code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
SCREAMING_SNAKE_CASE_ = random.Random()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ):
if rng is None:
__lowerCAmelCase = global_rng
__lowerCAmelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2_000 , snake_case_=1 , snake_case_=0.0 , snake_case_=16_000 , snake_case_=True , snake_case_=True , ) -> Tuple:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = min_seq_length
__lowerCAmelCase = max_seq_length
__lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__lowerCAmelCase = feature_size
__lowerCAmelCase = padding_value
__lowerCAmelCase = sampling_rate
__lowerCAmelCase = return_attention_mask
__lowerCAmelCase = do_normalize
def A__ ( self ) -> Optional[int]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def A__ ( self , snake_case_=False , snake_case_=False ) -> Optional[int]:
def _flatten(snake_case_ ):
return list(itertools.chain(*snake_case_ ) )
if equal_length:
__lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__lowerCAmelCase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__lowerCAmelCase = [np.asarray(snake_case_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = WavaVecaFeatureExtractor
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = WavaVecaFeatureExtractionTester(self )
def A__ ( self , snake_case_ ) -> Dict:
self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1e-3 ) )
def A__ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = [np.asarray(snake_case_ ) for speech_input in speech_inputs]
# Test not batched input
__lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
__lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
# Test batched
__lowerCAmelCase = feat_extract(snake_case_ , return_tensors="""np""" ).input_values
__lowerCAmelCase = feat_extract(snake_case_ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ):
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__lowerCAmelCase = np.asarray(snake_case_ )
__lowerCAmelCase = feat_extract(snake_case_ , return_tensors="""np""" ).input_values
__lowerCAmelCase = feat_extract(snake_case_ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ):
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
def A__ ( self ) -> Dict:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = ["""longest""", """max_length""", """do_not_pad"""]
__lowerCAmelCase = [None, 1_600, None]
for max_length, padding in zip(snake_case_ , snake_case_ ):
__lowerCAmelCase = feat_extract(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors="""np""" )
__lowerCAmelCase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = range(800 , 1_400 , 200 )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths]
__lowerCAmelCase = ["""longest""", """max_length""", """do_not_pad"""]
__lowerCAmelCase = [None, 1_600, None]
for max_length, padding in zip(snake_case_ , snake_case_ ):
__lowerCAmelCase = feat_extract(snake_case_ , max_length=snake_case_ , padding=snake_case_ )
__lowerCAmelCase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feat_extract(
snake_case_ , truncation=snake_case_ , max_length=1_000 , padding="""max_length""" , return_tensors="""np""" )
__lowerCAmelCase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feat_extract(
snake_case_ , truncation=snake_case_ , max_length=1_000 , padding="""longest""" , return_tensors="""np""" )
__lowerCAmelCase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feat_extract(
snake_case_ , truncation=snake_case_ , max_length=2_000 , padding="""longest""" , return_tensors="""np""" )
__lowerCAmelCase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
@require_torch
def A__ ( self ) -> Optional[int]:
import torch
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = np.random.rand(100 ).astype(np.floataa )
__lowerCAmelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__lowerCAmelCase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__lowerCAmelCase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def A__ ( self ) -> List[Any]:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
__lowerCAmelCase = WavaVecaConfig.from_pretrained(snake_case_ )
__lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(snake_case_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
| 301
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowercase (_lowerCAmelCase ):
if len(_lowerCAmelCase ) == 0:
return array
__lowerCAmelCase , __lowerCAmelCase = min(_lowerCAmelCase ), max(_lowerCAmelCase )
# Compute the variables
__lowerCAmelCase = _max - _min + 1
__lowerCAmelCase , __lowerCAmelCase = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
__lowerCAmelCase = i - _min
__lowerCAmelCase = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
__lowerCAmelCase = 0
for i in range(_lowerCAmelCase ):
while holes_repeat[i] > 0:
__lowerCAmelCase = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by comma:\n''')
SCREAMING_SNAKE_CASE_ = [int(x) for x in user_input.split(''',''')]
print(pigeon_sort(unsorted))
| 301
|
"""simple docstring"""
from math import pi, sqrt
def lowercase (_lowerCAmelCase ):
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase ():
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: '''))
print(F"gamma({num}) = {gamma(num)}")
print('''\nEnter 0 to exit...''')
| 301
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class lowerCAmelCase_ :
'''simple docstring'''
_snake_case = MBartConfig
_snake_case = {}
_snake_case = '''gelu'''
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , ) -> Tuple:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = eos_token_id
__lowerCAmelCase = pad_token_id
__lowerCAmelCase = bos_token_id
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowerCAmelCase = prepare_mbart_inputs_dict(snake_case_ , snake_case_ , snake_case_ )
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> str:
__lowerCAmelCase = TFMBartModel(config=snake_case_ ).get_decoder()
__lowerCAmelCase = inputs_dict["""input_ids"""]
__lowerCAmelCase = input_ids[:1, :]
__lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :]
__lowerCAmelCase = inputs_dict["""head_mask"""]
__lowerCAmelCase = 1
# first forward pass
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple()
__lowerCAmelCase = past_key_values[1]
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ):
if attention_mask is None:
__lowerCAmelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
_snake_case = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
_snake_case = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
_snake_case = True
_snake_case = False
_snake_case = False
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = TFMBartModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ )
def A__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ )
@require_sentencepiece
@require_tokenizers
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
_snake_case = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
_snake_case = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
_snake_case = '''facebook/mbart-large-en-ro'''
@cached_property
def A__ ( self ) -> Optional[int]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def A__ ( self , **snake_case_ ) -> Optional[int]:
__lowerCAmelCase = self.translate_src_text(**snake_case_ )
self.assertListEqual(self.expected_text , snake_case_ )
def A__ ( self , **snake_case_ ) -> int:
__lowerCAmelCase = self.tokenizer(self.src_text , **snake_case_ , return_tensors="""tf""" )
__lowerCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__lowerCAmelCase = self.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ )
return generated_words
@slow
def A__ ( self ) -> Any:
self._assert_generated_batch_equal_expected()
| 301
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowercase ():
# Get the sagemaker specific mp parameters from smp_options variable.
__lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def A__ ( self ) -> Tuple:
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , snake_case_ , )
@cached_property
def A__ ( self ) -> "torch.device":
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__lowerCAmelCase = torch.device("""cpu""" )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device("""cuda""" , snake_case_ )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(snake_case_ )
return device
@property
def A__ ( self ) -> Dict:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def A__ ( self ) -> Optional[int]:
return not is_sagemaker_model_parallel_available()
@property
def A__ ( self ) -> Tuple:
return False
| 301
| 1
|
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def lowercase (_lowerCAmelCase ):
# getting number of pixels in the image
__lowerCAmelCase , __lowerCAmelCase = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(_lowerCAmelCase ):
for j in range(_lowerCAmelCase ):
__lowerCAmelCase = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE_ = imread('''image_data/lena.jpg''', 1)
# convert to its negative
SCREAMING_SNAKE_CASE_ = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 301
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
_snake_case = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
_snake_case = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
__lowerCAmelCase = AudioClassificationPipeline(model=snake_case_ , feature_extractor=snake_case_ )
# test with a raw waveform
__lowerCAmelCase = np.zeros((34_000,) )
__lowerCAmelCase = np.zeros((14_000,) )
return audio_classifier, [audioa, audio]
def A__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = examples
__lowerCAmelCase = audio_classifier(snake_case_ )
# by default a model is initialized with num_labels=2
self.assertEqual(
snake_case_ , [
{"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )},
{"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )},
] , )
__lowerCAmelCase = audio_classifier(snake_case_ , top_k=1 )
self.assertEqual(
snake_case_ , [
{"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )},
] , )
self.run_torchaudio(snake_case_ )
@require_torchaudio
def A__ ( self , snake_case_ ) -> Tuple:
import datasets
# test with a local file
__lowerCAmelCase = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
__lowerCAmelCase = dataset[0]["""audio"""]["""array"""]
__lowerCAmelCase = audio_classifier(snake_case_ )
self.assertEqual(
snake_case_ , [
{"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )},
{"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )},
] , )
@require_torch
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = """anton-l/wav2vec2-random-tiny-classifier"""
__lowerCAmelCase = pipeline("""audio-classification""" , model=snake_case_ )
__lowerCAmelCase = np.ones((8_000,) )
__lowerCAmelCase = audio_classifier(snake_case_ , top_k=4 )
__lowerCAmelCase = [
{"""score""": 0.0_842, """label""": """no"""},
{"""score""": 0.0_838, """label""": """up"""},
{"""score""": 0.0_837, """label""": """go"""},
{"""score""": 0.0_834, """label""": """right"""},
]
__lowerCAmelCase = [
{"""score""": 0.0_845, """label""": """stop"""},
{"""score""": 0.0_844, """label""": """on"""},
{"""score""": 0.0_841, """label""": """right"""},
{"""score""": 0.0_834, """label""": """left"""},
]
self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
__lowerCAmelCase = {"""array""": np.ones((8_000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate}
__lowerCAmelCase = audio_classifier(snake_case_ , top_k=4 )
self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
@require_torch
@slow
def A__ ( self ) -> Optional[Any]:
import datasets
__lowerCAmelCase = """superb/wav2vec2-base-superb-ks"""
__lowerCAmelCase = pipeline("""audio-classification""" , model=snake_case_ )
__lowerCAmelCase = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" )
__lowerCAmelCase = np.array(dataset[3]["""speech"""] , dtype=np.floataa )
__lowerCAmelCase = audio_classifier(snake_case_ , top_k=4 )
self.assertEqual(
nested_simplify(snake_case_ , decimals=3 ) , [
{"""score""": 0.981, """label""": """go"""},
{"""score""": 0.007, """label""": """up"""},
{"""score""": 0.006, """label""": """_unknown_"""},
{"""score""": 0.001, """label""": """down"""},
] , )
@require_tf
@unittest.skip("""Audio classification is not implemented for TF""" )
def A__ ( self ) -> Union[str, Any]:
pass
| 301
|
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE_ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
__lowerCAmelCase = expected_configs[0]
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 301
| 1
|
"""simple docstring"""
from manim import *
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
__lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
__lowerCAmelCase = [mem.copy() for i in range(6 )]
__lowerCAmelCase = [mem.copy() for i in range(6 )]
__lowerCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
__lowerCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
__lowerCAmelCase = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 )
__lowerCAmelCase = Text("""CPU""" , font_size=24 )
__lowerCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case_ )
__lowerCAmelCase = [mem.copy() for i in range(1 )]
__lowerCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
__lowerCAmelCase = Text("""GPU""" , font_size=24 )
__lowerCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
gpu.align_to(snake_case_ , snake_case_ )
gpu.set_x(gpu.get_x() - 1 )
self.add(snake_case_ )
__lowerCAmelCase = [mem.copy() for i in range(6 )]
__lowerCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
__lowerCAmelCase = Text("""Model""" , font_size=24 )
__lowerCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
model.move_to([3, -1.0, 0] )
self.play(
Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , )
__lowerCAmelCase = MarkupText(
f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , )
__lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__lowerCAmelCase = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) )
self.add(snake_case_ )
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = []
for i, rect in enumerate(snake_case_ ):
__lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 )
cpu_target.move_to(snake_case_ )
cpu_target.generate_target()
__lowerCAmelCase = 0.46 / 4
__lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 )
cpu_targs.append(snake_case_ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) )
second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) )
self.play(*snake_case_ )
self.play(*snake_case_ )
self.wait()
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__lowerCAmelCase = (3 * number) + 1
counter += 1
if inputa not in counters:
__lowerCAmelCase = counter
if counter > pre_counter:
__lowerCAmelCase = inputa
__lowerCAmelCase = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 301
| 1
|
"""simple docstring"""
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
SCREAMING_SNAKE_CASE_ = [
'''kernels/rwkv/wkv_cuda.cu''',
'''kernels/rwkv/wkv_op.cpp''',
'''kernels/deformable_detr/ms_deform_attn.h''',
'''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''',
'''models/graphormer/algos_graphormer.pyx''',
]
def lowercase (_lowerCAmelCase ):
# Test all the extensions added in the setup
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''')
SCREAMING_SNAKE_CASE_ = parser.parse_args()
if args.check_lib:
SCREAMING_SNAKE_CASE_ = importlib.import_module('''transformers''')
SCREAMING_SNAKE_CASE_ = Path(transformers_module.__file__).parent
else:
SCREAMING_SNAKE_CASE_ = Path.cwd() / '''build/lib/transformers'''
if not test_custom_files_are_present(transformers_path):
raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
| 301
|
"""simple docstring"""
import sys
import turtle
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
SCREAMING_SNAKE_CASE_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 301
| 1
|
"""simple docstring"""
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = cva.getAffineTransform(_lowerCAmelCase , _lowerCAmelCase )
return cva.warpAffine(_lowerCAmelCase , _lowerCAmelCase , (rows, cols) )
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE_ = cva.imread(
str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''')
)
# turn image in gray scale value
SCREAMING_SNAKE_CASE_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = gray_img.shape
# set different points to rotate image
SCREAMING_SNAKE_CASE_ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
SCREAMING_SNAKE_CASE_ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
SCREAMING_SNAKE_CASE_ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
SCREAMING_SNAKE_CASE_ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
SCREAMING_SNAKE_CASE_ = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
SCREAMING_SNAKE_CASE_ = plt.figure(1)
SCREAMING_SNAKE_CASE_ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3''']
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''')
plt.title(titles[i])
plt.axis('''off''')
plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5)
plt.show()
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__lowerCAmelCase = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
SCREAMING_SNAKE_CASE_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 301
| 1
|
"""simple docstring"""
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_ = [
'''word_embeddings_layernorm.weight''',
'''word_embeddings_layernorm.bias''',
'''input_layernorm.weight''',
'''input_layernorm.bias''',
'''post_attention_layernorm.weight''',
'''post_attention_layernorm.bias''',
'''self_attention.dense.bias''',
'''mlp.dense_4h_to_h.bias''',
'''ln_f.weight''',
'''ln_f.bias''',
]
SCREAMING_SNAKE_CASE_ = [
'''mlp.dense_4h_to_h.weight''',
'''self_attention.dense.weight''',
]
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = {
"""word_embeddings.weight""": """word_embeddings.weight""",
"""word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""",
"""word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""",
"""weight""": """ln_f.weight""",
"""bias""": """ln_f.bias""",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
__lowerCAmelCase = int(re.match(r""".*layer_(\d*).*""" , _lowerCAmelCase )[1] )
layer_number -= 3
return f"""h.{layer_number}.""" + key
def lowercase (_lowerCAmelCase ):
if dtype == torch.bool:
return 1 / 8
__lowerCAmelCase = re.search(r"""[^\d](\d+)$""" , str(_lowerCAmelCase ) )
if bit_search is None:
raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" )
__lowerCAmelCase = int(bit_search.groups()[0] )
return bit_size // 8
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
# Construct model
if bloom_config_file == "":
__lowerCAmelCase = BloomConfig()
else:
__lowerCAmelCase = BloomConfig.from_json_file(_lowerCAmelCase )
if shard_model:
__lowerCAmelCase = os.listdir(_lowerCAmelCase )
__lowerCAmelCase = sorted(filter(lambda _lowerCAmelCase : s.startswith("""layer""" ) and "model_00" in s , _lowerCAmelCase ) )
__lowerCAmelCase = {"""weight_map""": {}, """metadata""": {}}
__lowerCAmelCase = 0
__lowerCAmelCase = None
__lowerCAmelCase = BloomConfig()
for j, file in enumerate(_lowerCAmelCase ):
print("""Processing file: {}""".format(_lowerCAmelCase ) )
__lowerCAmelCase = None
for i in range(_lowerCAmelCase ):
# load all TP files
__lowerCAmelCase = file.replace("""model_00""" , f"""model_0{i}""" )
__lowerCAmelCase = torch.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , map_location="""cpu""" )
# Rename keys in the transformers names
__lowerCAmelCase = list(temp.keys() )
for key in keys:
__lowerCAmelCase = temp.pop(_lowerCAmelCase )
if tensors is None:
__lowerCAmelCase = temp
else:
for key in tensors.keys():
if any(key.endswith(_lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=_lowerCAmelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCAmelCase = tensors[key] / pretraining_tp
torch.save(
_lowerCAmelCase , os.path.join(
_lowerCAmelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(_lowerCAmelCase ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
__lowerCAmelCase = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
__lowerCAmelCase = """pytorch_model_{}-of-{}.bin""".format(
str(j + 1 ).zfill(5 ) , str(len(_lowerCAmelCase ) ).zfill(5 ) )
__lowerCAmelCase = BloomConfig()
__lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME
__lowerCAmelCase = total_size
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(_lowerCAmelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f:
__lowerCAmelCase = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + """\n"""
f.write(_lowerCAmelCase )
else:
__lowerCAmelCase = BloomModel(_lowerCAmelCase )
__lowerCAmelCase = os.listdir(_lowerCAmelCase )
__lowerCAmelCase = sorted(filter(lambda _lowerCAmelCase : s.startswith("""layer""" ) and "model_00" in s , _lowerCAmelCase ) )
__lowerCAmelCase = None
for i, file in enumerate(_lowerCAmelCase ):
__lowerCAmelCase = None
for i in range(_lowerCAmelCase ):
# load all TP files
__lowerCAmelCase = file.replace("""model_00""" , f"""model_0{i}""" )
__lowerCAmelCase = torch.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , map_location="""cpu""" )
# Rename keys in the transformers names
__lowerCAmelCase = list(temp.keys() )
for key in keys:
__lowerCAmelCase = temp.pop(_lowerCAmelCase )
if tensors is None:
__lowerCAmelCase = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(_lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=_lowerCAmelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCAmelCase = tensors[key] / pretraining_tp
__lowerCAmelCase = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase )
assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected"""
if missing_keys is None:
__lowerCAmelCase = set(other_keys.missing_keys )
else:
__lowerCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, f"""The keys {missing_keys} are missing"""
# Save pytorch-model
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
__lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" )
if config.torch_dtype is not None:
__lowerCAmelCase = model.to(config.torch_dtype )
torch.save(model.state_dict() , _lowerCAmelCase )
print(f"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bloom_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path to the Megatron-LM checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--bloom_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--shard_model''',
action='''store_true''',
help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''',
)
parser.add_argument(
'''--pretraining_tp''',
default=4,
type=int,
help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''',
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 301
|
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE_ = '''bart'''
SCREAMING_SNAKE_CASE_ = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
__lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
__lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
__lowerCAmelCase = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
__lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
__lowerCAmelCase = elia["""train_eli5"""]
__lowerCAmelCase = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , )
__lowerCAmelCase = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
__lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
SCREAMING_SNAKE_CASE_ = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE_ = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE_ = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''')
if demo_options:
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
SCREAMING_SNAKE_CASE_ = action_list.index(action_st)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages'''
else:
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
SCREAMING_SNAKE_CASE_ = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
SCREAMING_SNAKE_CASE_ = '''wiki40b'''
SCREAMING_SNAKE_CASE_ = '''dense'''
SCREAMING_SNAKE_CASE_ = '''beam'''
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 64
SCREAMING_SNAKE_CASE_ = 256
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''')
if generate_options:
SCREAMING_SNAKE_CASE_ = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = None
# start main text
SCREAMING_SNAKE_CASE_ = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
SCREAMING_SNAKE_CASE_ = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''')
else:
SCREAMING_SNAKE_CASE_ = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
SCREAMING_SNAKE_CASE_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE_ = support_list[:10]
SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
SCREAMING_SNAKE_CASE_ = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''')
SCREAMING_SNAKE_CASE_ = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE_ = find_nearest_training(question)
SCREAMING_SNAKE_CASE_ = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
SCREAMING_SNAKE_CASE_ = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
SCREAMING_SNAKE_CASE_ = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 301
| 1
|
"""simple docstring"""
import tensorflow as tf
from ...tf_utils import shape_list
class lowerCAmelCase_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=1 , snake_case_=False , **snake_case_ ) -> List[Any]:
super().__init__(**snake_case_ )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = d_embed
__lowerCAmelCase = d_proj
__lowerCAmelCase = cutoffs + [vocab_size]
__lowerCAmelCase = [0] + self.cutoffs
__lowerCAmelCase = div_val
__lowerCAmelCase = self.cutoffs[0]
__lowerCAmelCase = len(self.cutoffs ) - 1
__lowerCAmelCase = self.shortlist_size + self.n_clusters
__lowerCAmelCase = keep_order
__lowerCAmelCase = []
__lowerCAmelCase = []
def A__ ( self , snake_case_ ) -> Optional[Any]:
if self.n_clusters > 0:
__lowerCAmelCase = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=snake_case_ , name="""cluster_weight""" )
__lowerCAmelCase = self.add_weight(
shape=(self.n_clusters,) , initializer="""zeros""" , trainable=snake_case_ , name="""cluster_bias""" )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
__lowerCAmelCase = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_projs_._{i}""" , )
self.out_projs.append(snake_case_ )
else:
self.out_projs.append(snake_case_ )
__lowerCAmelCase = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_layers_._{i}_._weight""" , )
__lowerCAmelCase = self.add_weight(
shape=(self.vocab_size,) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_layers_._{i}_._bias""" , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
__lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowerCAmelCase = self.d_embed // (self.div_val**i)
__lowerCAmelCase = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_projs_._{i}""" )
self.out_projs.append(snake_case_ )
__lowerCAmelCase = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_layers_._{i}_._weight""" , )
__lowerCAmelCase = self.add_weight(
shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=snake_case_ , name=f"""out_layers_._{i}_._bias""" , )
self.out_layers.append((weight, bias) )
super().build(snake_case_ )
@staticmethod
def A__ ( snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Any:
__lowerCAmelCase = x
if proj is not None:
__lowerCAmelCase = tf.einsum("""ibd,ed->ibe""" , snake_case_ , snake_case_ )
return tf.einsum("""ibd,nd->ibn""" , snake_case_ , snake_case_ ) + b
@staticmethod
def A__ ( snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = shape_list(snake_case_ )
__lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype )
__lowerCAmelCase = tf.stack([r, target] , 1 )
return tf.gather_nd(snake_case_ , snake_case_ )
def A__ ( self , snake_case_ , snake_case_ , snake_case_=True , snake_case_=False ) -> Optional[Any]:
__lowerCAmelCase = 0
if self.n_clusters == 0:
__lowerCAmelCase = self._logit(snake_case_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
__lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_ , logits=snake_case_ )
__lowerCAmelCase = tf.nn.log_softmax(snake_case_ , axis=-1 )
else:
