn(
"The class `MaxNewTokensCriteria` is deprecated. "
f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` "
"with `max_length = start_length + max_new_tokens` instead." , snake_case , )
UpperCAmelCase : Union[str, Any] = start_length
UpperCAmelCase : List[Any] = max_new_tokens
UpperCAmelCase : Optional[int] = start_length + max_new_tokens
@add_start_docstrings(snake_case )
def __call__( self , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return input_ids.shape[-1] >= self.max_length
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case = None ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = max_time
UpperCAmelCase : Union[str, Any] = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(snake_case )
def __call__( self , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return time.time() - self.initial_timestamp > self.max_time
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
@add_start_docstrings(snake_case )
def __call__( self , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return any(criteria(snake_case , snake_case ) for criteria in self )
@property
def A_ ( self ):
'''simple docstring'''
for stopping_criterium in self:
if isinstance(snake_case , snake_case ):
return stopping_criterium.max_length
elif isinstance(snake_case , snake_case ):
return stopping_criterium.max_length
return None
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = stopping_criteria.max_length
UpperCAmelCase : str = deepcopy(__magic_name__ )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , __magic_name__ )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=__magic_name__ ) )
return new_stopping_criteria
| 311
|
'''simple docstring'''
a : List[str] = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 311
| 1
|
'''simple docstring'''
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class UpperCamelCase__ ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = BertTokenizer
SCREAMING_SNAKE_CASE__ : List[str] = BertTokenizerFast
SCREAMING_SNAKE_CASE__ : Optional[int] = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = True
SCREAMING_SNAKE_CASE__ : Optional[Any] = filter_non_english
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Optional[int] = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Tuple = "UNwant\u00E9d,running"
UpperCAmelCase : Union[str, Any] = "unwanted, running"
return input_text, output_text
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : str = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(snake_case , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def A_ ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
UpperCAmelCase : Tuple = self.get_tokenizer()
UpperCAmelCase : List[str] = self.get_rust_tokenizer()
UpperCAmelCase : Optional[Any] = "UNwant\u00E9d,running"
UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case )
UpperCAmelCase : Tuple = rust_tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Union[str, Any] = tokenizer.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : str = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
UpperCAmelCase : List[str] = tokenizer.encode(snake_case )
UpperCAmelCase : str = rust_tokenizer.encode(snake_case )
self.assertListEqual(snake_case , snake_case )
# With lower casing
UpperCAmelCase : Optional[int] = self.get_tokenizer(do_lower_case=snake_case )
UpperCAmelCase : Any = self.get_rust_tokenizer(do_lower_case=snake_case )
UpperCAmelCase : List[str] = "UNwant\u00E9d,running"
UpperCAmelCase : Dict = tokenizer.tokenize(snake_case )
UpperCAmelCase : Any = rust_tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : List[str] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[str] = self.get_rust_tokenizer()
UpperCAmelCase : str = tokenizer.encode(snake_case )
UpperCAmelCase : List[str] = rust_tokenizer.encode(snake_case )
self.assertListEqual(snake_case , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=snake_case , strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=snake_case , strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = BasicTokenizer(do_lower_case=snake_case , strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = BasicTokenizer(do_lower_case=snake_case , strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=snake_case , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = BasicTokenizer()
UpperCAmelCase : Union[str, Any] = "a\n'll !!to?'d of, can't."
UpperCAmelCase : List[Any] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."]