__lowerCAmelCase = shape_list(snake_case_ )
__lowerCAmelCase = []
__lowerCAmelCase = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
__lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
__lowerCAmelCase = (target >= l_idx) & (target < r_idx)
__lowerCAmelCase = tf.where(snake_case_ )
__lowerCAmelCase = tf.boolean_mask(snake_case_ , snake_case_ ) - l_idx
if self.div_val == 1:
__lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx]
__lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx]
else:
__lowerCAmelCase = self.out_layers[i][0]
__lowerCAmelCase = self.out_layers[i][1]
if i == 0:
__lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 )
__lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 )
__lowerCAmelCase = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[0] )
__lowerCAmelCase = tf.nn.log_softmax(snake_case_ )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
__lowerCAmelCase = tf.boolean_mask(snake_case_ , snake_case_ )
__lowerCAmelCase = self._gather_logprob(snake_case_ , snake_case_ )
else:
__lowerCAmelCase = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[i] )
__lowerCAmelCase = tf.nn.log_softmax(snake_case_ )
__lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster
__lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(snake_case_ )
if target is not None:
__lowerCAmelCase = tf.boolean_mask(snake_case_ , snake_case_ )
__lowerCAmelCase = tf.boolean_mask(snake_case_ , snake_case_ )
__lowerCAmelCase = self._gather_logprob(snake_case_ , snake_case_ )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(snake_case_ , -cur_logprob , shape_list(snake_case_ ) )
__lowerCAmelCase = tf.concat(snake_case_ , axis=-1 )
if target is not None:
if return_mean:
__lowerCAmelCase = tf.reduce_mean(snake_case_ )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(snake_case_ )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(snake_case_ , name=self.name , aggregation="""mean""" if return_mean else """""" )
return out
| 301
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ = getLogger(__name__)
SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ):
__lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" )
__lowerCAmelCase = str(_lowerCAmelCase )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
if fpaa:
__lowerCAmelCase = model.half()
__lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
__lowerCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase )
if prefix is None:
__lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ):
__lowerCAmelCase = [prefix + text for text in examples_chunk]
__lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase )
__lowerCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , )
__lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__lowerCAmelCase = int(time.time() - start_time ) # seconds
__lowerCAmelCase = len(_lowerCAmelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def lowercase (_lowerCAmelCase=True ):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args()
__lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
__lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowerCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__lowerCAmelCase = generate_summaries_or_translations(
_lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , )
if args.reference_path is None:
return {}
# Compute scores
__lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
__lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )]
__lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase )
scores.update(_lowerCAmelCase )
if args.dump_args:
scores.update(_lowerCAmelCase )
if args.info:
__lowerCAmelCase = args.info
if verbose:
print(_lowerCAmelCase )
if args.score_path is not None:
json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 301
| 1
|
"""simple docstring"""
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
SCREAMING_SNAKE_CASE_ = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE_ = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
SCREAMING_SNAKE_CASE_ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
SCREAMING_SNAKE_CASE_ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
SCREAMING_SNAKE_CASE_ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
SCREAMING_SNAKE_CASE_ = [
('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''),
('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''),
('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''),
('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''),
('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''),
('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''),
('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''),
('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''),
('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''),
(
'''zero-shot-object-detection''',
'''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''',
'''AutoModelForZeroShotObjectDetection''',
),
('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''),
('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''),
('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''),
('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''),
(
'''table-question-answering''',
'''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''',
'''AutoModelForTableQuestionAnswering''',
),
('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''),
('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''),
(
'''next-sentence-prediction''',
'''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''',
'''AutoModelForNextSentencePrediction''',
),
(
'''audio-frame-classification''',
'''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''',
'''AutoModelForAudioFrameClassification''',
),
('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''),
(
'''document-question-answering''',
'''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''',
'''AutoModelForDocumentQuestionAnswering''',
),
(
'''visual-question-answering''',
'''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''',
'''AutoModelForVisualQuestionAnswering''',
),
('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''),
(
'''zero-shot-image-classification''',
'''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''',
'''AutoModelForZeroShotImageClassification''',
),
('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''),
('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''),
('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''),
]
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _lowerCAmelCase )
return [m.group(0 ) for m in matches]
def lowercase ():
__lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__lowerCAmelCase = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__lowerCAmelCase = collections.defaultdict(_lowerCAmelCase )
__lowerCAmelCase = collections.defaultdict(_lowerCAmelCase )
__lowerCAmelCase = collections.defaultdict(_lowerCAmelCase )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(_lowerCAmelCase ):
__lowerCAmelCase = None
if _re_tf_models.match(_lowerCAmelCase ) is not None:
__lowerCAmelCase = tf_models
__lowerCAmelCase = _re_tf_models.match(_lowerCAmelCase ).groups()[0]
elif _re_flax_models.match(_lowerCAmelCase ) is not None:
__lowerCAmelCase = flax_models
__lowerCAmelCase = _re_flax_models.match(_lowerCAmelCase ).groups()[0]
elif _re_pt_models.match(_lowerCAmelCase ) is not None:
__lowerCAmelCase = pt_models
__lowerCAmelCase = _re_pt_models.match(_lowerCAmelCase ).groups()[0]
if lookup_dict is not None:
while len(_lowerCAmelCase ) > 0:
if attr_name in model_prefix_to_model_type:
__lowerCAmelCase = True
break
# Try again after removing the last word in the name
__lowerCAmelCase = """""".join(camel_case_split(_lowerCAmelCase )[:-1] )
__lowerCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__lowerCAmelCase = list(_lowerCAmelCase )
all_models.sort()
__lowerCAmelCase = {"""model_type""": all_models}
__lowerCAmelCase = [pt_models[t] for t in all_models]
__lowerCAmelCase = [tf_models[t] for t in all_models]
__lowerCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__lowerCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__lowerCAmelCase = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__lowerCAmelCase = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__lowerCAmelCase = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__lowerCAmelCase = """AutoTokenizer"""
__lowerCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(_lowerCAmelCase )
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__lowerCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__lowerCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
# The type of pipeline may not exist in this framework
if not hasattr(_lowerCAmelCase , _lowerCAmelCase ):
continue
# First extract all model_names
__lowerCAmelCase = []
for name in getattr(_lowerCAmelCase , _lowerCAmelCase ).values():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
model_names.append(_lowerCAmelCase )
else:
model_names.extend(list(_lowerCAmelCase ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_frameworks_table()
__lowerCAmelCase = Dataset.from_pandas(_lowerCAmelCase )
__lowerCAmelCase = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_lowerCAmelCase )
__lowerCAmelCase = Dataset.from_json(_lowerCAmelCase )
__lowerCAmelCase = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(_lowerCAmelCase ) )
}
__lowerCAmelCase = update_pipeline_and_auto_class_table(_lowerCAmelCase )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__lowerCAmelCase = sorted(table.keys() )
__lowerCAmelCase = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
__lowerCAmelCase = Dataset.from_pandas(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(_lowerCAmelCase , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(_lowerCAmelCase , """pipeline_tags.json""" ) )
if commit_sha is not None:
__lowerCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__lowerCAmelCase = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=_lowerCAmelCase , repo_type="""dataset""" , token=_lowerCAmelCase , commit_message=_lowerCAmelCase , )
def lowercase ():
__lowerCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__lowerCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__lowerCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__lowerCAmelCase = pipeline_tasks[key]["""pt"""]
if isinstance(_lowerCAmelCase , (list, tuple) ):
__lowerCAmelCase = model[0]
__lowerCAmelCase = model.__name__
if model not in in_table.values():
missing.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__lowerCAmelCase = """, """.join(_lowerCAmelCase )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''')
parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''')
parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''')
SCREAMING_SNAKE_CASE_ = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 301
|
"""simple docstring"""
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f:
__lowerCAmelCase = json.load(_lowerCAmelCase )
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = []
for key, info in class_info.items():
__lowerCAmelCase = info["""name"""]
class_names.append(info["""name"""] )
if info["isthing"]:
thing_ids.append(int(_lowerCAmelCase ) )
__lowerCAmelCase = thing_ids
__lowerCAmelCase = class_names
return metadata
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = class_info_file
__lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ )
__lowerCAmelCase = num_text
__lowerCAmelCase = repo_path
# for the post_process_functions
__lowerCAmelCase = 2
__lowerCAmelCase = 10
__lowerCAmelCase = 10
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = num_labels
__lowerCAmelCase = do_reduce_labels
__lowerCAmelCase = ignore_index
def A__ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A__ ( self , snake_case_ , snake_case_=False ) -> Dict:
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
__lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = self.size["""shortest_edge"""]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0]
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1]
return expected_height, expected_width
def A__ ( self ) -> Tuple:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
_snake_case = image_processing_class
def A__ ( self ) -> str:
__lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def A__ ( self ) -> Dict:
return self.image_processing_tester.prepare_image_processor_dict()
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case_ , """image_std""" ) )
self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case_ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case_ , """size""" ) )
self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) )
self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) )
self.assertTrue(hasattr(snake_case_ , """num_text""" ) )
self.assertTrue(hasattr(snake_case_ , """repo_path""" ) )
self.assertTrue(hasattr(snake_case_ , """metadata""" ) )
self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) )
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Union[str, Any]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> List[str]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> Tuple:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowerCAmelCase = self.image_processing_tester.num_labels
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
if with_segmentation_maps:
__lowerCAmelCase = num_labels
if is_instance_map:
__lowerCAmelCase = list(range(snake_case_ ) ) * 2
__lowerCAmelCase = dict(enumerate(snake_case_ ) )
__lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations]
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , )
return inputs
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Optional[Any]:
def common(snake_case_=False , snake_case_=None ):
__lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ )
__lowerCAmelCase = inputs["""mask_labels"""]
__lowerCAmelCase = inputs["""class_labels"""]
__lowerCAmelCase = inputs["""pixel_values"""]
__lowerCAmelCase = inputs["""text_inputs"""]
# check the batch_size
for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=snake_case_ )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = np.zeros((20, 50) )
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = binary_mask_to_rle(snake_case_ )
self.assertEqual(len(snake_case_ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 301
| 1
|
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str:
super().__init__()
if safety_checker is None:
logger.warning(
f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=snake_case_ , speech_processor=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , scheduler=snake_case_ , feature_extractor=snake_case_ , )
def A__ ( self , snake_case_ = "auto" ) -> str:
if slice_size == "auto":
__lowerCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(snake_case_ )
def A__ ( self ) -> List[str]:
self.enable_attention_slicing(snake_case_ )
@torch.no_grad()
def __call__( self , snake_case_ , snake_case_=16_000 , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 50 , snake_case_ = 7.5 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = None , snake_case_ = 1 , **snake_case_ , ) -> Dict:
__lowerCAmelCase = self.speech_processor.feature_extractor(
snake_case_ , return_tensors="""pt""" , sampling_rate=snake_case_ ).input_features.to(self.device )
__lowerCAmelCase = self.speech_model.generate(snake_case_ , max_length=480_000 )
__lowerCAmelCase = self.speech_processor.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , normalize=snake_case_ )[
0
]
if isinstance(snake_case_ , snake_case_ ):
__lowerCAmelCase = 1
elif isinstance(snake_case_ , snake_case_ ):
__lowerCAmelCase = len(snake_case_ )
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(snake_case_ )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case_ , snake_case_ ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(snake_case_ )}.""" )
# get prompt text embeddings
__lowerCAmelCase = self.tokenizer(
snake_case_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCAmelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
__lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = text_embeddings.shape
__lowerCAmelCase = text_embeddings.repeat(1 , snake_case_ , 1 )
__lowerCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowerCAmelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowerCAmelCase = 42
if negative_prompt is None:
__lowerCAmelCase = [""""""] * batch_size
elif type(snake_case_ ) is not type(snake_case_ ):
raise TypeError(
f"""`negative_prompt` should be the same type to `prompt`, but got {type(snake_case_ )} !="""
f""" {type(snake_case_ )}.""" )
elif isinstance(snake_case_ , snake_case_ ):
__lowerCAmelCase = [negative_prompt]
elif batch_size != len(snake_case_ ):
raise ValueError(
f"""`negative_prompt`: {negative_prompt} has batch size {len(snake_case_ )}, but `prompt`:"""
f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
""" the batch size of `prompt`.""" )
else:
__lowerCAmelCase = negative_prompt
__lowerCAmelCase = text_input_ids.shape[-1]
__lowerCAmelCase = self.tokenizer(
snake_case_ , padding="""max_length""" , max_length=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" , )
__lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCAmelCase = uncond_embeddings.shape[1]
__lowerCAmelCase = uncond_embeddings.repeat(1 , snake_case_ , 1 )
__lowerCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCAmelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowerCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__lowerCAmelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__lowerCAmelCase = torch.randn(snake_case_ , generator=snake_case_ , device="""cpu""" , dtype=snake_case_ ).to(
self.device )
else:
__lowerCAmelCase = torch.randn(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowerCAmelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__lowerCAmelCase = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowerCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowerCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowerCAmelCase = {}
if accepts_eta:
__lowerCAmelCase = eta
for i, t in enumerate(self.progress_bar(snake_case_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ )
# predict the noise residual
__lowerCAmelCase = self.unet(snake_case_ , snake_case_ , encoder_hidden_states=snake_case_ ).sample
# perform guidance
if do_classifier_free_guidance:
__lowerCAmelCase , __lowerCAmelCase = noise_pred.chunk(2 )
__lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__lowerCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case_ , snake_case_ , snake_case_ )
__lowerCAmelCase = 1 / 0.18_215 * latents
__lowerCAmelCase = self.vae.decode(snake_case_ ).sample
__lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCAmelCase = self.numpy_to_pil(snake_case_ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=snake_case_ , nsfw_content_detected=snake_case_ )
| 301
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 301
| 1
|
"""simple docstring"""
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
__lowerCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCAmelCase )
__lowerCAmelCase = checkpoints.load_tax_checkpoint(_lowerCAmelCase )
__lowerCAmelCase = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""]
if config.model_type == "t5":
__lowerCAmelCase = """SelfAttention"""
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__lowerCAmelCase = """LocalSelfAttention"""
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__lowerCAmelCase = """TransientGlobalSelfAttention"""
else:
raise ValueError(
"""Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"""
""" attribute with a value from ['local', 'transient-global].""" )
# Encoder
for layer_index in range(config.num_layers ):
__lowerCAmelCase = f"""layers_{str(_lowerCAmelCase )}"""
# Self-Attention
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""]
# Layer Normalization
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""]
if split_mlp_wi:
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
__lowerCAmelCase = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
__lowerCAmelCase = flax_model.params["""encoder"""]["""block"""][str(_lowerCAmelCase )]["""layer"""]
__lowerCAmelCase = tax_attention_key
__lowerCAmelCase = tax_attention_out
__lowerCAmelCase = tax_attention_query
__lowerCAmelCase = tax_attention_value
__lowerCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__lowerCAmelCase = tax_global_layer_norm
if split_mlp_wi:
__lowerCAmelCase = tax_mlp_wi_a
__lowerCAmelCase = tax_mlp_wi_a
else:
__lowerCAmelCase = tax_mlp_wi
__lowerCAmelCase = tax_mlp_wo
__lowerCAmelCase = tax_mlp_layer_norm
__lowerCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
__lowerCAmelCase = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T
__lowerCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__lowerCAmelCase = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T
__lowerCAmelCase = tax_encoder_global_rel_embedding
# Assigning
__lowerCAmelCase = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""]
__lowerCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__lowerCAmelCase = f"""layers_{str(_lowerCAmelCase )}"""
# Self-Attention
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""]
# Layer Normalization
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][
"""scale"""
]
# Encoder-Decoder-Attention
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""]
__lowerCAmelCase = tax_enc_dec_attention_module["""key"""]["""kernel"""]
__lowerCAmelCase = tax_enc_dec_attention_module["""out"""]["""kernel"""]
__lowerCAmelCase = tax_enc_dec_attention_module["""query"""]["""kernel"""]
__lowerCAmelCase = tax_enc_dec_attention_module["""value"""]["""kernel"""]
# Layer Normalization
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""]
# MLP
if split_mlp_wi:
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
__lowerCAmelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
__lowerCAmelCase = flax_model.params["""decoder"""]["""block"""][str(_lowerCAmelCase )]["""layer"""]
__lowerCAmelCase = tax_attention_key
__lowerCAmelCase = tax_attention_out
__lowerCAmelCase = tax_attention_query
__lowerCAmelCase = tax_attention_value
__lowerCAmelCase = tax_pre_attention_layer_norm
__lowerCAmelCase = tax_enc_dec_attention_key
__lowerCAmelCase = tax_enc_dec_attention_out
__lowerCAmelCase = tax_enc_dec_attention_query
__lowerCAmelCase = tax_enc_dec_attention_value
__lowerCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
__lowerCAmelCase = tax_mlp_wi_a
__lowerCAmelCase = tax_mlp_wi_a
else:
__lowerCAmelCase = tax_mlp_wi
__lowerCAmelCase = tax_mlp_wo
__lowerCAmelCase = txa_mlp_layer_norm
__lowerCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
__lowerCAmelCase = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""]
__lowerCAmelCase = txa_decoder_norm
# Only for layer 0:
__lowerCAmelCase = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T
__lowerCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
__lowerCAmelCase = tax_model["""target"""]["""token_embedder"""]["""embedding"""]
__lowerCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__lowerCAmelCase = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""]
flax_model.save_pretrained(_lowerCAmelCase )
print("""T5X Model was sucessfully converted!""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 301
|
"""simple docstring"""
from __future__ import annotations
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = []
create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase )
return result
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_lowerCAmelCase , total_number - level + 2 ):
current_list.append(_lowerCAmelCase )
create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase )
current_list.pop()
def lowercase (_lowerCAmelCase ):
for i in total_list:
print(*_lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k)
print_all_state(total_list)
| 301
| 1
|
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Dict:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_labels
__lowerCAmelCase = num_choices
__lowerCAmelCase = scope
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self ) -> Union[str, Any]:
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
__lowerCAmelCase = DistilBertModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , snake_case_ )
__lowerCAmelCase = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
__lowerCAmelCase = DistilBertForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
__lowerCAmelCase = DistilBertForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(
snake_case_ , attention_mask=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = DistilBertForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = DistilBertForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
__lowerCAmelCase = self.num_choices
__lowerCAmelCase = DistilBertForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase = model(
snake_case_ , attention_mask=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.prepare_config_and_inputs()
((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs
__lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'''feature-extraction''': DistilBertModel,
'''fill-mask''': DistilBertForMaskedLM,
'''question-answering''': DistilBertForQuestionAnswering,
'''text-classification''': DistilBertForSequenceClassification,
'''token-classification''': DistilBertForTokenClassification,
'''zero-shot''': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def A__ ( self ) -> Any:
__lowerCAmelCase = DistilBertModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , dim=37 )
def A__ ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def A__ ( self ) -> str:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*snake_case_ )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case_ )
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case_ )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case_ )
@slow
def A__ ( self ) -> str:
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = DistilBertModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@slow
@require_torch_gpu
def A__ ( self ) -> str:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__lowerCAmelCase = True
__lowerCAmelCase = model_class(config=snake_case_ )
__lowerCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ )
__lowerCAmelCase = torch.jit.trace(
snake_case_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(snake_case_ , os.path.join(snake_case_ , """traced_model.pt""" ) )
__lowerCAmelCase = torch.jit.load(os.path.join(snake_case_ , """traced_model.pt""" ) , map_location=snake_case_ )
loaded(inputs_dict["""input_ids"""].to(snake_case_ ) , inputs_dict["""attention_mask"""].to(snake_case_ ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = DistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
__lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0]
__lowerCAmelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
| 301
|
"""simple docstring"""
import os
from pathlib import Path
def lowercase ():
from torch.utils.cpp_extension import load
__lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
__lowerCAmelCase = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 301
| 1
|
"""simple docstring"""
import re
def lowercase (_lowerCAmelCase ):
if len(re.findall("""[ATCG]""" , _lowerCAmelCase ) ) != len(_lowerCAmelCase ):
raise ValueError("""Invalid Strand""" )
return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
|
"""simple docstring"""
from __future__ import annotations
from statistics import mean
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
__lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i]
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__lowerCAmelCase = []