self.assertListEqual(tokenizer.tokenize(snake_case ) , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
UpperCAmelCase : List[str] = {}
for i, token in enumerate(snake_case ):
UpperCAmelCase : str = i
UpperCAmelCase : Union[str, Any] = WordpieceTokenizer(vocab=snake_case , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def A_ ( self ):
'''simple docstring'''
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def A_ ( self ):
'''simple docstring'''
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def A_ ( self ):
'''simple docstring'''
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.get_tokenizer()
UpperCAmelCase : List[str] = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(snake_case ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
self.assertListEqual(
[rust_tokenizer.tokenize(snake_case ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = self.tokenizer_class.from_pretrained("bert-base-uncased" )
UpperCAmelCase : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=snake_case )
UpperCAmelCase : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case )
UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(snake_case )
UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def A_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case )
UpperCAmelCase : List[Any] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
UpperCAmelCase : List[str] = tokenizer_r.encode_plus(
snake_case , return_attention_mask=snake_case , return_token_type_ids=snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case , )
UpperCAmelCase : Tuple = tokenizer_r.do_lower_case if hasattr(snake_case , "do_lower_case" ) else False
UpperCAmelCase : str = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "Allen"),
((2_1, 2_3), "##NL"),
((2_3, 2_4), "##P"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "allen"),
((2_1, 2_3), "##nl"),
((2_3, 2_4), "##p"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ["的", "人", "有"]
UpperCAmelCase : Union[str, Any] = "".join(snake_case )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case )
UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case )
UpperCAmelCase : Union[str, Any] = tokenizer_p.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : str = tokenizer_r.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(snake_case )
UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(snake_case )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , snake_case )
UpperCAmelCase : List[Any] = False
UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case )
UpperCAmelCase : str = self.tokenizer_class.from_pretrained(snake_case , **snake_case )
UpperCAmelCase : int = tokenizer_r.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : Optional[Any] = tokenizer_p.encode(snake_case , add_special_tokens=snake_case )
UpperCAmelCase : str = tokenizer_r.convert_ids_to_tokens(snake_case )
UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(snake_case )
# it is expected that only the first Chinese character is not preceded by "##".
UpperCAmelCase : List[Any] = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(snake_case )
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , snake_case )
| 311
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a : List[Any] = logging.get_logger(__name__)
a : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
a : List[Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
a : List[str] = {
"squeezebert/squeezebert-uncased": 5_12,
"squeezebert/squeezebert-mnli": 5_12,
"squeezebert/squeezebert-mnli-headless": 5_12,
}
a : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : int = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Dict = SqueezeBertTokenizer
def __init__( self , snake_case=None , snake_case=None , snake_case=True , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , snake_case=True , snake_case=None , **snake_case , ):
'''simple docstring'''
super().__init__(
snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , tokenize_chinese_chars=snake_case , strip_accents=snake_case , **snake_case , )
UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , snake_case ) != do_lower_case
or normalizer_state.get("strip_accents" , snake_case ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , snake_case ) != tokenize_chinese_chars
):
UpperCAmelCase : Dict = getattr(snake_case , normalizer_state.pop("type" ) )
UpperCAmelCase : Optional[int] = do_lower_case
UpperCAmelCase : Optional[int] = strip_accents
UpperCAmelCase : Any = tokenize_chinese_chars
UpperCAmelCase : Any = normalizer_class(**snake_case )
UpperCAmelCase : Optional[int] = do_lower_case
def A_ ( self , snake_case , snake_case=None ):
'''simple docstring'''
UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A_ ( self , snake_case , snake_case = None ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = [self.sep_token_id]
UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A_ ( self , snake_case , snake_case = None ):
'''simple docstring'''
UpperCAmelCase : Any = self._tokenizer.model.save(snake_case , name=snake_case )
return tuple(snake_case )
| 311
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
a : Tuple = logging.getLogger(__name__)
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Any = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." )
UpperCAmelCase : List[Any] = parser.parse_args()
logger.info(F"Loading Tokenizer ({args.tokenizer_name})" )
if args.tokenizer_type == "bert":
UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"Loading text from {args.file_path}" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
UpperCAmelCase : str = fp.readlines()
logger.info("Start encoding" )
logger.info(F"{len(__magic_name__ )} examples to process." )
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
UpperCAmelCase : Union[str, Any] = 1_0000
UpperCAmelCase : Union[str, Any] = time.time()
for text in data:
UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}"
UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
rslt.append(__magic_name__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase : Dict = time.time()
logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" )
UpperCAmelCase : Any = time.time()
logger.info("Finished binarization" )
logger.info(F"{len(__magic_name__ )} examples processed." )
UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle"
UpperCAmelCase : List[str] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt]
else:
UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"Dump to {dp_file}" )
with open(__magic_name__ , "wb" ) as handle:
pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 311
| 1
|
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
a : Optional[int] = True
except (ImportError, AttributeError):
a : str = object
def lowercase ( *__magic_name__ , **__magic_name__ ):
'''simple docstring'''
pass
a : List[Any] = False
a : List[Any] = logging.get_logger("transformers-cli/serving")
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
return ServeCommand(__magic_name__ , args.host , args.port , args.workers )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : dict
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str]
SCREAMING_SNAKE_CASE__ : Optional[List[int]]
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
@staticmethod
def A_ ( snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = parser.add_parser(
"serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." )
serve_parser.add_argument(
"--task" , type=snake_case , choices=get_supported_tasks() , help="The task to run the pipeline on" , )
serve_parser.add_argument("--host" , type=snake_case , default="localhost" , help="Interface the server will listen on." )
serve_parser.add_argument("--port" , type=snake_case , default=8_8_8_8 , help="Port the serving will listen to." )
serve_parser.add_argument("--workers" , type=snake_case , default=1 , help="Number of http workers" )
serve_parser.add_argument("--model" , type=snake_case , help="Model's name or path to stored model." )
serve_parser.add_argument("--config" , type=snake_case , help="Model's config name or path to stored model." )
serve_parser.add_argument("--tokenizer" , type=snake_case , help="Tokenizer name to use." )
serve_parser.add_argument(
"--device" , type=snake_case , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , )
serve_parser.set_defaults(func=snake_case )
def __init__( self , snake_case , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Any = pipeline
UpperCAmelCase : List[Any] = host
UpperCAmelCase : Optional[Any] = port
UpperCAmelCase : int = workers
if not _serve_dependencies_installed:
raise RuntimeError(
"Using serve command requires FastAPI and uvicorn. "
"Please install transformers with [serving]: pip install \"transformers[serving]\"."
"Or install FastAPI and uvicorn separately." )
else:
logger.info(f"Serving model over {host}:{port}" )
UpperCAmelCase : Optional[int] = FastAPI(
routes=[
APIRoute(
"/" , self.model_info , response_model=snake_case , response_class=snake_case , methods=["GET"] , ),
APIRoute(
"/tokenize" , self.tokenize , response_model=snake_case , response_class=snake_case , methods=["POST"] , ),
APIRoute(
"/detokenize" , self.detokenize , response_model=snake_case , response_class=snake_case , methods=["POST"] , ),
APIRoute(
"/forward" , self.forward , response_model=snake_case , response_class=snake_case , methods=["POST"] , ),
] , timeout=6_0_0 , )
def A_ ( self ):
'''simple docstring'''
run(self._app , host=self.host , port=self.port , workers=self.workers )
def A_ ( self ):
'''simple docstring'''
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def A_ ( self , snake_case = Body(snake_case , embed=snake_case ) , snake_case = Body(snake_case , embed=snake_case ) ):
'''simple docstring'''
try:
UpperCAmelCase : Tuple = self._pipeline.tokenizer.tokenize(snake_case )
if return_ids:
UpperCAmelCase : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case )
return ServeTokenizeResult(tokens=snake_case , tokens_ids=snake_case )
else:
return ServeTokenizeResult(tokens=snake_case )
except Exception as e:
raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(snake_case )} )
def A_ ( self , snake_case = Body(snake_case , embed=snake_case ) , snake_case = Body(snake_case , embed=snake_case ) , snake_case = Body(snake_case , embed=snake_case ) , ):
'''simple docstring'''
try:
UpperCAmelCase : Dict = self._pipeline.tokenizer.decode(snake_case , snake_case , snake_case )
return ServeDeTokenizeResult(model="" , text=snake_case )
except Exception as e:
raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(snake_case )} )
async def A_ ( self , snake_case=Body(snake_case , embed=snake_case ) ):
'''simple docstring'''
if len(snake_case ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
UpperCAmelCase : Dict = self._pipeline(snake_case )
return ServeForwardResult(output=snake_case )
except Exception as e:
raise HTTPException(5_0_0 , {"error": str(snake_case )} )
| 311
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Tuple = ["gpt2"]
a : Dict = "gpt2"
if is_tf_available():
class UpperCamelCase__ ( tf.Module ):
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = tokenizer
UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case )
UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case )
UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor()
UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Tuple = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" )
UpperCAmelCase : Any = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Dict = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Optional[Any] = tf.function(snake_case )
for test_inputs in self.test_sentences:
UpperCAmelCase : List[str] = tf.constant(snake_case )
UpperCAmelCase : Dict = compiled_tokenizer(snake_case )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : int = ModelToSave(tokenizer=snake_case )
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model"
tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} )
UpperCAmelCase : int = tf.saved_model.load(snake_case )
UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs
UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config()
UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case )
UpperCAmelCase : Tuple = model_from_config(snake_case )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[str] = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case )
UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 311
| 1
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] )
UpperCAmelCase : int = np.array(__magic_name__ )
UpperCAmelCase : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (1, 2, 1)
UpperCAmelCase : Any = (1, 1, 0, 7)
UpperCAmelCase : Union[str, Any] = SARIMAX(
__magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ )
UpperCAmelCase : Union[str, Any] = model.fit(disp=__magic_name__ , maxiter=600 , method="nm" )
UpperCAmelCase : Optional[Any] = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] )
return result[0]
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = regressor.predict(__magic_name__ )
return y_pred[0]
def lowercase ( __magic_name__ ):
'''simple docstring'''
train_user.sort()
UpperCAmelCase : List[Any] = np.percentile(__magic_name__ , 25 )
UpperCAmelCase : int = np.percentile(__magic_name__ , 75 )
UpperCAmelCase : Any = qa - qa
UpperCAmelCase : Optional[int] = qa - (iqr * 0.1)
return low_lim
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = 0
UpperCAmelCase : Any = 0
for i in list_vote:
if i > actual_result:
UpperCAmelCase : Any = not_safe + 1
else:
if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
a : Union[str, Any] = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]]
a : List[Any] = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
a : Dict = Normalizer().fit_transform(data_input_df.values)
# split data
a : List[Any] = normalize_df[:, 2].tolist()
a : Dict = normalize_df[:, 0].tolist()
a : Optional[Any] = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
a : Optional[int] = normalize_df[:, [1, 2]].tolist()
a : Dict = x[: len(x) - 1]
a : Tuple = x[len(x) - 1 :]
# for linear regression & sarimax
a : str = total_date[: len(total_date) - 1]
a : Optional[int] = total_user[: len(total_user) - 1]
a : int = total_match[: len(total_match) - 1]
a : List[Any] = total_date[len(total_date) - 1 :]
a : Union[str, Any] = total_user[len(total_user) - 1 :]
a : Any = total_match[len(total_match) - 1 :]
# voting system with forecasting
a : int = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
a : Union[str, Any] = "" if data_safety_checker(res_vote, tst_user) else "not "
print("Today's data is {not_str}safe.")
| 311
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
a : str = "docs/source/en/_toctree.yml"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = defaultdict(__magic_name__ )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(__magic_name__ ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() )
def lowercase ( __magic_name__=False ):
'''simple docstring'''
with open(__magic_name__ , encoding="utf-8" ) as f:
UpperCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase : Optional[int] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase : str = api_doc[model_idx]["sections"]
UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section]
UpperCAmelCase : Optional[int] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase : int = modality_doc["sections"]
UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ )
if old_modality_doc != new_modality_doc:
UpperCAmelCase : int = True
if overwrite:
UpperCAmelCase : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase : Any = model_doc
UpperCAmelCase : Any = api_doc
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a : Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowercase ( __magic_name__ ):
'''simple docstring'''
for param in module.parameters():
UpperCAmelCase : Any = False
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = plt.imshow(__magic_name__ )
fig.axes.get_xaxis().set_visible(__magic_name__ )
fig.axes.get_yaxis().set_visible(__magic_name__ )
plt.show()
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp
| 311
| 1
|
'''simple docstring'''
from torch import nn
def lowercase ( __magic_name__ ):
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F"Unsupported activation function: {act_fn}" )
| 311
|
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a : str = getLogger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ):
'''simple docstring'''
UpperCAmelCase : List[Any] = str(__magic_name__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ )
UpperCAmelCase : List[str] = Path(__magic_name__ )
UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(__magic_name__ )
UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda()
if fpaa:
UpperCAmelCase : int = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params
UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
UpperCAmelCase : Optional[Any] = num_return_sequences
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
UpperCAmelCase : Any = tokenizer.model_max_length
if prefix is None:
UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or ""
UpperCAmelCase : Dict = SeqaSeqDataset(
__magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ )
UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn )
UpperCAmelCase : Any = []
for batch in tqdm(__magic_name__ ):
UpperCAmelCase : List[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , )
UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
UpperCAmelCase : int = batch["ids"]
if num_return_sequences > 1:
UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__magic_name__ ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__magic_name__ , __magic_name__ )
return results, sampler.num_replicas
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ )
parser.add_argument(
"--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" )
parser.add_argument(
"--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ )
parser.add_argument(
"--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
UpperCAmelCase : Union[str, Any] = time.time()
UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args()
UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking.
UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
UpperCAmelCase : Optional[Any] = {}
if args.src_lang is not None:
UpperCAmelCase : List[str] = args.src_lang
if args.tgt_lang is not None:
UpperCAmelCase : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__magic_name__ )
UpperCAmelCase , UpperCAmelCase : str = eval_data_dir(
args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , )
if args.local_rank <= 0:
UpperCAmelCase : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__magic_name__ )
UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout )
UpperCAmelCase : Dict = combine_partial_results(__magic_name__ )
if args.num_return_sequences > 1:
UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(__magic_name__ , __magic_name__ )
return
UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__magic_name__ ) as f:
UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )]
# Calculate metrics, save metrics, and save _generations.txt
UpperCAmelCase : Optional[int] = "translation" in args.task
UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge
UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge"
UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = len(__magic_name__ )
UpperCAmelCase : Union[str, Any] = time.time() - start_time
UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 )
UpperCAmelCase : Optional[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ )
print(__magic_name__ )
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(__magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for partial_result in partial_results:
records.extend(__magic_name__ )
UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] )
UpperCAmelCase : List[Any] = [x["pred"] for x in records]
return preds
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = time.time()
logger.info("waiting for all nodes to finish" )
UpperCAmelCase : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) )
if len(__magic_name__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 311
| 1
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase : Tuple = 192
UpperCAmelCase : str = 768
UpperCAmelCase : List[Any] = 12
UpperCAmelCase : List[Any] = 3
UpperCAmelCase : List[Any] = [800, 1333]
UpperCAmelCase : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Union[str, Any] = 330
UpperCAmelCase : Union[str, Any] = 14
UpperCAmelCase : Any = 6
UpperCAmelCase : int = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase : Union[str, Any] = 384
UpperCAmelCase : Dict = 1536
UpperCAmelCase : str = 12
UpperCAmelCase : List[str] = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase : int = [800, 1344]
UpperCAmelCase : Optional[int] = 91
UpperCAmelCase : int = "huggingface/label-files"
UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json"
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()}
UpperCAmelCase : str = idalabel
UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase : int = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
UpperCAmelCase : str = key.split("." )
UpperCAmelCase : List[Any] = int(key_split[2] )
UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : Any = val[-dim:, :]
else:
UpperCAmelCase : Tuple = val[:dim]
UpperCAmelCase : List[str] = val[dim : dim * 2]
UpperCAmelCase : Any = val[-dim:]
else:
UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ):
'''simple docstring'''
UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ )
# load original state_dict
UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ )
model.eval()
UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : List[str] = model(**__magic_name__ )
UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes
UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase : str = torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
UpperCAmelCase : Tuple = torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
UpperCAmelCase : List[str] = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase : List[str] = torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
UpperCAmelCase : Dict = torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase : Dict = torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
UpperCAmelCase : List[Any] = torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
UpperCAmelCase : str = torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
UpperCAmelCase : int = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = model_mapping[yolos_name]
image_processor.push_to_hub(__magic_name__ , organization="hustvl" )
model.push_to_hub(__magic_name__ , organization="hustvl" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
a : Optional[Any] = ["model.decoder.embed_positions.weights"]
def lowercase ( __magic_name__ ):
'''simple docstring'''
if "emb" in name:
UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
UpperCAmelCase : int = name.replace("linear2" , "fc2" )
if "norm1" in name:
UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = list(state_dict.keys() )
UpperCAmelCase : List[Any] = {}
for key in keys:
UpperCAmelCase : Any = state_dict.pop(__magic_name__ )
UpperCAmelCase : str = rename_keys(__magic_name__ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase : Optional[int] = val[:hidden_size, :]
UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase : str = val
else:
UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def lowercase ( __magic_name__ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
UpperCAmelCase : List[Any] = 1024
UpperCAmelCase : Tuple = 24
UpperCAmelCase : Union[str, Any] = 16
elif checkpoint == "medium":
UpperCAmelCase : List[Any] = 1536
UpperCAmelCase : Optional[Any] = 48
UpperCAmelCase : List[str] = 24
elif checkpoint == "large":
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : str = 48
UpperCAmelCase : Optional[Any] = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase : Tuple = MusicgenDecoderConfig(
hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , )
return config
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ )
UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ )
UpperCAmelCase : Dict = fairseq_model.lm.state_dict()
UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict(
__magic_name__ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" )
UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" )
UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__magic_name__ )
if len(__magic_name__ ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(__magic_name__ ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__magic_name__ )
# check we can do a forward pass
UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" )
UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ )
# set the appropriate bos/pad token ids
UpperCAmelCase : List[Any] = 2048
UpperCAmelCase : Tuple = 2048
# set other default generation config params
UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = 3.0
if pytorch_dump_folder is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(__magic_name__ )
processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
a : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 311
| 1
|
'''simple docstring'''
import math
import tensorflow as tf
from packaging import version
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(__magic_name__ )
UpperCAmelCase : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = tf.convert_to_tensor(__magic_name__ )
UpperCAmelCase : Tuple = tf.cast(math.pi , x.dtype )
UpperCAmelCase : Union[str, Any] = tf.cast(0.0_4_4_7_1_5 , x.dtype )
UpperCAmelCase : str = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__magic_name__ , 3 )) ))
return x * cdf
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = tf.convert_to_tensor(__magic_name__ )
return x * tf.tanh(tf.math.softplus(__magic_name__ ) )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = tf.convert_to_tensor(__magic_name__ )
UpperCAmelCase : List[str] = tf.cast(0.0_4_4_7_1_5 , x.dtype )
UpperCAmelCase : List[Any] = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = tf.convert_to_tensor(__magic_name__ )
UpperCAmelCase : List[Any] = tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return tf.clip_by_value(_gelu(__magic_name__ ) , -10 , 10 )
def lowercase ( __magic_name__ , __magic_name__=-1 ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : str = tf.split(__magic_name__ , 2 , axis=__magic_name__ )
return a * tf.math.sigmoid(__magic_name__ )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowercase ( __magic_name__ ):
'''simple docstring'''
return tf.keras.activations.gelu(__magic_name__ , approximate=__magic_name__ )
a : Any = tf.keras.activations.gelu
a : Optional[int] = approximate_gelu_wrap
else:
a : Optional[int] = _gelu
a : str = _gelu_new
a : List[Any] = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowercase ( __magic_name__ ):
'''simple docstring'''
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 311
|
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] )
UpperCAmelCase : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] )
UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices." )
UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
@require_multi_gpu
def A_ ( self ):
'''simple docstring'''
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ):
execute_subprocess_async(snake_case , env=os.environ.copy() )
if __name__ == "__main__":
a : Union[str, Any] = Accelerator()
a : str = (accelerator.state.process_index + 2, 10)
a : List[str] = torch.randint(0, 10, shape).to(accelerator.device)
a : Optional[int] = ""
a : int = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = data
UpperCAmelCase : Node | None = None
UpperCAmelCase : Node | None = None
def lowercase ( __magic_name__ ): # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowercase ( __magic_name__ ):
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowercase ( ): # Main function for testing.