__lowerCAmelCase = -1
for i in range(_lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__lowerCAmelCase = 0
__lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7]
SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0]
SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(F"\nAverage waiting time = {mean(waiting_time):.5f}")
print(F"Average turnaround time = {mean(turn_around_time):.5f}")
| 301
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
SCREAMING_SNAKE_CASE_ = 250_004
SCREAMING_SNAKE_CASE_ = 250_020
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = MBartaaTokenizer
_snake_case = MBartaaTokenizerFast
_snake_case = True
_snake_case = True
def A__ ( self ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCAmelCase = MBartaaTokenizer(snake_case_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=snake_case_ )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self ) -> Dict:
__lowerCAmelCase = """<s>"""
__lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(snake_case_ ) , 1_054 )
def A__ ( self ) -> Tuple:
self.assertEqual(self.get_tokenizer().vocab_size , 1_054 )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = MBartaaTokenizer(snake_case_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=snake_case_ )
__lowerCAmelCase = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
snake_case_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ )
self.assertListEqual(
snake_case_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(
snake_case_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = {"""input_ids""": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , )
def A__ ( self ) -> Union[str, Any]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ )
__lowerCAmelCase = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ )
__lowerCAmelCase = tempfile.mkdtemp()
__lowerCAmelCase = tokenizer_r.save_pretrained(snake_case_ )
__lowerCAmelCase = tokenizer_p.save_pretrained(snake_case_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
__lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(snake_case_ , snake_case_ )
# Checks everything loads correctly in the same way
__lowerCAmelCase = tokenizer_r.from_pretrained(snake_case_ )
__lowerCAmelCase = tokenizer_p.from_pretrained(snake_case_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case_ , snake_case_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case_ )
# Save tokenizer rust, legacy_format=True
__lowerCAmelCase = tempfile.mkdtemp()
__lowerCAmelCase = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ )
__lowerCAmelCase = tokenizer_p.save_pretrained(snake_case_ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case_ , snake_case_ )
# Checks everything loads correctly in the same way
__lowerCAmelCase = tokenizer_r.from_pretrained(snake_case_ )
__lowerCAmelCase = tokenizer_p.from_pretrained(snake_case_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case_ , snake_case_ ) )
shutil.rmtree(snake_case_ )
# Save tokenizer rust, legacy_format=False
__lowerCAmelCase = tempfile.mkdtemp()
__lowerCAmelCase = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ )
__lowerCAmelCase = tokenizer_p.save_pretrained(snake_case_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__lowerCAmelCase = tokenizer_r.from_pretrained(snake_case_ )
__lowerCAmelCase = tokenizer_p.from_pretrained(snake_case_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case_ , snake_case_ ) )
shutil.rmtree(snake_case_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
_snake_case = '''facebook/mbart-large-50-one-to-many-mmt'''
_snake_case = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
_snake_case = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
_snake_case = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def A__ ( cls ) -> int:
__lowerCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
__lowerCAmelCase = 1
return cls
def A__ ( self ) -> int:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 )
def A__ ( self ) -> str:
__lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case_ )
def A__ ( self ) -> Tuple:
self.assertIn(snake_case_ , self.tokenizer.all_special_ids )
__lowerCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2]
__lowerCAmelCase = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ )
__lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertNotIn(self.tokenizer.eos_token , snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , snake_case_ )
__lowerCAmelCase = 10
__lowerCAmelCase = self.tokenizer(snake_case_ , max_length=snake_case_ , truncation=snake_case_ ).input_ids[0]
self.assertEqual(ids[0] , snake_case_ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
def A__ ( self ) -> List[Any]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] )
def A__ ( self ) -> Dict:
__lowerCAmelCase = tempfile.mkdtemp()
__lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case_ )
__lowerCAmelCase = MBartaaTokenizer.from_pretrained(snake_case_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case_ )
@require_torch
def A__ ( self ) -> int:
__lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="""pt""" )
__lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
__lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case_ , snake_case_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__lowerCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case_ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def A__ ( self ) -> str:
__lowerCAmelCase = self.tokenizer(self.src_text , padding=snake_case_ , truncation=snake_case_ , max_length=3 , return_tensors="""pt""" )
__lowerCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=10 , return_tensors="""pt""" )
__lowerCAmelCase = targets["""input_ids"""]
__lowerCAmelCase = shift_tokens_right(snake_case_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def A__ ( self ) -> Tuple:
__lowerCAmelCase = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(snake_case_ ) , {
# en_XX, A, test, EOS
"""input_ids""": [[250_004, 62, 3_034, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250_001,
} , )
| 301
|
"""simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = DebertaVaTokenizer
_snake_case = DebertaVaTokenizerFast
_snake_case = True
_snake_case = True
def A__ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self , snake_case_ ) -> List[Any]:
__lowerCAmelCase = """this is a test"""
__lowerCAmelCase = """this is a test"""
return input_text, output_text
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = """<pad>"""
__lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(snake_case_ ) , 30_001 )
def A__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> int:
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> Dict:
pass
def A__ ( self ) -> List[str]:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Dict:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Tuple:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = """This is a test"""
__lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289]
__lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
__lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ]
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ )
__lowerCAmelCase = tokenizer.encode("""sequence builders""" )
__lowerCAmelCase = tokenizer.encode("""multi-sequence build""" )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , )
@slow
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 301
| 1
|
"""simple docstring"""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class lowerCAmelCase_ ( A__ , A__ ):
'''simple docstring'''
_snake_case = 1
@register_to_config
def __init__( self , snake_case_ = 1_000 , snake_case_ = None ) -> Dict:
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(snake_case_ )
# standard deviation of the initial noise distribution
__lowerCAmelCase = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
__lowerCAmelCase = 4
# running values
__lowerCAmelCase = []
def A__ ( self , snake_case_ , snake_case_ = None ) -> Optional[int]:
__lowerCAmelCase = num_inference_steps
__lowerCAmelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
__lowerCAmelCase = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
__lowerCAmelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
__lowerCAmelCase = torch.sin(steps * math.pi / 2 ) ** 2
__lowerCAmelCase = (1.0 - self.betas**2) ** 0.5
__lowerCAmelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
__lowerCAmelCase = timesteps.to(snake_case_ )
__lowerCAmelCase = []
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
__lowerCAmelCase = (self.timesteps == timestep).nonzero().item()
__lowerCAmelCase = timestep_index + 1
__lowerCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(snake_case_ )
if len(self.ets ) == 1:
__lowerCAmelCase = self.ets[-1]
elif len(self.ets ) == 2:
__lowerCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
__lowerCAmelCase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
__lowerCAmelCase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
__lowerCAmelCase = self._get_prev_sample(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=snake_case_ )
def A__ ( self , snake_case_ , *snake_case_ , **snake_case_ ) -> torch.FloatTensor:
return sample
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = self.alphas[timestep_index]
__lowerCAmelCase = self.betas[timestep_index]
__lowerCAmelCase = self.alphas[prev_timestep_index]
__lowerCAmelCase = self.betas[prev_timestep_index]
__lowerCAmelCase = (sample - sigma * ets) / max(snake_case_ , 1e-8 )
__lowerCAmelCase = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self ) -> Dict:
return self.config.num_train_timesteps
| 301
|
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 301
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> str:
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""]
# fmt: on
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
__lowerCAmelCase = {
"""do_resize""": True,
"""size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.5, 0.5, 0.5],
"""image_std""": [0.5, 0.5, 0.5],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , snake_case_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(snake_case_ , snake_case_ )
def A__ ( self , **snake_case_ ) -> Union[str, Any]:
return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ )
def A__ ( self , **snake_case_ ) -> Any:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ )
def A__ ( self ) -> Any:
shutil.rmtree(self.tmpdirname )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ) -> str:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__lowerCAmelCase = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 )
__lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case_ )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(snake_case_ , return_tensors="""np""" )
__lowerCAmelCase = processor(images=snake_case_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
__lowerCAmelCase = """lower newer"""
__lowerCAmelCase = processor(text=snake_case_ )
__lowerCAmelCase = tokenizer(snake_case_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
__lowerCAmelCase = """lower newer"""
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=snake_case_ , images=snake_case_ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with self.assertRaises(snake_case_ ):
processor()
def A__ ( self ) -> str:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(snake_case_ )
__lowerCAmelCase = tokenizer.batch_decode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case_ , image_processor=snake_case_ )
__lowerCAmelCase = """lower newer"""
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=snake_case_ , images=snake_case_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 301
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-openqa''': (
'''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-reader''': (
'''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-openqa''': (
'''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-reader''': (
'''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'''
),
},
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': 512,
'''google/realm-cc-news-pretrained-encoder''': 512,
'''google/realm-cc-news-pretrained-scorer''': 512,
'''google/realm-cc-news-pretrained-openqa''': 512,
'''google/realm-orqa-nq-openqa''': 512,
'''google/realm-orqa-nq-reader''': 512,
'''google/realm-orqa-wq-openqa''': 512,
'''google/realm-orqa-wq-reader''': 512,
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-reader''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-reader''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_INIT_CONFIGURATION
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = RealmTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]:
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
__lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = strip_accents
__lowerCAmelCase = tokenize_chinese_chars
__lowerCAmelCase = normalizer_class(**snake_case_ )
__lowerCAmelCase = do_lower_case
def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple:
__lowerCAmelCase = PaddingStrategy.MAX_LENGTH
__lowerCAmelCase = text
__lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ )
__lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ )
__lowerCAmelCase = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(snake_case_ ):
if batch_text_pair is not None:
__lowerCAmelCase = batch_text_pair[idx]
else:
__lowerCAmelCase = None
__lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ )
__lowerCAmelCase = encoded_candidates.get("""input_ids""" )
__lowerCAmelCase = encoded_candidates.get("""attention_mask""" )
__lowerCAmelCase = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(snake_case_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(snake_case_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(snake_case_ )
__lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0}
return BatchEncoding(snake_case_ , tensor_type=snake_case_ )
def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]:
__lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
__lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 301
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
|
"""simple docstring"""
import math
def lowercase (_lowerCAmelCase ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_lowerCAmelCase = 0.1 ):
__lowerCAmelCase = 3
__lowerCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(_lowerCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
| 1
|
"""simple docstring"""
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase (_lowerCAmelCase ):
return getitem, k
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return setitem, k, v
def lowercase (_lowerCAmelCase ):
return delitem, k
def lowercase (_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ):
try:
return fun(_lowerCAmelCase , *_lowerCAmelCase ), None
except Exception as e:
return None, e
SCREAMING_SNAKE_CASE_ = (
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
)
SCREAMING_SNAKE_CASE_ = [
_set('''key_a''', '''val_a'''),
_set('''key_a''', '''val_b'''),
]
SCREAMING_SNAKE_CASE_ = [
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
_del('''key_a'''),
_del('''key_b'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
]
SCREAMING_SNAKE_CASE_ = [
_get('''key_a'''),
_del('''key_a'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
_del('''key_a'''),
_get('''key_a'''),
]
SCREAMING_SNAKE_CASE_ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
SCREAMING_SNAKE_CASE_ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('''key_a''', '''val_b'''),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = HashMap(initial_block_size=4 )
__lowerCAmelCase = {}
for _, (fun, *args) in enumerate(_lowerCAmelCase ):
__lowerCAmelCase , __lowerCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase )
assert my_res == py_res
assert str(_lowerCAmelCase ) == str(_lowerCAmelCase )
assert set(_lowerCAmelCase ) == set(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
assert set(my.items() ) == set(py.items() )
def lowercase ():
def is_public(_lowerCAmelCase ) -> bool:
return not name.startswith("""_""" )
__lowerCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )}
__lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )}
assert dict_public_names > hash_public_names
| 301
|
"""simple docstring"""
import os
from distutils.util import strtobool
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
for e in env_keys:
__lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) )
if val >= 0:
return val
return default
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return value
| 301
| 1
|
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = 0
_snake_case = False
_snake_case = 3.0
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> Any:
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case_ ).to_kwargs() , {"""a""": 2, """b""": True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} )
@require_cuda
def A__ ( self ) -> int:
# If no defaults are changed, `to_kwargs` returns an empty dict.
__lowerCAmelCase = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__lowerCAmelCase = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__lowerCAmelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , snake_case_ )
@require_multi_gpu
def A__ ( self ) -> int:
__lowerCAmelCase = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case_ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
SCREAMING_SNAKE_CASE_ = Accelerator(kwargs_handlers=[ddp_scaler])
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(100, 200)
SCREAMING_SNAKE_CASE_ = accelerator.prepare(model)
# Check the values changed in kwargs
SCREAMING_SNAKE_CASE_ = ''''''
SCREAMING_SNAKE_CASE_ = model.bucket_bytes_cap // (1_024 * 1_024)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCAmelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 301
| 1
|
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
SCREAMING_SNAKE_CASE_ = random.Random()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ):
if rng is None:
__lowerCAmelCase = global_rng
__lowerCAmelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2_000 , snake_case_=24 , snake_case_=24 , snake_case_=0.0 , snake_case_=16_000 , snake_case_=True , snake_case_=True , ) -> Tuple:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = min_seq_length
__lowerCAmelCase = max_seq_length
__lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__lowerCAmelCase = feature_size
__lowerCAmelCase = num_mel_bins
__lowerCAmelCase = padding_value
__lowerCAmelCase = sampling_rate
__lowerCAmelCase = return_attention_mask
__lowerCAmelCase = do_normalize
def A__ ( self ) -> List[str]:
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def A__ ( self , snake_case_=False , snake_case_=False ) -> Dict:
def _flatten(snake_case_ ):
return list(itertools.chain(*snake_case_ ) )
if equal_length:
__lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__lowerCAmelCase = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__lowerCAmelCase = [np.asarray(snake_case_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = SpeechaTextFeatureExtractor if is_speech_available() else None
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = SpeechaTextFeatureExtractionTester(self )
def A__ ( self , snake_case_ ) -> str:
self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1e-3 ) )
def A__ ( self ) -> Optional[Any]:
# Tests that all call wrap to encode_plus and batch_encode_plus
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = [np.asarray(snake_case_ ) for speech_input in speech_inputs]
# Test feature size
__lowerCAmelCase = feature_extractor(snake_case_ , padding=snake_case_ , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
__lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
__lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
# Test batched
__lowerCAmelCase = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features
__lowerCAmelCase = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ):
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__lowerCAmelCase = np.asarray(snake_case_ )
__lowerCAmelCase = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features
__lowerCAmelCase = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ):
self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
def A__ ( self ) -> Tuple:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = ["""longest""", """max_length""", """do_not_pad"""]
__lowerCAmelCase = [None, 16, None]
for max_length, padding in zip(snake_case_ , snake_case_ ):
__lowerCAmelCase = feature_extractor(
snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_attention_mask=snake_case_ )
__lowerCAmelCase = inputs.input_features
__lowerCAmelCase = inputs.attention_mask
__lowerCAmelCase = [np.sum(snake_case_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = ["""longest""", """max_length""", """do_not_pad"""]
__lowerCAmelCase = [None, 16, None]
for max_length, padding in zip(snake_case_ , snake_case_ ):
__lowerCAmelCase = feature_extractor(
snake_case_ , max_length=snake_case_ , padding=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ )
__lowerCAmelCase = inputs.input_features
__lowerCAmelCase = inputs.attention_mask
__lowerCAmelCase = [np.sum(snake_case_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def A__ ( self ) -> str:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feature_extractor(
snake_case_ , padding="""max_length""" , max_length=4 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , )
__lowerCAmelCase = inputs.input_features
__lowerCAmelCase = inputs.attention_mask
__lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feature_extractor(
snake_case_ , padding="""longest""" , max_length=4 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , )
__lowerCAmelCase = inputs.input_features
__lowerCAmelCase = inputs.attention_mask
__lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
__lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__lowerCAmelCase = feature_extractor(
snake_case_ , padding="""longest""" , max_length=16 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , )
__lowerCAmelCase = inputs.input_features
__lowerCAmelCase = inputs.attention_mask
__lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def A__ ( self ) -> Tuple:
import torch
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa )
__lowerCAmelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__lowerCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
__lowerCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def A__ ( self , snake_case_ ) -> Optional[int]:
from datasets import load_dataset
__lowerCAmelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
__lowerCAmelCase = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def A__ ( self ) -> List[str]:
# fmt: off
__lowerCAmelCase = np.array([
-1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241,
-1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128,
-1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625,
] )
# fmt: on
__lowerCAmelCase = self._load_datasamples(1 )
__lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowerCAmelCase = feature_extractor(snake_case_ , return_tensors="""pt""" ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , snake_case_ , atol=1e-4 ) )
| 301
|
"""simple docstring"""
from math import isqrt, loga
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = False
return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]]
def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ):
__lowerCAmelCase = degree * loga(_lowerCAmelCase )
__lowerCAmelCase = int(_lowerCAmelCase )
__lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase )
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = len(_lowerCAmelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 301
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = CycleDiffusionPipeline
_snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''negative_prompt''',
'''height''',
'''width''',
'''negative_prompt_embeds''',
}
_snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''}
_snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} )
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
def A__ ( self ) -> List[Any]:
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , )
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__lowerCAmelCase = CLIPTextModel(snake_case_ )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def A__ ( self , snake_case_ , snake_case_=0 ) -> Dict:
__lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
__lowerCAmelCase = image / 2 + 0.5
if str(snake_case_ ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(snake_case_ )
else:
__lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
__lowerCAmelCase = {
"""prompt""": """An astronaut riding an elephant""",
"""source_prompt""": """An astronaut riding a horse""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""eta""": 0.1,
"""strength""": 0.8,
"""guidance_scale""": 3,
"""source_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = CycleDiffusionPipeline(**snake_case_ )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = pipe(**snake_case_ )
__lowerCAmelCase = output.images
__lowerCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__lowerCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ) -> Dict:
__lowerCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(snake_case_ , """half""" ):
__lowerCAmelCase = module.half()
__lowerCAmelCase = CycleDiffusionPipeline(**snake_case_ )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = pipe(**snake_case_ )
__lowerCAmelCase = output.images
__lowerCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__lowerCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def A__ ( self ) -> Dict:
return super().test_save_load_local()
@unittest.skip("""non-deterministic pipeline""" )
def A__ ( self ) -> Any:
return super().test_inference_batch_single_identical()
@skip_mps
def A__ ( self ) -> Any:
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def A__ ( self ) -> Dict:
return super().test_save_load_optional_components()
@skip_mps
def A__ ( self ) -> Any:
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ) -> Dict:
__lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" )
__lowerCAmelCase = init_image.resize((512, 512) )
__lowerCAmelCase = """CompVis/stable-diffusion-v1-4"""
__lowerCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" )
__lowerCAmelCase = CycleDiffusionPipeline.from_pretrained(
snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision="""fp16""" )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = """A black colored car"""
__lowerCAmelCase = """A blue colored car"""
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = pipe(
prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , )
__lowerCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5e-1
def A__ ( self ) -> Tuple:
__lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" )
__lowerCAmelCase = init_image.resize((512, 512) )
__lowerCAmelCase = """CompVis/stable-diffusion-v1-4"""
__lowerCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" )
__lowerCAmelCase = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = """A black colored car"""
__lowerCAmelCase = """A blue colored car"""
__lowerCAmelCase = torch.manual_seed(0 )
__lowerCAmelCase = pipe(
prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , )
__lowerCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2e-2
| 301
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
| 1
|
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 301
|
"""simple docstring"""
from math import pi, sqrt
def lowercase (_lowerCAmelCase ):
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase ():
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: '''))
print(F"gamma({num}) = {gamma(num)}")
print('''\nEnter 0 to exit...''')