'''simple docstring'''
UpperCAmelCase : Any = Node(1 )
UpperCAmelCase : List[str] = Node(2 )
UpperCAmelCase : Union[str, Any] = Node(3 )
UpperCAmelCase : List[str] = Node(4 )
UpperCAmelCase : Any = Node(5 )
UpperCAmelCase : Any = Node(6 )
UpperCAmelCase : Optional[int] = Node(7 )
UpperCAmelCase : Any = Node(8 )
UpperCAmelCase : int = Node(9 )
print(is_full_binary_tree(__magic_name__ ) )
print(depth_of_tree(__magic_name__ ) )
print("Tree is: " )
display(__magic_name__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def A_ ( *snake_case , **snake_case ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase : Dict = len(snake_case )
self.assertGreater(snake_case , 0 )
self.assertEqual(
snake_case , [
{
"score": ANY(snake_case ),
"label": ANY(snake_case ),
"box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )},
}
for i in range(snake_case )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
UpperCAmelCase : Optional[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
UpperCAmelCase : Tuple = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
UpperCAmelCase : Optional[int] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def A_ ( self ):
'''simple docstring'''
pass
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = 0.2
UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : str = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = 2
UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , )
self.assertEqual(
nested_simplify(snake_case , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 311
| 1
|
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a : Dict = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
a : List[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
a : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def lowercase ( __magic_name__ ):
'''simple docstring'''
with open(__magic_name__ , "rb" ) as f:
UpperCAmelCase : Any = Image.open(__magic_name__ )
return im.convert("RGB" )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
} , )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ , metadata={"help": "A folder containing the training data."} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ , metadata={"help": "A folder containing the validation data."} )
SCREAMING_SNAKE_CASE__ : Optional[float] = field(
default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} )
SCREAMING_SNAKE_CASE__ : Optional[int] = field(
default=lowercase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
SCREAMING_SNAKE_CASE__ : Optional[int] = field(
default=lowercase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def A_ ( self ):
'''simple docstring'''
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
"You must specify either a dataset name from the hub or a train and/or validation directory." )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = field(
default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase__ )} , )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE__ : Optional[str] = field(
default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
SCREAMING_SNAKE_CASE__ : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
SCREAMING_SNAKE_CASE__ : str = field(default=lowercase__ , metadata={"help": "Name or path of preprocessor config."} )
SCREAMING_SNAKE_CASE__ : bool = field(
default=lowercase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
SCREAMING_SNAKE_CASE__ : bool = field(
default=lowercase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = torch.stack([example["pixel_values"] for example in examples] )
UpperCAmelCase : Optional[Any] = torch.tensor([example["labels"] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification" , __magic_name__ , __magic_name__ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase : Tuple = training_args.get_process_log_level()
logger.setLevel(__magic_name__ )
transformers.utils.logging.set_verbosity(__magic_name__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
UpperCAmelCase : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
UpperCAmelCase : int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , )
else:
UpperCAmelCase : Union[str, Any] = {}
if data_args.train_dir is not None:
UpperCAmelCase : Optional[int] = os.path.join(data_args.train_dir , "**" )
if data_args.validation_dir is not None:
UpperCAmelCase : List[Any] = os.path.join(data_args.validation_dir , "**" )
UpperCAmelCase : Optional[Any] = load_dataset(
"imagefolder" , data_files=__magic_name__ , cache_dir=model_args.cache_dir , task="image-classification" , )
# If we don't have a validation split, split off a percentage of train as validation.
UpperCAmelCase : List[str] = None if "validation" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0:
UpperCAmelCase : int = dataset["train"].train_test_split(data_args.train_val_split )
UpperCAmelCase : Union[str, Any] = split["train"]
UpperCAmelCase : Any = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
UpperCAmelCase : str = dataset["train"].features["labels"].names
UpperCAmelCase , UpperCAmelCase : List[str] = {}, {}
for i, label in enumerate(__magic_name__ ):
UpperCAmelCase : Tuple = str(__magic_name__ )
UpperCAmelCase : Optional[Any] = label
# Load the accuracy metric from the datasets package
UpperCAmelCase : List[Any] = evaluate.load("accuracy" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__magic_name__ ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(__magic_name__ ) , labelaid=__magic_name__ , idalabel=__magic_name__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase : int = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
UpperCAmelCase : List[Any] = image_processor.size["shortest_edge"]
else:
UpperCAmelCase : Union[str, Any] = (image_processor.size["height"], image_processor.size["width"])
UpperCAmelCase : List[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
UpperCAmelCase : Tuple = Compose(
[
RandomResizedCrop(__magic_name__ ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
UpperCAmelCase : Optional[Any] = Compose(
[
Resize(__magic_name__ ),
CenterCrop(__magic_name__ ),
ToTensor(),
normalize,
] )
def train_transforms(__magic_name__ ):
UpperCAmelCase : Union[str, Any] = [
_train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]
]
return example_batch
def val_transforms(__magic_name__ ):
UpperCAmelCase : Tuple = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset" )
if data_args.max_train_samples is not None:
UpperCAmelCase : Optional[int] = (
dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(__magic_name__ )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset" )
if data_args.max_eval_samples is not None:
UpperCAmelCase : Tuple = (
dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(__magic_name__ )
# Initalize our trainer
UpperCAmelCase : str = Trainer(
model=__magic_name__ , args=__magic_name__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , data_collator=__magic_name__ , )
# Training
if training_args.do_train:
UpperCAmelCase : Optional[int] = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase : Union[str, Any] = last_checkpoint
UpperCAmelCase : str = trainer.train(resume_from_checkpoint=__magic_name__ )
trainer.save_model()
trainer.log_metrics("train" , train_result.metrics )
trainer.save_metrics("train" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase : List[str] = trainer.evaluate()
trainer.log_metrics("eval" , __magic_name__ )
trainer.save_metrics("eval" , __magic_name__ )
# Write model card and (optionally) push to hub
UpperCAmelCase : Optional[int] = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "image-classification",
"dataset": data_args.dataset_name,
"tags": ["image-classification", "vision"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__magic_name__ )
else:
trainer.create_model_card(**__magic_name__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase ( __magic_name__ ):
'''simple docstring'''
return np.dot(__magic_name__ , __magic_name__ )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , *,
snake_case = np.inf , snake_case = "linear" , snake_case = 0.0 , ):
'''simple docstring'''
UpperCAmelCase : Any = regularization
UpperCAmelCase : List[Any] = gamma
if kernel == "linear":
UpperCAmelCase : str = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("rbf kernel requires gamma" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("gamma must be float or int" )
if not self.gamma > 0:
raise ValueError("gamma must be > 0" )
UpperCAmelCase : int = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
UpperCAmelCase : int = f"Unknown kernel: {kernel}"
raise ValueError(snake_case )
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
return np.dot(snake_case , snake_case )
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : int = observations
UpperCAmelCase : Dict = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((UpperCAmelCase) , ) : Optional[int] = np.shape(snake_case )
def to_minimize(snake_case ) -> float:
UpperCAmelCase : str = 0
((UpperCAmelCase) , ) : List[str] = np.shape(snake_case )
for i in range(snake_case ):
for j in range(snake_case ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(snake_case )
UpperCAmelCase : List[Any] = LinearConstraint(snake_case , 0 , 0 )
UpperCAmelCase : str = Bounds(0 , self.regularization )
UpperCAmelCase : Tuple = minimize(
snake_case , np.ones(snake_case ) , bounds=snake_case , constraints=[ly_contraint] ).x
UpperCAmelCase : Any = l_star
# calculating mean offset of separation plane to points
UpperCAmelCase : Union[str, Any] = 0
for i in range(snake_case ):
for j in range(snake_case ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
UpperCAmelCase : List[str] = s / n
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , snake_case )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a : int = datasets.load_iris()
a : Union[str, Any] = np.array(data["data"])
a : Optional[Any] = np.array(data["target"])
a : List[Any] = data["target_names"]
a , a , a , a : Dict = train_test_split(X, y)
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) )
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ):
'''simple docstring'''
UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ )
# List of distances of all points from the point to be classified
UpperCAmelCase : List[Any] = []
for data_point in data:
UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 311
| 1
|
'''simple docstring'''
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = [
"decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] = emb.weight.shape
UpperCAmelCase : List[str] = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
UpperCAmelCase : Optional[Any] = emb.weight.data
return lin_layer
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[Any] = torch.load(__magic_name__ , map_location="cpu" )
UpperCAmelCase : int = Namespace(**checkpoint["cfg"]["model"] )
UpperCAmelCase : Union[str, Any] = checkpoint["model"]
remove_ignore_keys_(__magic_name__ )
UpperCAmelCase : Any = state_dict["decoder.embed_tokens.weight"].shape[0]
UpperCAmelCase : List[Any] = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()}
UpperCAmelCase : Any = XGLMConfig(
vocab_size=__magic_name__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
UpperCAmelCase : Dict = XGLMForCausalLM(__magic_name__ )
UpperCAmelCase : List[Any] = model.load_state_dict(__magic_name__ , strict=__magic_name__ )
print(__magic_name__ )
UpperCAmelCase : str = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
a : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
a : Union[str, Any] = parser.parse_args()
a : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number < 0:
raise ValueError("number must not be negative" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.