| 301
| 1
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=64 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_input_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_labels
__lowerCAmelCase = num_choices
__lowerCAmelCase = scope
__lowerCAmelCase = vocab_size - 1
def A__ ( self ) -> Tuple:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_input_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
if self.use_labels:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def A__ ( self ) -> Any:
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase = True
return config, input_ids, input_mask, token_labels
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> str:
__lowerCAmelCase = GPTNeoXModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )
__lowerCAmelCase = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
__lowerCAmelCase = True
__lowerCAmelCase = GPTNeoXModel(snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
__lowerCAmelCase = GPTNeoXForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = GPTNeoXForQuestionAnswering(snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = GPTNeoXForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
__lowerCAmelCase = self.num_labels
__lowerCAmelCase = GPTNeoXForTokenClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]:
__lowerCAmelCase = True
__lowerCAmelCase = GPTNeoXForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
# first forward pass
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ )
__lowerCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
__lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ )
__lowerCAmelCase = output_from_no_past["""hidden_states"""][0]
__lowerCAmelCase = model(
snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0]
# select random slice
__lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
_snake_case = (GPTNeoXForCausalLM,) if is_torch_available() else ()
_snake_case = (
{
'''feature-extraction''': GPTNeoXModel,
'''question-answering''': GPTNeoXForQuestionAnswering,
'''text-classification''': GPTNeoXForSequenceClassification,
'''text-generation''': GPTNeoXForCausalLM,
'''token-classification''': GPTNeoXForTokenClassification,
'''zero-shot''': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> List[str]:
__lowerCAmelCase = GPTNeoXModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=64 , num_attention_heads=8 )
def A__ ( self ) -> str:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ )
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ )
def A__ ( self ) -> str:
# This regression test was failing with PyTorch < 1.3
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowerCAmelCase = None
self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ )
def A__ ( self ) -> Tuple:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def A__ ( self ) -> List[Any]:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def A__ ( self , snake_case_ ) -> Tuple:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size )
__lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__lowerCAmelCase = GPTNeoXModel(snake_case_ )
original_model.to(snake_case_ )
original_model.eval()
__lowerCAmelCase = original_model(snake_case_ ).last_hidden_state
__lowerCAmelCase = original_model(snake_case_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0}
__lowerCAmelCase = GPTNeoXModel(snake_case_ )
scaled_model.to(snake_case_ )
scaled_model.eval()
__lowerCAmelCase = scaled_model(snake_case_ ).last_hidden_state
__lowerCAmelCase = scaled_model(snake_case_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A__ ( self ) -> int:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
__lowerCAmelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case_ )
__lowerCAmelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
__lowerCAmelCase = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
__lowerCAmelCase = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=20 )
__lowerCAmelCase = tokenizer.batch_decode(snake_case_ )[0]
self.assertEqual(snake_case_ , snake_case_ )
| 301
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowercase ():
# Get the sagemaker specific mp parameters from smp_options variable.
__lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def A__ ( self ) -> Tuple:
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , snake_case_ , )
@cached_property
def A__ ( self ) -> "torch.device":
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__lowerCAmelCase = torch.device("""cpu""" )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device("""cuda""" , snake_case_ )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(snake_case_ )
return device
@property
def A__ ( self ) -> Dict:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def A__ ( self ) -> Optional[int]:
return not is_sagemaker_model_parallel_available()
@property
def A__ ( self ) -> Tuple:
return False
| 301
| 1
|
"""simple docstring"""
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self ) -> Union[str, Any]:
__lowerCAmelCase = """"""
__lowerCAmelCase = """"""
__lowerCAmelCase = []
def A__ ( self , snake_case_ , snake_case_ ) -> int:
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.worda[m] == self.worda[n]:
__lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 )
else:
__lowerCAmelCase = self.__min_dist_top_down_dp(snake_case_ , n - 1 )
__lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , snake_case_ )
__lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 )
__lowerCAmelCase = 1 + min(snake_case_ , snake_case_ , snake_case_ )
return self.dp[m][n]
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = worda
__lowerCAmelCase = worda
__lowerCAmelCase = [[-1 for _ in range(len(snake_case_ ) )] for _ in range(len(snake_case_ ) )]
return self.__min_dist_top_down_dp(len(snake_case_ ) - 1 , len(snake_case_ ) - 1 )
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = worda
__lowerCAmelCase = worda
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )]
for i in range(m + 1 ):
for j in range(n + 1 ):
if i == 0: # first string is empty
__lowerCAmelCase = j
elif j == 0: # second string is empty
__lowerCAmelCase = i
elif worda[i - 1] == worda[j - 1]: # last characters are equal
__lowerCAmelCase = self.dp[i - 1][j - 1]
else:
__lowerCAmelCase = self.dp[i][j - 1]
__lowerCAmelCase = self.dp[i - 1][j]
__lowerCAmelCase = self.dp[i - 1][j - 1]
__lowerCAmelCase = 1 + min(snake_case_ , snake_case_ , snake_case_ )
return self.dp[m][n]
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = EditDistance()
print('''****************** Testing Edit Distance DP Algorithm ******************''')
print()
SCREAMING_SNAKE_CASE_ = input('''Enter the first string: ''').strip()
SCREAMING_SNAKE_CASE_ = input('''Enter the second string: ''').strip()
print()
print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}")
print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}")
print()
print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
| 301
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=6 , snake_case_=17 , snake_case_=23 , snake_case_=11 , snake_case_=True , ) -> List[Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = act_dim
__lowerCAmelCase = state_dim
__lowerCAmelCase = hidden_size
__lowerCAmelCase = max_length
__lowerCAmelCase = is_training
def A__ ( self ) -> Tuple:
__lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
__lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
__lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) )
__lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) )
__lowerCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 )
__lowerCAmelCase = random_attention_mask((self.batch_size, self.seq_length) )
__lowerCAmelCase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def A__ ( self ) -> Optional[Any]:
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Tuple:
__lowerCAmelCase = DecisionTransformerModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__lowerCAmelCase = model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.prepare_config_and_inputs()
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
) = config_and_inputs
__lowerCAmelCase = {
"""states""": states,
"""actions""": actions,
"""rewards""": rewards,
"""returns_to_go""": returns_to_go,
"""timesteps""": timesteps,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (DecisionTransformerModel,) if is_torch_available() else ()
_snake_case = ()
_snake_case = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
_snake_case = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = DecisionTransformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def A__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
@slow
def A__ ( self ) -> List[str]:
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase = DecisionTransformerModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""states""",
"""actions""",
"""rewards""",
"""returns_to_go""",
"""timesteps""",
"""attention_mask""",
]
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A__ ( self ) -> int:
__lowerCAmelCase = 2 # number of steps of autoregressive prediction we will perform
__lowerCAmelCase = 10 # defined by the RL environment, may be normalized
__lowerCAmelCase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" )
__lowerCAmelCase = model.to(snake_case_ )
__lowerCAmelCase = model.config
torch.manual_seed(0 )
__lowerCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case_ , dtype=torch.floataa ) # env.reset()
__lowerCAmelCase = torch.tensor(
[[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=snake_case_ )
__lowerCAmelCase = torch.tensor(snake_case_ , device=snake_case_ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
__lowerCAmelCase = state
__lowerCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=snake_case_ , dtype=torch.floataa )
__lowerCAmelCase = torch.zeros(1 , 0 , device=snake_case_ , dtype=torch.floataa )
__lowerCAmelCase = torch.tensor(0 , device=snake_case_ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case_ ):
__lowerCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case_ )] , dim=1 )
__lowerCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case_ )] , dim=1 )
__lowerCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model(
states=snake_case_ , actions=snake_case_ , rewards=snake_case_ , returns_to_go=snake_case_ , timesteps=snake_case_ , attention_mask=snake_case_ , return_dict=snake_case_ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case_ , dtype=torch.floataa ),
1.0,
False,
{},
)
__lowerCAmelCase = action_pred[0, -1]
__lowerCAmelCase = torch.cat([states, state] , dim=1 )
__lowerCAmelCase = returns_to_go[0, -1] - reward
__lowerCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
__lowerCAmelCase = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case_ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 301
|
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE_ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
__lowerCAmelCase = expected_configs[0]
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 301
| 1
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE_ = namedtuple('''covid_data''', '''cases deaths recovered''')
def lowercase (_lowerCAmelCase = "https://www.worldometers.info/coronavirus/" ):
__lowerCAmelCase = """//div[@class = \"maincounter-number\"]/span/text()"""
return covid_data(*html.fromstring(requests.get(_lowerCAmelCase ).content ).xpath(_lowerCAmelCase ) )
SCREAMING_SNAKE_CASE_ = '''Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}'''
print(fmt.format(*covid_stats()))
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__lowerCAmelCase = (3 * number) + 1
counter += 1
if inputa not in counters:
__lowerCAmelCase = counter
if counter > pre_counter:
__lowerCAmelCase = inputa
__lowerCAmelCase = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 301
| 1
|
"""simple docstring"""
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
pass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
pass
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self ) -> Any:
__lowerCAmelCase = [
[],
[],
[],
]
def A__ ( self , snake_case_ , snake_case_ ) -> None:
try:
if len(self.queues[priority] ) >= 100:
raise OverflowError("""Maximum queue size is 100""" )
self.queues[priority].append(snake_case_ )
except IndexError:
raise ValueError("""Valid priorities are 0, 1, and 2""" )
def A__ ( self ) -> int:
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError("""All queues are empty""" )
def __str__( self ) -> str:
return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) )
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
__lowerCAmelCase = []
def A__ ( self , snake_case_ ) -> None:
if len(self.queue ) == 100:
raise OverFlowError("""Maximum queue size is 100""" )
self.queue.append(snake_case_ )
def A__ ( self ) -> int:
if not self.queue:
raise UnderFlowError("""The queue is empty""" )
else:
__lowerCAmelCase = min(self.queue )
self.queue.remove(snake_case_ )
return data
def __str__( self ) -> str:
return str(self.queue )
def lowercase ():
__lowerCAmelCase = FixedPriorityQueue()
fpq.enqueue(0 , 10 )
fpq.enqueue(1 , 70 )
fpq.enqueue(0 , 100 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 64 )
fpq.enqueue(0 , 128 )
print(_lowerCAmelCase )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(_lowerCAmelCase )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def lowercase ():
__lowerCAmelCase = ElementPriorityQueue()
epq.enqueue(10 )
epq.enqueue(70 )
epq.enqueue(100 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(64 )
epq.enqueue(128 )
print(_lowerCAmelCase )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(_lowerCAmelCase )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 301
|
"""simple docstring"""
import sys
import turtle
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
SCREAMING_SNAKE_CASE_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 301
| 1
|
"""simple docstring"""
class lowerCAmelCase_ : # Public class to implement a graph
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
__lowerCAmelCase = row
__lowerCAmelCase = col
__lowerCAmelCase = graph
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# Checking all 8 elements surrounding nth element
__lowerCAmelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__lowerCAmelCase = [-1, 0, 1, -1, 1, -1, 0, 1]
__lowerCAmelCase = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , snake_case_ ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , snake_case_ )
def A__ ( self ) -> int: # And finally, count all islands.
__lowerCAmelCase = [[False for j in range(self.COL )] for i in range(self.ROW )]
__lowerCAmelCase = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(snake_case_ , snake_case_ , snake_case_ )
count += 1
return count
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__lowerCAmelCase = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
SCREAMING_SNAKE_CASE_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
return str(_lowerCAmelCase ) == str(_lowerCAmelCase )[::-1]
def lowercase (_lowerCAmelCase ):
return int(_lowerCAmelCase ) + int(str(_lowerCAmelCase )[::-1] )
def lowercase (_lowerCAmelCase = 1_0000 ):
__lowerCAmelCase = []
for num in range(1 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = num
while iterations < 50:
__lowerCAmelCase = sum_reverse(_lowerCAmelCase )
iterations += 1
if is_palindrome(_lowerCAmelCase ):
break
else:
lychrel_nums.append(_lowerCAmelCase )
return len(_lowerCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 301
|
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE_ = '''bart'''
SCREAMING_SNAKE_CASE_ = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
__lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
__lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
__lowerCAmelCase = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
__lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
__lowerCAmelCase = elia["""train_eli5"""]
__lowerCAmelCase = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , )
__lowerCAmelCase = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
__lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
SCREAMING_SNAKE_CASE_ = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE_ = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE_ = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''')
if demo_options:
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
SCREAMING_SNAKE_CASE_ = action_list.index(action_st)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages'''
else:
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
SCREAMING_SNAKE_CASE_ = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
SCREAMING_SNAKE_CASE_ = '''wiki40b'''
SCREAMING_SNAKE_CASE_ = '''dense'''
SCREAMING_SNAKE_CASE_ = '''beam'''
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 64
SCREAMING_SNAKE_CASE_ = 256
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''')
if generate_options:
SCREAMING_SNAKE_CASE_ = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = None
# start main text
SCREAMING_SNAKE_CASE_ = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
SCREAMING_SNAKE_CASE_ = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''')
else:
SCREAMING_SNAKE_CASE_ = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
SCREAMING_SNAKE_CASE_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE_ = support_list[:10]
SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
SCREAMING_SNAKE_CASE_ = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''')
SCREAMING_SNAKE_CASE_ = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE_ = find_nearest_training(question)
SCREAMING_SNAKE_CASE_ = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
SCREAMING_SNAKE_CASE_ = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
SCREAMING_SNAKE_CASE_ = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 301
| 1
|
"""simple docstring"""
from __future__ import annotations
from math import pi
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if inductance < 0:
raise ValueError("""Inductance cannot be negative""" )
if frequency < 0:
raise ValueError("""Frequency cannot be negative""" )
if reactance < 0:
raise ValueError("""Inductive reactance cannot be negative""" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ = getLogger(__name__)
SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ):
__lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" )
__lowerCAmelCase = str(_lowerCAmelCase )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
if fpaa:
__lowerCAmelCase = model.half()
__lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
__lowerCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase )
if prefix is None:
__lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ):
__lowerCAmelCase = [prefix + text for text in examples_chunk]
__lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase )
__lowerCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , )
__lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__lowerCAmelCase = int(time.time() - start_time ) # seconds
__lowerCAmelCase = len(_lowerCAmelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def lowercase (_lowerCAmelCase=True ):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args()
__lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
__lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowerCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__lowerCAmelCase = generate_summaries_or_translations(
_lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , )
if args.reference_path is None:
return {}
# Compute scores
__lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
__lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )]
__lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase )
scores.update(_lowerCAmelCase )
if args.dump_args:
scores.update(_lowerCAmelCase )
if args.info:
__lowerCAmelCase = args.info
if verbose:
print(_lowerCAmelCase )
if args.score_path is not None:
json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 301
| 1
|
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
SCREAMING_SNAKE_CASE_ = {'''facebook/blenderbot_small-90M''': 512}
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = set()
__lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCAmelCase = char
__lowerCAmelCase = set(_lowerCAmelCase )
return pairs
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self , snake_case_ , snake_case_ , snake_case_="__start__" , snake_case_="__end__" , snake_case_="__unk__" , snake_case_="__null__" , **snake_case_ , ) -> Optional[int]:
super().__init__(unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , pad_token=snake_case_ , **snake_case_ )
with open(snake_case_ , encoding="""utf-8""" ) as vocab_handle:
__lowerCAmelCase = json.load(snake_case_ )
__lowerCAmelCase = {v: k for k, v in self.encoder.items()}
with open(snake_case_ , encoding="""utf-8""" ) as merges_handle:
__lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1]
__lowerCAmelCase = [tuple(merge.split() ) for merge in merges]
__lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) )
__lowerCAmelCase = {}
@property
def A__ ( self ) -> int:
return len(self.encoder )
def A__ ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self , snake_case_ ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCAmelCase = re.sub("""([.,!?()])""" , r""" \1""" , snake_case_ )
__lowerCAmelCase = re.sub("""(')""" , r""" \1 """ , snake_case_ )
__lowerCAmelCase = re.sub(r"""\s{2,}""" , """ """ , snake_case_ )
if "\n" in token:
__lowerCAmelCase = token.replace("""\n""" , """ __newln__""" )
__lowerCAmelCase = token.split(""" """ )
__lowerCAmelCase = []
for token in tokens:
if not len(snake_case_ ):
continue
__lowerCAmelCase = token.lower()
__lowerCAmelCase = tuple(snake_case_ )
__lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
__lowerCAmelCase = get_pairs(snake_case_ )
if not pairs:
words.append(snake_case_ )
continue
while True:
__lowerCAmelCase = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCAmelCase , __lowerCAmelCase = bigram
__lowerCAmelCase = []
__lowerCAmelCase = 0
while i < len(snake_case_ ):
try:
__lowerCAmelCase = word.index(snake_case_ , snake_case_ )
new_word.extend(word[i:j] )
__lowerCAmelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCAmelCase = tuple(snake_case_ )
__lowerCAmelCase = new_word
if len(snake_case_ ) == 1:
break
else:
__lowerCAmelCase = get_pairs(snake_case_ )
__lowerCAmelCase = """@@ """.join(snake_case_ )
__lowerCAmelCase = word[:-4]
__lowerCAmelCase = word
words.append(snake_case_ )
return " ".join(snake_case_ )
def A__ ( self , snake_case_ ) -> List[str]:
__lowerCAmelCase = []
__lowerCAmelCase = re.findall(r"""\S+\n?""" , snake_case_ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case_ ).split(""" """ ) ) )
return split_tokens
def A__ ( self , snake_case_ ) -> int:
__lowerCAmelCase = token.lower()
return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) )
def A__ ( self , snake_case_ ) -> str:
return self.decoder.get(snake_case_ , self.unk_token )
def A__ ( self , snake_case_ ) -> str:
__lowerCAmelCase = """ """.join(snake_case_ ).replace("""@@ """ , """""" ).strip()
return out_string
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__lowerCAmelCase = os.path.join(
snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + """\n""" )
__lowerCAmelCase = 0
with open(snake_case_ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
__lowerCAmelCase = token_index
writer.write(""" """.join(snake_case_ ) + """\n""" )
index += 1
return vocab_file, merge_file
| 301
|
"""simple docstring"""
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f:
__lowerCAmelCase = json.load(_lowerCAmelCase )
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = []
for key, info in class_info.items():
__lowerCAmelCase = info["""name"""]
class_names.append(info["""name"""] )
if info["isthing"]:
thing_ids.append(int(_lowerCAmelCase ) )
__lowerCAmelCase = thing_ids
__lowerCAmelCase = class_names
return metadata
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = class_info_file
__lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ )
__lowerCAmelCase = num_text
__lowerCAmelCase = repo_path
# for the post_process_functions
__lowerCAmelCase = 2
__lowerCAmelCase = 10
__lowerCAmelCase = 10
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = num_labels
__lowerCAmelCase = do_reduce_labels
__lowerCAmelCase = ignore_index
def A__ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A__ ( self , snake_case_ , snake_case_=False ) -> Dict:
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
__lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = self.size["""shortest_edge"""]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0]
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1]
return expected_height, expected_width
def A__ ( self ) -> Tuple:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
_snake_case = image_processing_class
def A__ ( self ) -> str:
__lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def A__ ( self ) -> Dict:
return self.image_processing_tester.prepare_image_processor_dict()
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case_ , """image_std""" ) )
self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case_ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case_ , """size""" ) )
self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) )
self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) )
self.assertTrue(hasattr(snake_case_ , """num_text""" ) )
self.assertTrue(hasattr(snake_case_ , """repo_path""" ) )
self.assertTrue(hasattr(snake_case_ , """metadata""" ) )
self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) )
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Union[str, Any]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> List[str]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> Tuple:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowerCAmelCase = self.image_processing_tester.num_labels
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
if with_segmentation_maps:
__lowerCAmelCase = num_labels
if is_instance_map:
__lowerCAmelCase = list(range(snake_case_ ) ) * 2
__lowerCAmelCase = dict(enumerate(snake_case_ ) )
__lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations]
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , )
return inputs
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Optional[Any]:
def common(snake_case_=False , snake_case_=None ):
__lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ )
__lowerCAmelCase = inputs["""mask_labels"""]
__lowerCAmelCase = inputs["""class_labels"""]
__lowerCAmelCase = inputs["""pixel_values"""]
__lowerCAmelCase = inputs["""text_inputs"""]
# check the batch_size
for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=snake_case_ )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = np.zeros((20, 50) )
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = binary_mask_to_rle(snake_case_ )
self.assertEqual(len(snake_case_ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 301
| 1
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_=False , snake_case_=False , snake_case_=6.0 , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=None , snake_case_="fp4" , snake_case_=False , **snake_case_ , ) -> str:
__lowerCAmelCase = load_in_abit
__lowerCAmelCase = load_in_abit
__lowerCAmelCase = llm_inta_threshold
__lowerCAmelCase = llm_inta_skip_modules
__lowerCAmelCase = llm_inta_enable_fpaa_cpu_offload
__lowerCAmelCase = llm_inta_has_fpaa_weight
__lowerCAmelCase = bnb_abit_quant_type
__lowerCAmelCase = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
__lowerCAmelCase = torch.floataa
elif isinstance(snake_case_ , snake_case_ ):
__lowerCAmelCase = getattr(snake_case_ , snake_case_ )
elif isinstance(snake_case_ , torch.dtype ):
__lowerCAmelCase = bnb_abit_compute_dtype
else:
raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" )
self.post_init()
def A__ ( self ) -> Optional[Any]:
if not isinstance(self.llm_inta_threshold , snake_case_ ):
raise ValueError("""llm_int8_threshold must be a float""" )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , snake_case_ ):
raise ValueError("""llm_int8_skip_modules must be a list of strings""" )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , snake_case_ ):
raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" )
if not isinstance(self.llm_inta_has_fpaa_weight , snake_case_ ):
raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" )
if not isinstance(self.bnb_abit_quant_type , snake_case_ ):
raise ValueError("""bnb_4bit_quant_type must be a string""" )
if not isinstance(self.bnb_abit_use_double_quant , snake_case_ ):
raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" )
if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse(
"""0.39.0""" ):
raise ValueError(
"""4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" )
def A__ ( self ) -> str:
return self.load_in_abit or self.load_in_abit
def A__ ( self ) -> Optional[Any]:
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def A__ ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> Tuple:
__lowerCAmelCase = cls(**snake_case_ )
__lowerCAmelCase = []
for key, value in kwargs.items():
if hasattr(snake_case_ , snake_case_ ):
setattr(snake_case_ , snake_case_ , snake_case_ )
to_remove.append(snake_case_ )
for key in to_remove:
kwargs.pop(snake_case_ , snake_case_ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def A__ ( self , snake_case_ ) -> Optional[Any]:
with open(snake_case_ , """w""" , encoding="""utf-8""" ) as writer:
__lowerCAmelCase = self.to_dict()
__lowerCAmelCase = json.dumps(snake_case_ , indent=2 , sort_keys=snake_case_ ) + """\n"""
writer.write(snake_case_ )
def A__ ( self ) -> Dict[str, Any]:
__lowerCAmelCase = copy.deepcopy(self.__dict__ )
__lowerCAmelCase = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1]
return output
def __repr__( self ) -> List[Any]:
return f"""{self.__class__.__name__} {self.to_json_string()}"""
def A__ ( self , snake_case_ = True ) -> str:
if use_diff is True:
__lowerCAmelCase = self.to_diff_dict()
else:
__lowerCAmelCase = self.to_dict()
return json.dumps(snake_case_ , indent=2 , sort_keys=snake_case_ ) + "\n"
def A__ ( self ) -> Dict[str, Any]:
__lowerCAmelCase = self.to_dict()
# get the default config dict
__lowerCAmelCase = BitsAndBytesConfig().to_dict()
__lowerCAmelCase = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
__lowerCAmelCase = value
return serializable_config_dict
| 301
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while repunit:
__lowerCAmelCase = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(_lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 301
|
"""simple docstring"""
from __future__ import annotations
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = []
create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase )
return result
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_lowerCAmelCase , total_number - level + 2 ):
current_list.append(_lowerCAmelCase )
create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase )
current_list.pop()
def lowercase (_lowerCAmelCase ):
for i in total_list:
print(*_lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k)
print_all_state(total_list)
| 301
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = GPTSanJapaneseTokenizer
_snake_case = False
_snake_case = {'''do_clean_text''': False, '''add_prefix_space''': False}
def A__ ( self ) -> int:
super().setUp()
# fmt: off
__lowerCAmelCase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
__lowerCAmelCase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
__lowerCAmelCase = {"""unk_token""": """<unk>"""}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(snake_case_ ) )
def A__ ( self , **snake_case_ ) -> int:
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
__lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def A__ ( self , snake_case_ ) -> List[str]:
__lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
__lowerCAmelCase = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ )
return text, ids
def A__ ( self ) -> int:
pass # TODO add if relevant
def A__ ( self ) -> List[Any]:
pass # TODO add if relevant
def A__ ( self ) -> int:
pass # TODO add if relevant
def A__ ( self ) -> Any:
__lowerCAmelCase = self.get_tokenizer()
# Testing tokenization
__lowerCAmelCase = """こんにちは、世界。 こんばんは、㔺界。"""
__lowerCAmelCase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids without special tokens
__lowerCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids with special tokens
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.get_tokenizer()
# Testing tokenization
__lowerCAmelCase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
__lowerCAmelCase = """こんにちは、、、、世界。こんばんは、、、、世界。"""
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = tokenizer.decode(snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
@slow
def A__ ( self ) -> Tuple:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
__lowerCAmelCase = """こんにちは、世界。"""
__lowerCAmelCase = """こんばんは、㔺界。😀"""
__lowerCAmelCase = """こんにちは、世界。こんばんは、世界。😀"""
__lowerCAmelCase = tokenizer.encode(prefix_text + input_text )
__lowerCAmelCase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
__lowerCAmelCase = tokenizer.encode(snake_case_ , prefix_text=snake_case_ )
__lowerCAmelCase = tokenizer.decode(snake_case_ )
__lowerCAmelCase = tokenizer.decode(snake_case_ )
__lowerCAmelCase = tokenizer.decode(snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
@slow
def A__ ( self ) -> Any:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
__lowerCAmelCase = """こんにちは、世界。"""
__lowerCAmelCase = """こんばんは、㔺界。😀"""
__lowerCAmelCase = len(tokenizer.encode(snake_case_ ) ) - 2
__lowerCAmelCase = len(tokenizer.encode(snake_case_ ) ) - 2
__lowerCAmelCase = [1] + [0] * (len_prefix + len_text + 1)
__lowerCAmelCase = [1] * (len_prefix + len_text + 1) + [0]
__lowerCAmelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
__lowerCAmelCase = tokenizer(prefix_text + input_text ).token_type_ids
__lowerCAmelCase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
__lowerCAmelCase = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids
self.assertListEqual(snake_case_ , snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
@slow
def A__ ( self ) -> Dict:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
__lowerCAmelCase = tokenizer.encode("""あンいワ""" )
__lowerCAmelCase = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
__lowerCAmelCase = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) )
self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) )
self.assertNotEqual(snake_case_ , snake_case_ )
self.assertNotEqual(snake_case_ , snake_case_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
__lowerCAmelCase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
__lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ )
__lowerCAmelCase = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ )
# fmt: off
__lowerCAmelCase = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]]
__lowerCAmelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
__lowerCAmelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , snake_case_ )
self.assertListEqual(x_token.token_type_ids , snake_case_ )
self.assertListEqual(x_token.attention_mask , snake_case_ )
self.assertListEqual(x_token_a.input_ids , snake_case_ )
self.assertListEqual(x_token_a.token_type_ids , snake_case_ )
self.assertListEqual(x_token_a.attention_mask , snake_case_ )
def A__ ( self ) -> List[str]:
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def A__ ( self ) -> Any:
# tokenizer has no padding token
pass
| 301
|
"""simple docstring"""
import os
from pathlib import Path
def lowercase ():
from torch.utils.cpp_extension import load
__lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
__lowerCAmelCase = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 301
| 1
|
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = ['''image_processor''', '''tokenizer''']
_snake_case = '''FlavaImageProcessor'''
_snake_case = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> int:
__lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , snake_case_ , )
__lowerCAmelCase = kwargs.pop("""feature_extractor""" )
__lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(snake_case_ , snake_case_ )
__lowerCAmelCase = self.image_processor
def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> Optional[int]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__lowerCAmelCase = self.tokenizer(
text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , )
if images is not None:
__lowerCAmelCase = self.image_processor(
snake_case_ , return_image_mask=snake_case_ , return_codebook_pixels=snake_case_ , return_tensors=snake_case_ , **snake_case_ , )
if text is not None and images is not None:
encoding.update(snake_case_ )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ )
def A__ ( self , *snake_case_ , **snake_case_ ) -> Optional[int]:
return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ )
def A__ ( self , *snake_case_ , **snake_case_ ) -> Any:
return self.tokenizer.decode(*snake_case_ , **snake_case_ )
@property
def A__ ( self ) -> Dict:
__lowerCAmelCase = self.tokenizer.model_input_names
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A__ ( self ) -> Any:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case_ , )
return self.image_processor_class
@property
def A__ ( self ) -> Dict:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case_ , )
return self.image_processor
| 301
|
"""simple docstring"""
from __future__ import annotations
from statistics import mean
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
__lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i]
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__lowerCAmelCase = []
__lowerCAmelCase = -1
for i in range(_lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__lowerCAmelCase = 0
__lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7]
SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0]
SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(F"\nAverage waiting time = {mean(waiting_time):.5f}")
print(F"Average turnaround time = {mean(turn_around_time):.5f}")
| 301
| 1
|
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
@add_end_docstrings(A__ )
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
def __init__( self , **snake_case_ ) -> List[str]:
super().__init__(**snake_case_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , snake_case_ , **snake_case_ ) -> Union[str, Any]:
return super().__call__(snake_case_ , **snake_case_ )
def A__ ( self , **snake_case_ ) -> Dict:
__lowerCAmelCase = {}
if "candidate_labels" in kwargs:
__lowerCAmelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__lowerCAmelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def A__ ( self , snake_case_ , snake_case_=None , snake_case_="This is a photo of {}." ) -> Any:
__lowerCAmelCase = load_image(snake_case_ )
__lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework )
__lowerCAmelCase = candidate_labels
__lowerCAmelCase = [hypothesis_template.format(snake_case_ ) for x in candidate_labels]
__lowerCAmelCase = self.tokenizer(snake_case_ , return_tensors=self.framework , padding=snake_case_ )
__lowerCAmelCase = [text_inputs]
return inputs
def A__ ( self , snake_case_ ) -> Optional[int]:
__lowerCAmelCase = model_inputs.pop("""candidate_labels""" )
__lowerCAmelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , snake_case_ ):
__lowerCAmelCase = text_inputs[0]
else:
# Batching case.
__lowerCAmelCase = text_inputs[0][0]
__lowerCAmelCase = self.model(**snake_case_ , **snake_case_ )
__lowerCAmelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def A__ ( self , snake_case_ ) -> Dict:
__lowerCAmelCase = model_outputs.pop("""candidate_labels""" )
__lowerCAmelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
__lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 )
__lowerCAmelCase = probs.tolist()
if not isinstance(snake_case_ , snake_case_ ):
__lowerCAmelCase = [scores]
elif self.framework == "tf":
__lowerCAmelCase = stable_softmax(snake_case_ , axis=-1 )
__lowerCAmelCase = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__lowerCAmelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(snake_case_ , snake_case_ ) , key=lambda snake_case_ : -x[0] )
]
return result
| 301
|
"""simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = DebertaVaTokenizer
_snake_case = DebertaVaTokenizerFast
_snake_case = True
_snake_case = True
def A__ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self , snake_case_ ) -> List[Any]:
__lowerCAmelCase = """this is a test"""
__lowerCAmelCase = """this is a test"""
return input_text, output_text
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = """<pad>"""
__lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(snake_case_ ) , 30_001 )
def A__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> int:
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> Dict:
pass
def A__ ( self ) -> List[str]:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Dict:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Tuple:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = """This is a test"""
__lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289]
__lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
__lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ]
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ )
__lowerCAmelCase = tokenizer.encode("""sequence builders""" )
__lowerCAmelCase = tokenizer.encode("""multi-sequence build""" )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , )
@slow
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 301
| 1
|
"""simple docstring"""
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = CodeGenTokenizer
_snake_case = CodeGenTokenizerFast
_snake_case = True
_snake_case = {'''add_prefix_space''': True}
_snake_case = False
def A__ ( self ) -> Optional[int]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
__lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) )
__lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__lowerCAmelCase = {"""unk_token""": """<unk>"""}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(snake_case_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(snake_case_ ) )
def A__ ( self , **snake_case_ ) -> int:
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case_ )
def A__ ( self , **snake_case_ ) -> int:
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = """lower newer"""
__lowerCAmelCase = """lower newer"""
return input_text, output_text
def A__ ( self ) -> Dict:
__lowerCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowerCAmelCase = """lower newer"""
__lowerCAmelCase = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
__lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Dict:
if not self.test_rust_tokenizer:
return
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ )
__lowerCAmelCase = """lower newer"""
# Testing tokenization
__lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids without special tokens
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids with special tokens
__lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing the unknown token
__lowerCAmelCase = tokens + [rust_tokenizer.unk_token]
__lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
def A__ ( self , *snake_case_ , **snake_case_ ) -> Optional[Any]:
# It's very difficult to mix/test pretokenization with byte-level
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def A__ ( self , snake_case_=15 ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ )
# Simple input
__lowerCAmelCase = """This is a simple input"""
__lowerCAmelCase = ["""This is a simple input 1""", """This is a simple input 2"""]
__lowerCAmelCase = ("""This is a simple input""", """This is a pair""")
__lowerCAmelCase = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" )
# Simple input
self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" )
# Simple input
self.assertRaises(
snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , )
# Pair input
self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" )
# Pair input
self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" )
# Pair input
self.assertRaises(
snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
__lowerCAmelCase = """This is a simple input"""
__lowerCAmelCase = ["""This is a simple input looooooooong""", """This is a simple input"""]
__lowerCAmelCase = ("""This is a simple input""", """This is a pair""")
__lowerCAmelCase = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
__lowerCAmelCase = tokenizer.pad_token_id
__lowerCAmelCase = tokenizer(snake_case_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
__lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="""np""" )
__lowerCAmelCase = tokenizer(*snake_case_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
__lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def A__ ( self ) -> int:
__lowerCAmelCase = """$$$"""
__lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ )
__lowerCAmelCase = """This is a simple input"""
__lowerCAmelCase = ["""This is a simple input 1""", """This is a simple input 2"""]
__lowerCAmelCase = tokenizer.bos_token_id
__lowerCAmelCase = tokenizer(snake_case_ )
__lowerCAmelCase = tokenizer(snake_case_ )
self.assertEqual(out_s.input_ids[0] , snake_case_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__lowerCAmelCase = tokenizer.decode(out_s.input_ids )
__lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , snake_case_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def A__ ( self ) -> int:
__lowerCAmelCase = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" )
__lowerCAmelCase = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
__lowerCAmelCase = """\nif len_a > len_b: result = a\nelse: result = b"""
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""]
__lowerCAmelCase = tokenizer.decode(snake_case_ , truncate_before_pattern=snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
pass
| 301
|
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = """"""
for i in table:
res += inp[i - 1]
return res
def lowercase (_lowerCAmelCase ):
return data[1:] + data[0]
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = """"""
for i in range(len(_lowerCAmelCase ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = int("""0b""" + data[0] + data[-1] , 2 )
__lowerCAmelCase = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = message[:4]
__lowerCAmelCase = message[4:]
__lowerCAmelCase = apply_table(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = xor(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = apply_sbox(_lowerCAmelCase , temp[:4] ) # noqa: E741
__lowerCAmelCase = apply_sbox(_lowerCAmelCase , temp[4:] )
__lowerCAmelCase = """0""" * (2 - len(_lowerCAmelCase )) + l # noqa: E741
__lowerCAmelCase = """0""" * (2 - len(_lowerCAmelCase )) + r
__lowerCAmelCase = apply_table(l + r , _lowerCAmelCase )
__lowerCAmelCase = xor(_lowerCAmelCase , _lowerCAmelCase )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE_ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE_ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE_ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE_ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE_ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE_ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE_ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE_ = temp[:5]
SCREAMING_SNAKE_CASE_ = temp[5:]
SCREAMING_SNAKE_CASE_ = left_shift(left)
SCREAMING_SNAKE_CASE_ = left_shift(right)
SCREAMING_SNAKE_CASE_ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE_ = left_shift(left)
SCREAMING_SNAKE_CASE_ = left_shift(right)
SCREAMING_SNAKE_CASE_ = left_shift(left)
SCREAMING_SNAKE_CASE_ = left_shift(right)
SCREAMING_SNAKE_CASE_ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE_ = apply_table(message, IP)
SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE_ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE_ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE_ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE_ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE_ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 301
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-openqa''': (
'''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-reader''': (
'''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-openqa''': (
'''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-reader''': (
'''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'''
),
},
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': 512,
'''google/realm-cc-news-pretrained-encoder''': 512,
'''google/realm-cc-news-pretrained-scorer''': 512,
'''google/realm-cc-news-pretrained-openqa''': 512,
'''google/realm-orqa-nq-openqa''': 512,
'''google/realm-orqa-nq-reader''': 512,
'''google/realm-orqa-wq-openqa''': 512,
'''google/realm-orqa-wq-reader''': 512,
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-reader''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-reader''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_INIT_CONFIGURATION
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = RealmTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]:
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
__lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = strip_accents
__lowerCAmelCase = tokenize_chinese_chars
__lowerCAmelCase = normalizer_class(**snake_case_ )
__lowerCAmelCase = do_lower_case
def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple:
__lowerCAmelCase = PaddingStrategy.MAX_LENGTH
__lowerCAmelCase = text
__lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ )
__lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ )
__lowerCAmelCase = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(snake_case_ ):
if batch_text_pair is not None:
__lowerCAmelCase = batch_text_pair[idx]
else:
__lowerCAmelCase = None
__lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ )
__lowerCAmelCase = encoded_candidates.get("""input_ids""" )
__lowerCAmelCase = encoded_candidates.get("""attention_mask""" )
__lowerCAmelCase = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(snake_case_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(snake_case_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(snake_case_ )
__lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0}
return BatchEncoding(snake_case_ , tensor_type=snake_case_ )
def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]:
__lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
__lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 301
| 1
|
"""simple docstring"""
from __future__ import annotations
SCREAMING_SNAKE_CASE_ = list[list[int]]
# assigning initial values to the grid
SCREAMING_SNAKE_CASE_ = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
SCREAMING_SNAKE_CASE_ = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowercase (_lowerCAmelCase ):
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowercase (_lowerCAmelCase ):
if location := find_empty_location(_lowerCAmelCase ):
__lowerCAmelCase , __lowerCAmelCase = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = digit
if sudoku(_lowerCAmelCase ) is not None:
return grid
__lowerCAmelCase = 0
return None
def lowercase (_lowerCAmelCase ):
for row in grid:
for cell in row:
print(_lowerCAmelCase , end=""" """ )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('''\nExample grid:\n''' + '''=''' * 20)
print_solution(example_grid)
print('''\nExample grid solution:''')
SCREAMING_SNAKE_CASE_ = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('''Cannot find a solution.''')
| 301
|
"""simple docstring"""
import math
def lowercase (_lowerCAmelCase ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_lowerCAmelCase = 0.1 ):
__lowerCAmelCase = 3
__lowerCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(_lowerCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = KandinskyImgaImgPipeline
_snake_case = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case = False
@property
def A__ ( self ) -> Dict:
return 32
@property
def A__ ( self ) -> int:
return 32
@property
def A__ ( self ) -> List[Any]:
return self.time_input_dim
@property
def A__ ( self ) -> str:
return self.time_input_dim * 4
@property
def A__ ( self ) -> Dict:
return 100
@property
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ) -> List[str]:
torch.manual_seed(0 )
__lowerCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , )
__lowerCAmelCase = MultilingualCLIP(snake_case_ )
__lowerCAmelCase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ) -> Dict:
torch.manual_seed(0 )
__lowerCAmelCase = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__lowerCAmelCase = UNetaDConditionModel(**snake_case_ )
return model
@property
def A__ ( self ) -> List[Any]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ) -> List[Any]:
torch.manual_seed(0 )
__lowerCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.dummy_text_encoder
__lowerCAmelCase = self.dummy_tokenizer
__lowerCAmelCase = self.dummy_unet
__lowerCAmelCase = self.dummy_movq
__lowerCAmelCase = {
"""num_train_timesteps""": 1_000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00_085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__lowerCAmelCase = DDIMScheduler(**snake_case_ )
__lowerCAmelCase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , snake_case_ , snake_case_=0 ) -> str:
__lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
__lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ )
# create init_image
__lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
__lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCAmelCase = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" ).resize((256, 256) )
if str(snake_case_ ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(snake_case_ )
else:
__lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
__lowerCAmelCase = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def A__ ( self ) -> int:
__lowerCAmelCase = """cpu"""
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = self.pipeline_class(**snake_case_ )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = pipe(**self.get_dummy_inputs(snake_case_ ) )
__lowerCAmelCase = output.images
__lowerCAmelCase = pipe(
**self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0]
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = np.array(
[0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ) -> int:
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__lowerCAmelCase = """A red cartoon frog, 4k"""
__lowerCAmelCase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(snake_case_ )
__lowerCAmelCase = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__lowerCAmelCase = pipeline.to(snake_case_ )
pipeline.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase , __lowerCAmelCase = pipe_prior(
snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__lowerCAmelCase = pipeline(
snake_case_ , image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , )
__lowerCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case_ , snake_case_ )
| 301
|
"""simple docstring"""
import os
from distutils.util import strtobool
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
for e in env_keys:
__lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) )
if val >= 0:
return val
return default
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return value
| 301
| 1
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
SCREAMING_SNAKE_CASE_ = re.compile('''[^A-Za-z_0-9]''')
# parameters used in DuplicationIndex
SCREAMING_SNAKE_CASE_ = 10
SCREAMING_SNAKE_CASE_ = 256
def lowercase (_lowerCAmelCase ):
if len(_lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
__lowerCAmelCase = MinHash(num_perm=_lowerCAmelCase )
for token in set(_lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def lowercase (_lowerCAmelCase ):
return {t for t in NON_ALPHA.split(_lowerCAmelCase ) if len(t.strip() ) > 0}
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , *,
snake_case_ = 0.85 , ) -> Optional[int]:
__lowerCAmelCase = duplication_jaccard_threshold
__lowerCAmelCase = NUM_PERM
__lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
__lowerCAmelCase = defaultdict(snake_case_ )
def A__ ( self , snake_case_ , snake_case_ ) -> None:
__lowerCAmelCase = self._index.query(snake_case_ )
if code_key in self._index.keys:
print(f"""Duplicate key {code_key}""" )
return
self._index.insert(snake_case_ , snake_case_ )
if len(snake_case_ ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(snake_case_ )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(snake_case_ )
def A__ ( self ) -> List[List[Dict]]:
__lowerCAmelCase = []
for base, duplicates in self._duplicate_clusters.items():
__lowerCAmelCase = [base] + list(snake_case_ )
# reformat the cluster to be a list of dict
__lowerCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(snake_case_ )
return duplicate_clusters
def A__ ( self , snake_case_ ) -> None:
__lowerCAmelCase = self.get_duplicate_clusters()
with open(snake_case_ , """w""" ) as f:
json.dump(snake_case_ , snake_case_ )
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase , __lowerCAmelCase = element
__lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def lowercase (_lowerCAmelCase ):
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_lowerCAmelCase , max_queue_size=1_0000 ) , chunksize=100 , ):
if data is not None:
yield data
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCAmelCase ) ) , max_queue_size=100 ) ):
di.add(_lowerCAmelCase , _lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_tokens(_lowerCAmelCase )
__lowerCAmelCase = get_tokens(_lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
SCREAMING_SNAKE_CASE_ = None
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = []
for elementa in cluster:
__lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
__lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(_lowerCAmelCase , _lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
__lowerCAmelCase = 1
extremes.append(_lowerCAmelCase )
return extremes
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
global _shared_dataset
__lowerCAmelCase = dataset
__lowerCAmelCase = []
__lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_lowerCAmelCase , _lowerCAmelCase , ) , total=len(_lowerCAmelCase ) , ):
extremes_list.append(_lowerCAmelCase )
return extremes_list
def lowercase (_lowerCAmelCase , _lowerCAmelCase = 0.85 ):
__lowerCAmelCase = make_duplicate_clusters(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
__lowerCAmelCase = {}
__lowerCAmelCase = find_extremes(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
__lowerCAmelCase = element
__lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() )
__lowerCAmelCase = dataset.filter(lambda _lowerCAmelCase , _lowerCAmelCase : idx not in remove_indices , with_indices=_lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
__lowerCAmelCase = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
__lowerCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""]
print(f"""Original dataset size: {len(_lowerCAmelCase )}""" )
print(f"""Number of duplicate clusters: {len(_lowerCAmelCase )}""" )
print(f"""Files in duplicate cluster: {len(_lowerCAmelCase )}""" )
print(f"""Unique files in duplicate cluster: {len(_lowerCAmelCase )}""" )
print(f"""Filtered dataset size: {len(_lowerCAmelCase )}""" )
return ds_filter, duplicate_clusters
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCAmelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 301
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
# Construct model
if gpta_config_file == "":
__lowerCAmelCase = GPTaConfig()
else:
__lowerCAmelCase = GPTaConfig.from_json_file(_lowerCAmelCase )
__lowerCAmelCase = GPTaModel(_lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_gpta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model
__lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , _lowerCAmelCase )
print(f"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--gpt2_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 301
|
"""simple docstring"""
from math import isqrt, loga
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = False
return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]]
def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ):
__lowerCAmelCase = degree * loga(_lowerCAmelCase )
__lowerCAmelCase = int(_lowerCAmelCase )
__lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase )
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = len(_lowerCAmelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 301
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
SCREAMING_SNAKE_CASE_ = {'''mobilebert-uncased''': 512}
SCREAMING_SNAKE_CASE_ = {}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_INIT_CONFIGURATION
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = MobileBertTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Any:
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
__lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = strip_accents
__lowerCAmelCase = tokenize_chinese_chars
__lowerCAmelCase = normalizer_class(**snake_case_ )
__lowerCAmelCase = do_lower_case
def A__ ( self , snake_case_ , snake_case_=None ) -> List[Any]:
__lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
__lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 301
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
| 1
|
"""simple docstring"""
import math
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = []
__lowerCAmelCase = 2
__lowerCAmelCase = int(math.sqrt(_lowerCAmelCase ) ) # Size of every segment
__lowerCAmelCase = [True] * (end + 1)
__lowerCAmelCase = []
while start <= end:
if temp[start] is True:
in_prime.append(_lowerCAmelCase )
for i in range(start * start , end + 1 , _lowerCAmelCase ):
__lowerCAmelCase = False
start += 1
prime += in_prime
__lowerCAmelCase = end + 1
__lowerCAmelCase = min(2 * end , _lowerCAmelCase )
while low <= n:
__lowerCAmelCase = [True] * (high - low + 1)
for each in in_prime:
__lowerCAmelCase = math.floor(low / each ) * each
if t < low:
t += each
for j in range(_lowerCAmelCase , high + 1 , _lowerCAmelCase ):
__lowerCAmelCase = False
for j in range(len(_lowerCAmelCase ) ):
if temp[j] is True:
prime.append(j + low )
__lowerCAmelCase = high + 1
__lowerCAmelCase = min(high + end , _lowerCAmelCase )
return prime
print(sieve(10**6))
| 301
|
"""simple docstring"""
from math import pi, sqrt
def lowercase (_lowerCAmelCase ):
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase ():
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: '''))
print(F"gamma({num}) = {gamma(num)}")
print('''\nEnter 0 to exit...''')
| 301
| 1
|
"""simple docstring"""
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
def brightness(_lowerCAmelCase ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(_lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change brightness to 100
SCREAMING_SNAKE_CASE_ = change_brightness(img, 100)
brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
| 301
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowercase ():
# Get the sagemaker specific mp parameters from smp_options variable.
__lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def A__ ( self ) -> Tuple:
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , snake_case_ , )
@cached_property
def A__ ( self ) -> "torch.device":
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__lowerCAmelCase = torch.device("""cpu""" )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device("""cuda""" , snake_case_ )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(snake_case_ )
return device
@property
def A__ ( self ) -> Dict:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def A__ ( self ) -> Optional[int]:
return not is_sagemaker_model_parallel_available()
@property
def A__ ( self ) -> Tuple:
return False
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = int(_lowerCAmelCase )
# Initialize Result
__lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_lowerCAmelCase ):
# Find denominations
while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ):
total_value -= int(_lowerCAmelCase )
answer.append(_lowerCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
SCREAMING_SNAKE_CASE_ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F"Denomination {i}: ").strip()))
SCREAMING_SNAKE_CASE_ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
SCREAMING_SNAKE_CASE_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000]
SCREAMING_SNAKE_CASE_ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F"Following is minimal change for {value}: ")
SCREAMING_SNAKE_CASE_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 301
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
def get_matched_characters(_lowerCAmelCase , _lowerCAmelCase ) -> str:
__lowerCAmelCase = []
__lowerCAmelCase = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
__lowerCAmelCase = int(max(0 , i - limit ) )
__lowerCAmelCase = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(_lowerCAmelCase )
__lowerCAmelCase = f"""{_stra[0:_stra.index(_lowerCAmelCase )]} {_stra[_stra.index(_lowerCAmelCase ) + 1:]}"""
return "".join(_lowerCAmelCase )
# matching characters
__lowerCAmelCase = get_matched_characters(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = get_matched_characters(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = len(_lowerCAmelCase )
# transposition
__lowerCAmelCase = (
len([(ca, ca) for ca, ca in zip(_lowerCAmelCase , _lowerCAmelCase ) if ca != ca] ) // 2
)
if not match_count:
__lowerCAmelCase = 0.0
else:
__lowerCAmelCase = (
1
/ 3
* (
match_count / len(_lowerCAmelCase )
+ match_count / len(_lowerCAmelCase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
__lowerCAmelCase = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 301
|
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE_ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
__lowerCAmelCase = expected_configs[0]
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 301
| 1
|
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__)
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
# save results
if os.path.exists(_lowerCAmelCase ):
if os.path.exists(os.path.join(_lowerCAmelCase , """config.json""" ) ) and os.path.isfile(
os.path.join(_lowerCAmelCase , """config.json""" ) ):
os.remove(os.path.join(_lowerCAmelCase , """config.json""" ) )
if os.path.exists(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ) and os.path.isfile(
os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ):
os.remove(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) )
else:
os.makedirs(_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase = 2
if unlogit:
__lowerCAmelCase = torch.pow(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = p * torch.log(_lowerCAmelCase )
__lowerCAmelCase = 0
return -plogp.sum(dim=-1 )
def lowercase (_lowerCAmelCase ):
logger.info("""lv, h >\t""" + """\t""".join(f"""{x + 1}""" for x in range(len(_lowerCAmelCase ) ) ) )
for row in range(len(_lowerCAmelCase ) ):
if tensor.dtype != torch.long:
logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) )
else:
logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:d}""" for x in tensor[row].cpu().data ) )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=False ):
__lowerCAmelCase , __lowerCAmelCase = model.config.num_hidden_layers, model.config.num_attention_heads
__lowerCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
__lowerCAmelCase = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
if head_mask is None:
__lowerCAmelCase = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device )
head_mask.requires_grad_(requires_grad=_lowerCAmelCase )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__lowerCAmelCase = None
__lowerCAmelCase = 0.0
__lowerCAmelCase = 0.0
for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ):
__lowerCAmelCase = tuple(t.to(args.device ) for t in inputs )
((__lowerCAmelCase) , ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_lowerCAmelCase ):
__lowerCAmelCase = entropy(attn.detach() , _lowerCAmelCase )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__lowerCAmelCase = 2
__lowerCAmelCase = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
__lowerCAmelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("""Attention entropies""" )
print_ad_tensor(_lowerCAmelCase )
if compute_importance:
logger.info("""Head importance scores""" )
print_ad_tensor(_lowerCAmelCase )
logger.info("""Head ranked by importance scores""" )
__lowerCAmelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__lowerCAmelCase = torch.arange(
head_importance.numel() , device=args.device )
__lowerCAmelCase = head_ranks.view_as(_lowerCAmelCase )
print_ad_tensor(_lowerCAmelCase )
return attn_entropy, head_importance, total_loss
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase )
__lowerCAmelCase = 1 / loss # instead of downsteam score use the LM loss
logger.info("""Pruning: original score: %f, threshold: %f""" , _lowerCAmelCase , original_score * args.masking_threshold )
__lowerCAmelCase = torch.ones_like(_lowerCAmelCase )
__lowerCAmelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__lowerCAmelCase = original_score
while current_score >= original_score * args.masking_threshold:
__lowerCAmelCase = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__lowerCAmelCase = float("""Inf""" )
__lowerCAmelCase = head_importance.view(-1 ).sort()[1]
if len(_lowerCAmelCase ) <= num_to_mask:
print("""BREAK BY num_to_mask""" )
break
# mask heads
__lowerCAmelCase = current_heads_to_mask[:num_to_mask]
logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) )
__lowerCAmelCase = new_head_mask.view(-1 )
__lowerCAmelCase = 0.0
__lowerCAmelCase = new_head_mask.view_as(_lowerCAmelCase )
__lowerCAmelCase = new_head_mask.clone().detach()
print_ad_tensor(_lowerCAmelCase )
# Compute metric and head importance again
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase )
__lowerCAmelCase = 1 / loss
logger.info(
"""Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info("""Final head mask""" )
print_ad_tensor(_lowerCAmelCase )
np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() )
return head_mask
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = datetime.now()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase )
__lowerCAmelCase = 1 / loss
__lowerCAmelCase = datetime.now() - before_time
__lowerCAmelCase = sum(p.numel() for p in model.parameters() )
__lowerCAmelCase = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) )
}
for k, v in heads_to_prune.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [
v,
]
assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_lowerCAmelCase )
__lowerCAmelCase = sum(p.numel() for p in model.parameters() )
__lowerCAmelCase = datetime.now()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = compute_heads_importance(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , )
__lowerCAmelCase = 1 / loss
__lowerCAmelCase = datetime.now() - before_time
logger.info(
"""Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 100 , )
logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowerCAmelCase , _lowerCAmelCase )
logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 )
save_model(_lowerCAmelCase , args.output_dir )
def lowercase ():
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--data_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--output_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
# Other parameters
parser.add_argument(
"""--config_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--tokenizer_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--cache_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , )
parser.add_argument(
"""--data_subset""" , type=_lowerCAmelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" )
parser.add_argument(
"""--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
parser.add_argument(
"""--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" )
parser.add_argument(
"""--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , )
parser.add_argument(
"""--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" )
parser.add_argument(
"""--masking_threshold""" , default=0.9 , type=_lowerCAmelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , )
parser.add_argument(
"""--masking_amount""" , default=0.1 , type=_lowerCAmelCase , help="""Amount to heads to masking at each masking step.""" )
parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowerCAmelCase , help="""Metric to use for head masking.""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=_lowerCAmelCase , help=(
"""The maximum total input sequence length after WordPiece tokenization. \n"""
"""Sequences longer than this will be truncated, sequences shorter padded."""
) , )
parser.add_argument("""--batch_size""" , default=1 , type=_lowerCAmelCase , help="""Batch size.""" )
parser.add_argument("""--seed""" , type=_lowerCAmelCase , default=42 )
parser.add_argument("""--local_rank""" , type=_lowerCAmelCase , default=-1 , help="""local_rank for distributed training on gpus""" )
parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" )
parser.add_argument("""--server_ip""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" )
__lowerCAmelCase = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" )
__lowerCAmelCase = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__lowerCAmelCase = torch.device("""cuda""" , args.local_rank )
__lowerCAmelCase = 1
torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__lowerCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__lowerCAmelCase = nn.parallel.DistributedDataParallel(
_lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase )
elif args.n_gpu > 1:
__lowerCAmelCase = nn.DataParallel(_lowerCAmelCase )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase )
torch.save(_lowerCAmelCase , os.path.join(args.output_dir , """run_args.bin""" ) )
logger.info("""Training/evaluation parameters %s""" , _lowerCAmelCase )
# Prepare dataset
__lowerCAmelCase = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__lowerCAmelCase = (torch.from_numpy(_lowerCAmelCase ),)
__lowerCAmelCase = TensorDataset(*_lowerCAmelCase )
__lowerCAmelCase = RandomSampler(_lowerCAmelCase )
__lowerCAmelCase = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__lowerCAmelCase = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__lowerCAmelCase = (3 * number) + 1
counter += 1
if inputa not in counters:
__lowerCAmelCase = counter
if counter > pre_counter:
__lowerCAmelCase = inputa
__lowerCAmelCase = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 301
| 1
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
if len(_lowerCAmelCase ) < 2:
return collection
def circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool:
__lowerCAmelCase = False
if low == high:
return swapped
__lowerCAmelCase = low
__lowerCAmelCase = high
while left < right:
if collection[left] > collection[right]:
__lowerCAmelCase , __lowerCAmelCase = (
collection[right],
collection[left],
)
__lowerCAmelCase = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
__lowerCAmelCase , __lowerCAmelCase = (
collection[right + 1],
collection[left],
)
__lowerCAmelCase = True
__lowerCAmelCase = low + int((high - low) / 2 )
__lowerCAmelCase = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase )
return swapped or left_swap or right_swap
__lowerCAmelCase = True
while is_not_sorted is True:
__lowerCAmelCase = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 )
return collection
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by a comma:\n''').strip()
SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(''',''')]
print(circle_sort(unsorted))
| 301
|
"""simple docstring"""
import sys
import turtle
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
SCREAMING_SNAKE_CASE_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 301
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_swiftformer''': [
'''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SwiftFormerConfig''',
'''SwiftFormerOnnxConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SwiftFormerForImageClassification''',
'''SwiftFormerModel''',
'''SwiftFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__lowerCAmelCase = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
SCREAMING_SNAKE_CASE_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 301
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = StableDiffusionInstructPixaPixPipeline
_snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''}
_snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
def A__ ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__lowerCAmelCase = PNDMScheduler(skip_prk_steps=snake_case_ )
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__lowerCAmelCase = CLIPTextModel(snake_case_ )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def A__ ( self , snake_case_ , snake_case_=0 ) -> Union[str, Any]:
__lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ )
__lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCAmelCase = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" )
if str(snake_case_ ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(snake_case_ )
else:
__lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ )
__lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""image_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def A__ ( self ) -> Dict:
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**snake_case_ )
__lowerCAmelCase = sd_pipe.to(snake_case_ )
sd_pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = sd_pipe(**snake_case_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def A__ ( self ) -> int:
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**snake_case_ )
__lowerCAmelCase = sd_pipe.to(snake_case_ )
sd_pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = """french fries"""
__lowerCAmelCase = sd_pipe(**snake_case_ , negative_prompt=snake_case_ )
__lowerCAmelCase = output.images
__lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def A__ ( self ) -> Tuple:
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**snake_case_ )
__lowerCAmelCase = sd_pipe.to(snake_case_ )
sd_pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = [inputs["""prompt"""]] * 2
__lowerCAmelCase = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0
__lowerCAmelCase = torch.from_numpy(snake_case_ ).unsqueeze(0 ).to(snake_case_ )
__lowerCAmelCase = image / 2 + 0.5
__lowerCAmelCase = image.permute(0 , 3 , 1 , 2 )
__lowerCAmelCase = image.repeat(2 , 1 , 1 , 1 )
__lowerCAmelCase = sd_pipe(**snake_case_ ).images
__lowerCAmelCase = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
__lowerCAmelCase = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def A__ ( self ) -> Dict:
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = EulerAncestralDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**snake_case_ )
__lowerCAmelCase = sd_pipe.to(snake_case_ )
sd_pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = self.get_dummy_inputs(snake_case_ )
__lowerCAmelCase = sd_pipe(**snake_case_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = [round(snake_case_ , 4 ) for x in image_slice.flatten().tolist()]
print(""",""".join([str(snake_case_ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def A__ ( self ) -> str:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def A__ ( self ) -> Tuple:
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**snake_case_ )
__lowerCAmelCase = VaeImageProcessor(do_resize=snake_case_ , do_normalize=snake_case_ )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
__lowerCAmelCase = pipe(**self.get_dummy_inputs_by_type(snake_case_ , input_image_type="""pt""" ) )[0]
__lowerCAmelCase = components["""vae"""]
__lowerCAmelCase = self.get_dummy_inputs_by_type(snake_case_ , input_image_type="""pt""" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
__lowerCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode()
__lowerCAmelCase = pipe(**snake_case_ )[0]
__lowerCAmelCase = np.abs(out - out_latents_inputs ).max()
self.assertLess(snake_case_ , 1e-4 , """passing latents as image input generate different result from passing image""" )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> List[str]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self , snake_case_=0 ) -> Optional[Any]:
__lowerCAmelCase = torch.manual_seed(snake_case_ )
__lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" )
__lowerCAmelCase = {
"""prompt""": """turn him into a cyborg""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""image_guidance_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case_ )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**snake_case_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowerCAmelCase = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def A__ ( self ) -> str:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case_ )
__lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**snake_case_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowerCAmelCase = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def A__ ( self ) -> Any:
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case_ )
__lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**snake_case_ ).images
__lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowerCAmelCase = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = 0
def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None:
__lowerCAmelCase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__lowerCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowerCAmelCase = latents[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__lowerCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__lowerCAmelCase = latents[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__lowerCAmelCase = False
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case_ , torch_dtype=torch.floataa )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = self.get_inputs()
pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def A__ ( self ) -> Any:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=snake_case_ , torch_dtype=torch.floataa )
__lowerCAmelCase = pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**snake_case_ )
__lowerCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def A__ ( self ) -> Any:
__lowerCAmelCase = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
__lowerCAmelCase = inputs["""image"""].resize((504, 504) )
__lowerCAmelCase = """timbrooks/instruct-pix2pix"""
__lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained(
snake_case_ , safety_checker=snake_case_ , )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
pipe.enable_attention_slicing()
__lowerCAmelCase = pipe(**snake_case_ )
__lowerCAmelCase = output.images[0]
__lowerCAmelCase = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
__lowerCAmelCase = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 301
|
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE_ = '''bart'''
SCREAMING_SNAKE_CASE_ = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
__lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
__lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
__lowerCAmelCase = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
__lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
__lowerCAmelCase = elia["""train_eli5"""]
__lowerCAmelCase = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , )
__lowerCAmelCase = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
__lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
SCREAMING_SNAKE_CASE_ = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE_ = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE_ = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''')
if demo_options:
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
SCREAMING_SNAKE_CASE_ = action_list.index(action_st)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages'''
else:
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
SCREAMING_SNAKE_CASE_ = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
SCREAMING_SNAKE_CASE_ = '''wiki40b'''
SCREAMING_SNAKE_CASE_ = '''dense'''
SCREAMING_SNAKE_CASE_ = '''beam'''
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 64
SCREAMING_SNAKE_CASE_ = 256
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''')
if generate_options:
SCREAMING_SNAKE_CASE_ = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = None
# start main text
SCREAMING_SNAKE_CASE_ = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
SCREAMING_SNAKE_CASE_ = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''')
else:
SCREAMING_SNAKE_CASE_ = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
SCREAMING_SNAKE_CASE_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE_ = support_list[:10]
SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
SCREAMING_SNAKE_CASE_ = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''')
SCREAMING_SNAKE_CASE_ = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE_ = find_nearest_training(question)
SCREAMING_SNAKE_CASE_ = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
SCREAMING_SNAKE_CASE_ = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
SCREAMING_SNAKE_CASE_ = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 301
| 1
|
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowercase (_lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = math.inf , _lowerCAmelCase = -math.inf , _lowerCAmelCase = math.inf , _lowerCAmelCase = -math.inf , _lowerCAmelCase = False , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.01 , _lowerCAmelCase = 1 , ):
__lowerCAmelCase = False
__lowerCAmelCase = search_prob
__lowerCAmelCase = start_temperate
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = None
while not search_end:
__lowerCAmelCase = current_state.score()
if best_state is None or current_score > best_state.score():
__lowerCAmelCase = current_state
scores.append(_lowerCAmelCase )
iterations += 1
__lowerCAmelCase = None
__lowerCAmelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__lowerCAmelCase = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor
__lowerCAmelCase = neighbors.pop(_lowerCAmelCase )
__lowerCAmelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__lowerCAmelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__lowerCAmelCase = picked_neighbor
else:
__lowerCAmelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__lowerCAmelCase = picked_neighbor
__lowerCAmelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__lowerCAmelCase = True
else:
__lowerCAmelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_ = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_ = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (3 * x**2) - (6 * y)
SCREAMING_SNAKE_CASE_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_ = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F"{local_min.score()}"
)
SCREAMING_SNAKE_CASE_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE_ = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F"{local_min.score()}"
)
| 301
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ = getLogger(__name__)
SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ):
__lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" )
__lowerCAmelCase = str(_lowerCAmelCase )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
if fpaa:
__lowerCAmelCase = model.half()
__lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
__lowerCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase )
if prefix is None:
__lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ):
__lowerCAmelCase = [prefix + text for text in examples_chunk]
__lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase )
__lowerCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , )
__lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__lowerCAmelCase = int(time.time() - start_time ) # seconds
__lowerCAmelCase = len(_lowerCAmelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def lowercase (_lowerCAmelCase=True ):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args()
__lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
__lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowerCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__lowerCAmelCase = generate_summaries_or_translations(
_lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , )
if args.reference_path is None:
return {}
# Compute scores
__lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
__lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )]
__lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase )
scores.update(_lowerCAmelCase )
if args.dump_args:
scores.update(_lowerCAmelCase )
if args.info:
__lowerCAmelCase = args.info
if verbose:
print(_lowerCAmelCase )
if args.score_path is not None:
json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 301
| 1
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
|
"""simple docstring"""
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f:
__lowerCAmelCase = json.load(_lowerCAmelCase )
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = []
for key, info in class_info.items():
__lowerCAmelCase = info["""name"""]
class_names.append(info["""name"""] )
if info["isthing"]:
thing_ids.append(int(_lowerCAmelCase ) )
__lowerCAmelCase = thing_ids
__lowerCAmelCase = class_names
return metadata
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = class_info_file
__lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ )
__lowerCAmelCase = num_text
__lowerCAmelCase = repo_path
# for the post_process_functions
__lowerCAmelCase = 2
__lowerCAmelCase = 10
__lowerCAmelCase = 10
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = num_labels
__lowerCAmelCase = do_reduce_labels
__lowerCAmelCase = ignore_index
def A__ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A__ ( self , snake_case_ , snake_case_=False ) -> Dict:
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
__lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = self.size["""shortest_edge"""]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0]
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1]
return expected_height, expected_width
def A__ ( self ) -> Tuple:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
_snake_case = image_processing_class
def A__ ( self ) -> str:
__lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def A__ ( self ) -> Dict:
return self.image_processing_tester.prepare_image_processor_dict()
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case_ , """image_std""" ) )
self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case_ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case_ , """size""" ) )
self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) )
self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) )
self.assertTrue(hasattr(snake_case_ , """num_text""" ) )
self.assertTrue(hasattr(snake_case_ , """repo_path""" ) )
self.assertTrue(hasattr(snake_case_ , """metadata""" ) )
self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) )
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Union[str, Any]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> List[str]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> Tuple:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowerCAmelCase = self.image_processing_tester.num_labels
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
if with_segmentation_maps:
__lowerCAmelCase = num_labels
if is_instance_map:
__lowerCAmelCase = list(range(snake_case_ ) ) * 2
__lowerCAmelCase = dict(enumerate(snake_case_ ) )
__lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations]
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , )
return inputs
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Optional[Any]:
def common(snake_case_=False , snake_case_=None ):
__lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ )
__lowerCAmelCase = inputs["""mask_labels"""]
__lowerCAmelCase = inputs["""class_labels"""]
__lowerCAmelCase = inputs["""pixel_values"""]
__lowerCAmelCase = inputs["""text_inputs"""]
# check the batch_size
for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=snake_case_ )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = np.zeros((20, 50) )
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = binary_mask_to_rle(snake_case_ )
self.assertEqual(len(snake_case_ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 301
| 1
|
"""simple docstring"""
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
SCREAMING_SNAKE_CASE_ = '''src/transformers'''
SCREAMING_SNAKE_CASE_ = '''docs/source/en/tasks'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__lowerCAmelCase = f.readlines()
# Find the start prompt.
__lowerCAmelCase = 0
while not lines[start_index].startswith(_lowerCAmelCase ):
start_index += 1
start_index += 1
__lowerCAmelCase = start_index
while not lines[end_index].startswith(_lowerCAmelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE_ = direct_transformers_import(TRANSFORMERS_PATH)
SCREAMING_SNAKE_CASE_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
SCREAMING_SNAKE_CASE_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = TASK_GUIDE_TO_MODELS[task_guide]
__lowerCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() )
__lowerCAmelCase = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = _find_text_in_file(
filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , )
__lowerCAmelCase = get_model_list_for_task(_lowerCAmelCase )
if current_list != new_list:
if overwrite:
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
""" to fix this.""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
SCREAMING_SNAKE_CASE_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 301
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 301
| 1
|
"""simple docstring"""
from timeit import timeit
SCREAMING_SNAKE_CASE_ = {
'''MALAYALAM''': True,
'''String''': False,
'''rotor''': True,
'''level''': True,
'''A''': True,
'''BB''': True,
'''ABC''': False,
'''amanaplanacanalpanama''': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = len(_lowerCAmelCase ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = len(_lowerCAmelCase ) // 2
__lowerCAmelCase = len(_lowerCAmelCase )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(_lowerCAmelCase ) )
def lowercase (_lowerCAmelCase ):
if len(_lowerCAmelCase ) <= 2:
return True
if s[0] == s[len(_lowerCAmelCase ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def lowercase (_lowerCAmelCase ):
return s == s[::-1]
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = f"""all({name}(key) is value for key, value in test_data.items())"""
__lowerCAmelCase = f"""from __main__ import test_data, {name}"""
__lowerCAmelCase = 50_0000
__lowerCAmelCase = timeit(stmt=_lowerCAmelCase , setup=_lowerCAmelCase , number=_lowerCAmelCase )
print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F"{key:21} {value}")
print('''a man a plan a canal panama''')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('''is_palindrome_slice''')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('''is_palindrome''')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('''is_palindrome_recursive''')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('''is_palindrome_traversal''')
| 301
|
"""simple docstring"""
from __future__ import annotations
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = []
create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase )
return result
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_lowerCAmelCase , total_number - level + 2 ):
current_list.append(_lowerCAmelCase )
create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase )
current_list.pop()
def lowercase (_lowerCAmelCase ):
for i in total_list:
print(*_lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k)
print_all_state(total_list)
| 301
| 1
|
"""simple docstring"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowerCAmelCase = TOKENIZER_CLASSES
else:
__lowerCAmelCase = {tokenizer_name: getattr(_lowerCAmelCase , tokenizer_name + """Fast""" )}
logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowerCAmelCase = TOKENIZER_CLASSES[tokenizer_name]
__lowerCAmelCase = True
if checkpoint_name is None:
__lowerCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowerCAmelCase = [checkpoint_name]
logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowerCAmelCase = tokenizer_class.from_pretrained(_lowerCAmelCase , force_download=_lowerCAmelCase )
# Save fast tokenizer
logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowerCAmelCase , __lowerCAmelCase = checkpoint.split("""/""" )
__lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
elif add_prefix:
__lowerCAmelCase = checkpoint
__lowerCAmelCase = dump_path
else:
__lowerCAmelCase = None
__lowerCAmelCase = dump_path
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowerCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowerCAmelCase = file_path.split(_lowerCAmelCase )[-1][0]
if next_char == "/":
__lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = None
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowerCAmelCase = tokenizer.save_pretrained(
_lowerCAmelCase , legacy_format=_lowerCAmelCase , filename_prefix=_lowerCAmelCase )
logger.info(f"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith("""tokenizer.json""" ):
os.remove(_lowerCAmelCase )
logger.info(f"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 301
|
"""simple docstring"""
import os
from pathlib import Path
def lowercase ():
from torch.utils.cpp_extension import load
__lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
__lowerCAmelCase = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 301
| 1
|
"""simple docstring"""
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = ProphetNetTokenizer
_snake_case = False
def A__ ( self ) -> List[Any]:
super().setUp()
__lowerCAmelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def A__ ( self , snake_case_ ) -> Dict:
__lowerCAmelCase = """UNwant\u00E9d,running"""
__lowerCAmelCase = """unwanted, running"""
return input_text, output_text
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = self.tokenizer_class(self.vocab_file )
__lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 12, 10, 11] )
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def A__ ( self ) -> List[Any]:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def A__ ( self ) -> Dict:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ) -> str:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def A__ ( self ) -> str:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ) -> str:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def A__ ( self ) -> Tuple:
__lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def A__ ( self ) -> str:
__lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
__lowerCAmelCase = {}
for i, token in enumerate(snake_case_ ):
__lowerCAmelCase = i
__lowerCAmelCase = WordpieceTokenizer(vocab=snake_case_ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def A__ ( self ) -> Dict:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
__lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__lowerCAmelCase = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102]
__lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" )
self.assertIsInstance(snake_case_ , snake_case_ )
__lowerCAmelCase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(snake_case_ , snake_case_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def A__ ( self ) -> List[Any]:
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def A__ ( self ) -> Tuple:
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def A__ ( self ) -> List[Any]:
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def A__ ( self ) -> str:
__lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
__lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_ )
__lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 301
|
"""simple docstring"""
from __future__ import annotations
from statistics import mean
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
__lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i]
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__lowerCAmelCase = []
__lowerCAmelCase = -1
for i in range(_lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__lowerCAmelCase = 0
__lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7]
SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0]
SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(F"\nAverage waiting time = {mean(waiting_time):.5f}")
print(F"Average turnaround time = {mean(turn_around_time):.5f}")
| 301
| 1
|
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class lowercase_ :
'''simple docstring'''
__snake_case = None
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.feature_extraction_class(**self.feat_extract_dict )
a = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] , __UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
a = os.path.join(__UpperCAmelCase , '''feat_extract.json''' )
feat_extract_first.to_json_file(__UpperCAmelCase )
a = self.feature_extraction_class.from_json_file(__UpperCAmelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def __lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
a = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
a = feat_extract_first.save_pretrained(__UpperCAmelCase )[0]
check_json_file_has_correct_format(__UpperCAmelCase )
a = self.feature_extraction_class.from_pretrained(__UpperCAmelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.feature_extraction_class()
self.assertIsNotNone(__UpperCAmelCase )
| 0
|
"""simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = DebertaVaTokenizer
_snake_case = DebertaVaTokenizerFast
_snake_case = True
_snake_case = True
def A__ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self , snake_case_ ) -> List[Any]:
__lowerCAmelCase = """this is a test"""
__lowerCAmelCase = """this is a test"""
return input_text, output_text
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = """<pad>"""
__lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(snake_case_ ) , 30_001 )
def A__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> int:
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> Dict:
pass
def A__ ( self ) -> List[str]:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Dict:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Tuple:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = """This is a test"""
__lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289]
__lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
__lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ]
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ )
__lowerCAmelCase = tokenizer.encode("""sequence builders""" )
__lowerCAmelCase = tokenizer.encode("""multi-sequence build""" )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , )
@slow
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 301
| 0
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __A ( UpperCamelCase__ , unittest.TestCase ):
a__ : List[str] = BioGptTokenizer
a__ : int = False
def _lowercase (self : Optional[Any] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(__a ) )
def _lowercase (self : Union[str, Any] , __a : List[Any] ):
UpperCAmelCase_ = "lower newer"
UpperCAmelCase_ = "lower newer"
return input_text, output_text
def _lowercase (self : str ):
UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase_ = "lower"
UpperCAmelCase_ = ["low", "er</w>"]
UpperCAmelCase_ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase_ = tokens + ["<unk>"]
UpperCAmelCase_ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def _lowercase (self : Union[str, Any] ):
UpperCAmelCase_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a )
UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a )
UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 1
|
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 301
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : List[Any] = logging.get_logger(__name__)
lowerCamelCase : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Dict = """ctrl"""
lowerCAmelCase__ : List[Any] = ["""past_key_values"""]
lowerCAmelCase__ : str = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__(self : Tuple , UpperCamelCase : Optional[Any]=246534 , UpperCamelCase : Union[str, Any]=256 , UpperCamelCase : Optional[int]=1280 , UpperCamelCase : Any=8192 , UpperCamelCase : List[str]=48 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : str=1E-6 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Dict=True , **UpperCamelCase : Dict , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = n_positions
lowercase__ = n_embd
lowercase__ = n_layer
lowercase__ = n_head
lowercase__ = dff
lowercase__ = resid_pdrop
lowercase__ = embd_pdrop
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_range
lowercase__ = use_cache
super().__init__(**UpperCamelCase )
| 2
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-openqa''': (
'''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-reader''': (
'''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-openqa''': (
'''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-reader''': (
'''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'''
),
},
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': 512,
'''google/realm-cc-news-pretrained-encoder''': 512,
'''google/realm-cc-news-pretrained-scorer''': 512,
'''google/realm-cc-news-pretrained-openqa''': 512,
'''google/realm-orqa-nq-openqa''': 512,
'''google/realm-orqa-nq-reader''': 512,
'''google/realm-orqa-wq-openqa''': 512,
'''google/realm-orqa-wq-reader''': 512,
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-reader''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-reader''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_INIT_CONFIGURATION
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = RealmTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]:
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
__lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = strip_accents
__lowerCAmelCase = tokenize_chinese_chars
__lowerCAmelCase = normalizer_class(**snake_case_ )
__lowerCAmelCase = do_lower_case
def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple:
__lowerCAmelCase = PaddingStrategy.MAX_LENGTH
__lowerCAmelCase = text
__lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ )
__lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ )
__lowerCAmelCase = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(snake_case_ ):
if batch_text_pair is not None:
__lowerCAmelCase = batch_text_pair[idx]
else:
__lowerCAmelCase = None
__lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ )
__lowerCAmelCase = encoded_candidates.get("""input_ids""" )
__lowerCAmelCase = encoded_candidates.get("""attention_mask""" )
__lowerCAmelCase = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(snake_case_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(snake_case_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(snake_case_ )
__lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0}
return BatchEncoding(snake_case_ , tensor_type=snake_case_ )
def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]:
__lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
__lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 301
| 0
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase : Optional[Any] = None
lowercase : Tuple = logging.get_logger(__name__)
lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase : List[str] = {
'google/rembert': 2_56,
}
lowercase : Dict = '▁'
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = RemBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = do_lower_case
A : str = remove_space
A : int = keep_accents
A : Union[str, Any] = vocab_file
A : List[Any] = False if not self.vocab_file else True
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : List[Any] = [self.sep_token_id]
A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : Tuple = [self.sep_token_id]
A : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) )
return
A : Any = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 3
|
"""simple docstring"""
import math
def lowercase (_lowerCAmelCase ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_lowerCAmelCase = 0.1 ):
__lowerCAmelCase = 3
__lowerCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(_lowerCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
| 0
|
'''simple docstring'''
__snake_case ={
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_02_17_66_34e-19,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.3_5_5_8_1_8,
}
def a_ ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
lowerCAmelCase = (
f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
f'''Valid values are: {', '.join(lowerCamelCase )}'''
)
raise ValueError(lowerCamelCase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4
|
"""simple docstring"""
import os
from distutils.util import strtobool
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
for e in env_keys:
__lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) )
if val >= 0:
return val
return default
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return value
| 301
| 0
|
def UpperCAmelCase_ ( __snake_case ) -> int:
"""simple docstring"""
if not grid or not grid[0]:
raise TypeError('''The grid does not contain the appropriate information''' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
_lowercase =grid[0]
for row_n in range(1 , len(__snake_case ) ):
_lowercase =grid[row_n]
_lowercase =fill_row(__snake_case , __snake_case )
_lowercase =grid[row_n]
return grid[-1][-1]
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list:
"""simple docstring"""
current_row[0] += row_above[0]
for cell_n in range(1 , len(__snake_case ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCAmelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 301
| 0
|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
A : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 6
|
"""simple docstring"""
from math import isqrt, loga
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = False
return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]]
def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ):
__lowerCAmelCase = degree * loga(_lowerCAmelCase )
__lowerCAmelCase = int(_lowerCAmelCase )
__lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase )
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = len(_lowerCAmelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 301
| 0
|
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class A ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Any )-> List[str]:
'''simple docstring'''
A__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
A__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
A__ = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
A__ = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
A__ = model(lowercase_ )['last_hidden_state'].detach()
self.assertEqual(output.shape,lowercase_ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1],lowercase_,atol=1E-3 ) )
@slow
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
A__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
A__ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
A__ = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
A__ = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
A__ = model(lowercase_ )['last_hidden_state'].detach()
self.assertEqual(output.shape,lowercase_ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1],lowercase_,atol=1E-3 ) )
| 7
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
| 0
|
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # This function is recursive
snake_case_ = len(SCREAMING_SNAKE_CASE__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
snake_case_ = array[0]
snake_case_ = False
snake_case_ = 1
snake_case_ = []
while not is_found and i < array_length:
if array[i] < pivot:
snake_case_ = True
snake_case_ = [element for element in array[i:] if element >= array[i]]
snake_case_ = longest_subsequence(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ):
snake_case_ = temp_array
else:
i += 1
snake_case_ = [element for element in array[1:] if element >= pivot]
snake_case_ = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE__ )]
if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8
|
"""simple docstring"""
from math import pi, sqrt
def lowercase (_lowerCAmelCase ):
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase ():
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: '''))
print(F"gamma({num}) = {gamma(num)}")
print('''\nEnter 0 to exit...''')
| 301
| 0
|
class _lowercase :
'''simple docstring'''
def __init__( self :Optional[Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]:
# we need a list not a string, so do something to change the type
__SCREAMING_SNAKE_CASE : Optional[int] = arr.split(''',''' )
def __magic_name__( self :Optional[Any] ) -> List[Any]:
__SCREAMING_SNAKE_CASE : List[Any] = [int(self.array[0] )] * len(self.array )
__SCREAMING_SNAKE_CASE : List[str] = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
__SCREAMING_SNAKE_CASE : Dict = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
__SCREAMING_SNAKE_CASE : int = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__lowerCAmelCase : Any =input('please input some numbers:')
__lowerCAmelCase : Tuple =SubArray(whole_array)
__lowerCAmelCase : str =array.solve_sub_array()
print(('the results is:', re))
| 9
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowercase ():
# Get the sagemaker specific mp parameters from smp_options variable.
__lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def A__ ( self ) -> Tuple:
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , snake_case_ , )
@cached_property
def A__ ( self ) -> "torch.device":
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__lowerCAmelCase = torch.device("""cpu""" )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device("""cuda""" , snake_case_ )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(snake_case_ )
return device
@property
def A__ ( self ) -> Dict:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def A__ ( self ) -> Optional[int]:
return not is_sagemaker_model_parallel_available()
@property
def A__ ( self ) -> Tuple:
return False
| 301
| 0
|
def lowerCAmelCase_ ( __a , __a ) -> int:
"""simple docstring"""
if len(__a ) != len(__a ):
raise ValueError("String lengths must match!" )
lowerCamelCase__: Dict =0
for chara, chara in zip(__a , __a ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
| 0
|
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ):
_A : Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_A : Dict = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_A : Dict = format_type
def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ):
_A : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_A : Union[str, Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ):
_A : List[str] = get_format_type_from_alias(UpperCamelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**UpperCamelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 11
|
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE_ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
__lowerCAmelCase = expected_configs[0]
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 301
| 0
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase_ = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase_ = {
'distilbert-base-uncased': 512,
'distilbert-base-uncased-distilled-squad': 512,
'distilbert-base-cased': 512,
'distilbert-base-cased-distilled-squad': 512,
'distilbert-base-german-cased': 512,
'distilbert-base-multilingual-cased': 512,
}
UpperCAmelCase_ = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : Dict = ['input_ids', 'attention_mask']
UpperCAmelCase__ : Union[str, Any] = DistilBertTokenizer
def __init__( self: str , UpperCamelCase_: Dict=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Any="[UNK]" , UpperCamelCase_: Optional[int]="[SEP]" , UpperCamelCase_: Any="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Dict="[MASK]" , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=None , **UpperCamelCase_: Union[str, Any] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**UpperCamelCase_ )
__lowerCamelCase = do_lower_case
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None ):
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ):
__lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 12
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__lowerCAmelCase = (3 * number) + 1
counter += 1
if inputa not in counters:
__lowerCAmelCase = counter
if counter > pre_counter:
__lowerCAmelCase = inputa
__lowerCAmelCase = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 301
| 0
|
import math
import sys
def A_ ( _UpperCAmelCase ):
if number != int(_UpperCAmelCase ):
raise ValueError("the value of input must be a natural number" )
if number < 0:
raise ValueError("the value of input must not be a negative number" )
if number == 0:
return 1
SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1)
SCREAMING_SNAKE_CASE_: str = 0
for i in range(1 , number + 1 ):
SCREAMING_SNAKE_CASE_: str = sys.maxsize
SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) )
for j in range(1 , root + 1 ):
SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)]
SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Dict = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13
|
"""simple docstring"""
import sys
import turtle
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
SCREAMING_SNAKE_CASE_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 301
| 0
|
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : str = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = torch.load(lowercase_ , map_location='''cpu''' )
if "model" in sd.keys():
A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
A__ = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase_ )
A__ = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
A__ = sd.pop(lowercase_ )
A__ = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
A__ = sd[key]
# We split QKV in separate Q,K,V
A__ = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
A__ = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
A__ = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
A__ = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
A__ , A__ , A__ = torch.split(lowercase_ , depth // 3 , dim=0 )
A__ = q
A__ = k
A__ = v
del sd[key]
return sd
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]:
"""simple docstring"""
A__ = load_checkpoint(lowercase_ )
if config is not None:
A__ = OPTConfig.from_pretrained(lowercase_ )
else:
A__ = OPTConfig()
A__ = OPTModel(lowercase_ ).half().eval()
model.load_state_dict(lowercase_ )
# Check results
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
model.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
_lowerCamelCase : str = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 14
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__lowerCAmelCase = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
SCREAMING_SNAKE_CASE_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 301
| 0
|
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 15
|
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE_ = '''bart'''
SCREAMING_SNAKE_CASE_ = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
__lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
__lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
__lowerCAmelCase = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
__lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
__lowerCAmelCase = elia["""train_eli5"""]
__lowerCAmelCase = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , )
__lowerCAmelCase = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
__lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
SCREAMING_SNAKE_CASE_ = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE_ = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE_ = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''')
if demo_options:
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
SCREAMING_SNAKE_CASE_ = action_list.index(action_st)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages'''
else:
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
SCREAMING_SNAKE_CASE_ = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
SCREAMING_SNAKE_CASE_ = '''wiki40b'''
SCREAMING_SNAKE_CASE_ = '''dense'''
SCREAMING_SNAKE_CASE_ = '''beam'''
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 64
SCREAMING_SNAKE_CASE_ = 256
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''')
if generate_options:
SCREAMING_SNAKE_CASE_ = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = None
# start main text
SCREAMING_SNAKE_CASE_ = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
SCREAMING_SNAKE_CASE_ = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''')
else:
SCREAMING_SNAKE_CASE_ = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
SCREAMING_SNAKE_CASE_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE_ = support_list[:10]
SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
SCREAMING_SNAKE_CASE_ = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''')
SCREAMING_SNAKE_CASE_ = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE_ = find_nearest_training(question)
SCREAMING_SNAKE_CASE_ = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
SCREAMING_SNAKE_CASE_ = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
SCREAMING_SNAKE_CASE_ = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 301
| 0
|
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple[int, int]:
def constraint_to_multiple_of(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 , __lowerCamelCase=None ):
lowercase__ : Dict = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowercase__ : Optional[int] = math.floor(val / multiple ) * multiple
if x < min_val:
lowercase__ : int = math.ceil(val / multiple ) * multiple
return x
lowercase__ : Dict = (output_size, output_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) else output_size
lowercase__ , lowercase__ : str = get_image_size(__lowerCamelCase )
lowercase__ , lowercase__ : str = output_size
# determine new height and width
lowercase__ : str = output_height / input_height
lowercase__ : Any = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowercase__ : List[Any] = scale_width
else:
# fit height
lowercase__ : int = scale_height
lowercase__ : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCamelCase )
lowercase__ : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCamelCase )
return (new_height, new_width)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["pixel_values"]
def __init__( self : List[str] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Tuple ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : List[str] = size if size is not None else {'''height''': 384, '''width''': 384}
lowercase__ : Dict = get_size_dict(_snake_case )
lowercase__ : str = do_resize
lowercase__ : List[Any] = size
lowercase__ : Optional[Any] = keep_aspect_ratio
lowercase__ : Optional[int] = ensure_multiple_of
lowercase__ : Dict = resample
lowercase__ : Union[str, Any] = do_rescale
lowercase__ : Optional[int] = rescale_factor
lowercase__ : Any = do_normalize
lowercase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : str = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
lowercase__ : List[str] = get_resize_output_image_size(
_snake_case ,output_size=(size['''height'''], size['''width''']) ,keep_aspect_ratio=_snake_case ,multiple=_snake_case ,)
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : int ,) -> Tuple:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : int ,) -> PIL.Image.Image:
"""simple docstring"""
lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize
lowercase__ : Dict = size if size is not None else self.size
lowercase__ : Dict = get_size_dict(_snake_case )
lowercase__ : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowercase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowercase__ : List[Any] = resample if resample is not None else self.resample
lowercase__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : Tuple = image_std if image_std is not None else self.image_std
lowercase__ : int = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowercase__ : Tuple = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : Dict = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : str = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : List[Tuple] = None ) -> Tuple:
"""simple docstring"""
lowercase__ : List[str] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_snake_case ) != len(_snake_case ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(_snake_case ):
lowercase__ : Optional[int] = target_sizes.numpy()
lowercase__ : Tuple = []
for idx in range(len(_snake_case ) ):
lowercase__ : int = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_snake_case )
else:
lowercase__ : Optional[Any] = logits.argmax(dim=1 )
lowercase__ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 16
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ = getLogger(__name__)
SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ):
__lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" )
__lowerCAmelCase = str(_lowerCAmelCase )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
if fpaa:
__lowerCAmelCase = model.half()
__lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
__lowerCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase )
if prefix is None:
__lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ):
__lowerCAmelCase = [prefix + text for text in examples_chunk]
__lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase )
__lowerCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , )
__lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__lowerCAmelCase = int(time.time() - start_time ) # seconds
__lowerCAmelCase = len(_lowerCAmelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def lowercase (_lowerCAmelCase=True ):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args()
__lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
__lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowerCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__lowerCAmelCase = generate_summaries_or_translations(
_lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , )
if args.reference_path is None:
return {}
# Compute scores
__lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
__lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )]
__lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase )
scores.update(_lowerCAmelCase )
if args.dump_args:
scores.update(_lowerCAmelCase )
if args.info:
__lowerCAmelCase = args.info
if verbose:
print(_lowerCAmelCase )
if args.score_path is not None:
json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 301
| 0
|
"""simple docstring"""
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], UpperCAmelCase__ : str = "", UpperCAmelCase__ : bool = False ):
# Mapping from the first character of the prefix of the node
__lowercase = {}
# A node will be a leaf if the tree contains its word
__lowercase = is_leaf
__lowercase = prefix
def _lowercase ( self : Tuple, UpperCAmelCase__ : str ):
__lowercase = 0
for q, w in zip(self.prefix, UpperCAmelCase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def _lowercase ( self : Any, UpperCAmelCase__ : list[str] ):
for word in words:
self.insert(UpperCAmelCase__ )
def _lowercase ( self : int, UpperCAmelCase__ : str ):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
__lowercase = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
__lowercase = RadixNode(prefix=UpperCAmelCase__, is_leaf=UpperCAmelCase__ )
else:
__lowercase = self.nodes[word[0]]
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
__lowercase = remaining_prefix
__lowercase = self.nodes[matching_string[0]]
__lowercase = RadixNode(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = aux_node
if remaining_word == "":
__lowercase = True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase__ )
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
__lowercase = self.nodes.get(word[0], UpperCAmelCase__ )
if not incoming_node:
return False
else:
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : str ):
__lowercase = self.nodes.get(word[0], UpperCAmelCase__ )
if not incoming_node:
return False
else:
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
__lowercase = list(self.nodes.values() )[0]
__lowercase = merging_node.is_leaf
self.prefix += merging_node.prefix
__lowercase = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
__lowercase = False
# If there is 1 edge, we merge it with its child
else:
__lowercase = list(incoming_node.nodes.values() )[0]
__lowercase = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
__lowercase = merging_node.nodes
return True
def _lowercase ( self : Tuple, UpperCAmelCase__ : int = 0 ):
if self.prefix != "":
print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def _A ( ) -> bool:
'''simple docstring'''
__lowercase = "banana bananas bandana band apple all beast".split()
__lowercase = RadixNode()
root.insert_many(UpperCamelCase_)
assert all(root.find(UpperCamelCase_) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def _A ( ) -> None:
'''simple docstring'''
assert test_trie()
def _A ( ) -> None:
'''simple docstring'''
__lowercase = RadixNode()
__lowercase = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(UpperCamelCase_)
print("Words:", UpperCamelCase_)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| 17
|
"""simple docstring"""
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f:
__lowerCAmelCase = json.load(_lowerCAmelCase )
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = []
for key, info in class_info.items():
__lowerCAmelCase = info["""name"""]
class_names.append(info["""name"""] )
if info["isthing"]:
thing_ids.append(int(_lowerCAmelCase ) )
__lowerCAmelCase = thing_ids
__lowerCAmelCase = class_names
return metadata
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = class_info_file
__lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ )
__lowerCAmelCase = num_text
__lowerCAmelCase = repo_path
# for the post_process_functions
__lowerCAmelCase = 2
__lowerCAmelCase = 10
__lowerCAmelCase = 10
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = num_labels
__lowerCAmelCase = do_reduce_labels
__lowerCAmelCase = ignore_index
def A__ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A__ ( self , snake_case_ , snake_case_=False ) -> Dict:
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
__lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = self.size["""shortest_edge"""]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0]
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1]
return expected_height, expected_width
def A__ ( self ) -> Tuple:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
_snake_case = image_processing_class
def A__ ( self ) -> str:
__lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def A__ ( self ) -> Dict:
return self.image_processing_tester.prepare_image_processor_dict()
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case_ , """image_std""" ) )
self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case_ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case_ , """size""" ) )
self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) )
self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) )
self.assertTrue(hasattr(snake_case_ , """num_text""" ) )
self.assertTrue(hasattr(snake_case_ , """repo_path""" ) )
self.assertTrue(hasattr(snake_case_ , """metadata""" ) )
self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) )
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Union[str, Any]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> List[str]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> Tuple:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowerCAmelCase = self.image_processing_tester.num_labels
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
if with_segmentation_maps:
__lowerCAmelCase = num_labels
if is_instance_map:
__lowerCAmelCase = list(range(snake_case_ ) ) * 2
__lowerCAmelCase = dict(enumerate(snake_case_ ) )
__lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations]
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , )
return inputs
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Optional[Any]:
def common(snake_case_=False , snake_case_=None ):
__lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ )
__lowerCAmelCase = inputs["""mask_labels"""]
__lowerCAmelCase = inputs["""class_labels"""]
__lowerCAmelCase = inputs["""pixel_values"""]
__lowerCAmelCase = inputs["""text_inputs"""]
# check the batch_size
for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=snake_case_ )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = np.zeros((20, 50) )
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = binary_mask_to_rle(snake_case_ )
self.assertEqual(len(snake_case_ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 301
| 0
|
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__lowerCamelCase : Optional[int] = logging.get_logger(__name__)
__lowerCamelCase : Tuple = {
'''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class a__ ( A__ ):
A = 'perceiver'
def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],):
"""simple docstring"""
super().__init__(**_A )
SCREAMING_SNAKE_CASE_ : Dict = num_latents
SCREAMING_SNAKE_CASE_ : List[Any] = d_latents
SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model
SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks
SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block
SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads
SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads
SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels
SCREAMING_SNAKE_CASE_ : Any = v_channels
SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention
SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor
SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Any = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual
# masked language modeling attributes
SCREAMING_SNAKE_CASE_ : List[str] = vocab_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings
# image classification attributes
SCREAMING_SNAKE_CASE_ : Dict = image_size
# flow attributes
SCREAMING_SNAKE_CASE_ : List[Any] = train_size
# multimodal autoencoding attributes
SCREAMING_SNAKE_CASE_ : str = num_frames
SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame
SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch
SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape
class a__ ( A__ ):
@property
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"}
else:
SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
] )
@property
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
return 1E-4
def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,):
"""simple docstring"""
if isinstance(_A,_A ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension(
_A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A )
SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(
_A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A )
# Generate dummy inputs according to compute batch and sequence
SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size
SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) )
SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" )
return inputs
elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch )
SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A )
SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) )
SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" )
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
| 18
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 301
| 0
|
import math
from collections.abc import Iterator
from itertools import takewhile
def lowerCamelCase_ ( lowerCamelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase_ ( ):
lowerCamelCase_ = 2
while True:
if is_prime(lowerCamelCase__ ):
yield num
num += 1
def lowerCamelCase_ ( lowerCamelCase__ = 2_0_0_0_0_0_0 ):
return sum(takewhile(lambda lowerCamelCase__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 19
|
"""simple docstring"""
from __future__ import annotations
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = []
create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase )
return result
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_lowerCAmelCase , total_number - level + 2 ):
current_list.append(_lowerCAmelCase )
create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase )
current_list.pop()
def lowercase (_lowerCAmelCase ):
for i in total_list:
print(*_lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k)
print_all_state(total_list)
| 301
| 0
|
from pathlib import Path
import fire
from tqdm import tqdm
def _snake_case( SCREAMING_SNAKE_CASE__="ro" , SCREAMING_SNAKE_CASE__="en" , SCREAMING_SNAKE_CASE__="wmt16" , SCREAMING_SNAKE_CASE__=None ) -> None:
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
lowercase : Tuple = f"{src_lang}-{tgt_lang}"
print(f"Converting {dataset}-{pair}" )
lowercase : List[str] = datasets.load_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if save_dir is None:
lowercase : Tuple = f"{dataset}-{pair}"
lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ )
save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
for split in ds.keys():
print(f"Splitting {split} with {ds[split].num_rows} records" )
# to save to val.source, val.target like summary datasets
lowercase : Dict = """val""" if split == """validation""" else split
lowercase : Any = save_dir.joinpath(f"{fn}.source" )
lowercase : Union[str, Any] = save_dir.joinpath(f"{fn}.target" )
lowercase : Any = src_path.open("""w+""" )
lowercase : str = tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
lowercase : str = x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(f"Saved {dataset} dataset to {save_dir}" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 20
|
"""simple docstring"""
import os
from pathlib import Path
def lowercase ():
from torch.utils.cpp_extension import load
__lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
__lowerCAmelCase = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 301
| 0
|
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _lowerCamelCase( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
lowercase_ : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def UpperCamelCase_( ) -> Optional[int]:
if os.name == "nt":
_lowercase : List[str] = CursorInfo()
_lowercase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase_ , ctypes.byref(lowerCamelCase_ ) )
_lowercase : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase_ , ctypes.byref(lowerCamelCase_ ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def UpperCamelCase_( ) -> Tuple:
if os.name == "nt":
_lowercase : Dict = CursorInfo()
_lowercase : Any = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase_ , ctypes.byref(lowerCamelCase_ ) )
_lowercase : Dict = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase_ , ctypes.byref(lowerCamelCase_ ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def UpperCamelCase_( ) -> Tuple:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21
|
"""simple docstring"""
from __future__ import annotations
from statistics import mean
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
__lowerCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i]
__lowerCAmelCase = []
__lowerCAmelCase = 0
__lowerCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__lowerCAmelCase = []
__lowerCAmelCase = -1
for i in range(_lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
__lowerCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__lowerCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__lowerCAmelCase = 0
__lowerCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = [0] * no_of_processes
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7]
SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0]
SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(F"\nAverage waiting time = {mean(waiting_time):.5f}")
print(F"Average turnaround time = {mean(turn_around_time):.5f}")
| 301
| 0
|
'''simple docstring'''
from itertools import permutations
def UpperCAmelCase_ ( __lowercase : tuple ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
_UpperCAmelCase = [7, 11, 13, 17]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def UpperCAmelCase_ ( __lowercase : int = 10 ) -> int:
'''simple docstring'''
return sum(
int("".join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 22
|
"""simple docstring"""
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = DebertaVaTokenizer
_snake_case = DebertaVaTokenizerFast
_snake_case = True
_snake_case = True
def A__ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self , snake_case_ ) -> List[Any]:
__lowerCAmelCase = """this is a test"""
__lowerCAmelCase = """this is a test"""
return input_text, output_text
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = """<pad>"""
__lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(snake_case_ ) , 30_001 )
def A__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> int:
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def A__ ( self ) -> Dict:
pass
def A__ ( self ) -> List[str]:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Dict:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Tuple:
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Any:
# fmt: off
__lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """
__lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""]
# fmt: on
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> int:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = tokenizer.encode(snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> str:
__lowerCAmelCase = """This is a test"""
__lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289]
__lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""]
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ )
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# fmt: off
__lowerCAmelCase = """I was born in 92000, and this is falsé."""
__lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
__lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ]
__lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ]
# fmt: on
__lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
__lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = DebertaVaTokenizer(snake_case_ )
__lowerCAmelCase = tokenizer.encode("""sequence builders""" )
__lowerCAmelCase = tokenizer.encode("""multi-sequence build""" )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , )
@slow
def A__ ( self ) -> int:
# fmt: off
__lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 301
| 0
|
'''simple docstring'''
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = inspect.getfile(accelerate.test_utils )
lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] )
lowerCamelCase__ = ["""accelerate""", """launch"""]
lowerCamelCase__ = Path.home() / """.cache/huggingface/accelerate"""
lowerCamelCase__ = """default_config.yaml"""
lowerCamelCase__ = config_folder / config_file
lowerCamelCase__ = config_folder / """_default_config.yaml"""
lowerCamelCase__ = Path("""tests/test_configs""" )
@classmethod
def A ( cls : int ) -> Any:
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def A ( cls : Dict ) -> Optional[int]:
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def A ( self : Union[str, Any] ) -> Tuple:
UpperCAmelCase : Tuple = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def A ( self : Any ) -> Tuple:
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=__snake_case ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() )
def A ( self : str ) -> Optional[int]:
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = """test-tpu"""
lowerCamelCase__ = """us-central1-a"""
lowerCamelCase__ = """ls"""
lowerCamelCase__ = ["""accelerate""", """tpu-config"""]
lowerCamelCase__ = """cd /usr/share"""
lowerCamelCase__ = """tests/test_samples/test_command_file.sh"""
lowerCamelCase__ = """Running gcloud compute tpus tpu-vm ssh"""
def A ( self : List[Any] ) -> Tuple:
UpperCAmelCase : int = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Tuple = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : str ) -> Optional[Any]:
UpperCAmelCase : List[Any] = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase : Any = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : Optional[int] ) -> Tuple:
UpperCAmelCase : Any = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo "Hello World"''',
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> Tuple:
UpperCAmelCase : List[Any] = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : Tuple ) -> Any:
UpperCAmelCase : int = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : int ) -> Any:
UpperCAmelCase : Tuple = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> str:
UpperCAmelCase : Optional[int] = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
| 23
|
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 301
| 0
|
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 24
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
SCREAMING_SNAKE_CASE_ = {
'''vocab_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-openqa''': (
'''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-nq-reader''': (
'''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-openqa''': (
'''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'''
),
'''google/realm-orqa-wq-reader''': (
'''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'''
),
},
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': 512,
'''google/realm-cc-news-pretrained-encoder''': 512,
'''google/realm-cc-news-pretrained-scorer''': 512,
'''google/realm-cc-news-pretrained-openqa''': 512,
'''google/realm-orqa-nq-openqa''': 512,
'''google/realm-orqa-nq-reader''': 512,
'''google/realm-orqa-wq-openqa''': 512,
'''google/realm-orqa-wq-reader''': 512,
}
SCREAMING_SNAKE_CASE_ = {
'''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True},
'''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-nq-reader''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True},
'''google/realm-orqa-wq-reader''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_INIT_CONFIGURATION
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = RealmTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]:
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars
):
__lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) )
__lowerCAmelCase = do_lower_case
__lowerCAmelCase = strip_accents
__lowerCAmelCase = tokenize_chinese_chars
__lowerCAmelCase = normalizer_class(**snake_case_ )
__lowerCAmelCase = do_lower_case
def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple:
__lowerCAmelCase = PaddingStrategy.MAX_LENGTH
__lowerCAmelCase = text
__lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ )
__lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ )
__lowerCAmelCase = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(snake_case_ ):
if batch_text_pair is not None:
__lowerCAmelCase = batch_text_pair[idx]
else:
__lowerCAmelCase = None
__lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ )
__lowerCAmelCase = encoded_candidates.get("""input_ids""" )
__lowerCAmelCase = encoded_candidates.get("""attention_mask""" )
__lowerCAmelCase = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(snake_case_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(snake_case_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(snake_case_ )
__lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0}
return BatchEncoding(snake_case_ , tensor_type=snake_case_ )
def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]:
__lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
__lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 301
| 0
|
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
UpperCAmelCase__ : Tuple = random.Random()
if is_torch_available():
import torch
def lowercase_ ( _snake_case ,_snake_case=1.0 ,_snake_case=None ,_snake_case=None ):
if rng is None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = global_rng
SCREAMING_SNAKE_CASE__ : List[str] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4_00 , SCREAMING_SNAKE_CASE__=20_00 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1_60_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = parent
SCREAMING_SNAKE_CASE__ : int = batch_size
SCREAMING_SNAKE_CASE__ : Dict = min_seq_length
SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feature_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = padding_value
SCREAMING_SNAKE_CASE__ : Any = sampling_rate
SCREAMING_SNAKE_CASE__ : Optional[Any] = return_attention_mask
SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __magic_name__ (self , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ) -> List[Any]:
"""simple docstring"""
def _flatten(SCREAMING_SNAKE_CASE__ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) )
if equal_length:
SCREAMING_SNAKE_CASE__ : int = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE__ : str = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCAmelCase_ (a__ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : List[str] = ASTFeatureExtractor
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ASTFeatureExtractionTester(self )
def __magic_name__ (self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE__ : Dict = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE__ : int = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : str = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
@require_torch
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : Any = np.random.rand(1_00 ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ : List[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE__ : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE__ : Dict = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]:
"""simple docstring"""
from datasets import load_dataset
SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ds.sort("""id""" ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
@require_torch
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(
[-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776,
-1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133,
-1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936,
-0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] )
# fmt: on
SCREAMING_SNAKE_CASE__ : Optional[int] = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE__ : int = ASTFeatureExtractor()
SCREAMING_SNAKE_CASE__ : Dict = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape , (1, 10_24, 1_28) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
| 25
|
"""simple docstring"""
import math
def lowercase (_lowerCAmelCase ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_lowerCAmelCase = 0.1 ):
__lowerCAmelCase = 3
__lowerCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(_lowerCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301
| 0
|
from ..utils import DummyObject, requires_backends
class lowercase ( metaclass=UpperCamelCase__ ):
_a = ["note_seq"]
def __init__( self , *_a , **_a ) -> Dict:
requires_backends(self , ["""note_seq"""] )
@classmethod
def a__ ( cls , *_a , **_a ) -> Optional[int]:
requires_backends(cls , ["""note_seq"""] )
@classmethod
def a__ ( cls , *_a , **_a ) -> Tuple:
requires_backends(cls , ["""note_seq"""] )
| 26
|
"""simple docstring"""
import os
from distutils.util import strtobool
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
for e in env_keys:
__lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) )
if val >= 0:
return val
return default
def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ):
__lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) )
return value
| 301
| 0
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class __UpperCamelCase :
A_ = field(
metadata={"help": "The output directory where the model will be written."} , )
A_ = field(
metadata={
"help": (
"The encoder model checkpoint for weights initialization."
"Don't set if you want to train an encoder model from scratch."
)
} , )
A_ = field(
metadata={
"help": (
"The decoder model checkpoint for weights initialization."
"Don't set if you want to train a decoder model from scratch."
)
} , )
A_ = field(
default=lowerCAmelCase_ , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} )
A_ = field(
default=lowerCAmelCase_ , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} )
def lowerCamelCase ():
__a : Dict = HfArgumentParser((ModelArguments,) )
((__a) , ) : Tuple = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
__a : int = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
__a : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
__a : Dict = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
__a : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
__a : Dict = True
__a : List[Any] = True
__a : List[str] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_SCREAMING_SNAKE_CASE , decoder_config=_SCREAMING_SNAKE_CASE , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
__a : Dict = decoder_config.decoder_start_token_id
__a : Any = decoder_config.pad_token_id
if decoder_start_token_id is None:
__a : List[Any] = decoder_config.bos_token_id
if pad_token_id is None:
__a : Union[str, Any] = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
__a : List[str] = decoder_config.eos_token_id
__a : int = decoder_start_token_id
__a : List[str] = pad_token_id
__a : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
__a : str = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
__a : List[str] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 27
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCAmelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 301
| 0
|
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
_lowerCamelCase : Optional[int] = 25_6047
_lowerCamelCase : Dict = 25_6145
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = NllbTokenizer
_SCREAMING_SNAKE_CASE = NllbTokenizerFast
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = {}
def A ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase = NllbTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def A ( self : int ):
"""simple docstring"""
UpperCamelCase = NllbTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
UpperCamelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
UpperCamelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
UpperCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = tokenizer_r.save_pretrained(UpperCamelCase__ )
UpperCamelCase = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
UpperCamelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ )
# Checks everything loads correctly in the same way
UpperCamelCase = tokenizer_r.from_pretrained(UpperCamelCase__ )
UpperCamelCase = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
shutil.rmtree(UpperCamelCase__ )
# Save tokenizer rust, legacy_format=True
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ )
UpperCamelCase = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ )
# Checks everything loads correctly in the same way
UpperCamelCase = tokenizer_r.from_pretrained(UpperCamelCase__ )
UpperCamelCase = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
shutil.rmtree(UpperCamelCase__ )
# Save tokenizer rust, legacy_format=False
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ )
UpperCamelCase = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
UpperCamelCase = tokenizer_r.from_pretrained(UpperCamelCase__ )
UpperCamelCase = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
shutil.rmtree(UpperCamelCase__ )
@require_torch
def A ( self : Dict ):
"""simple docstring"""
if not self.test_seqaseq:
return
UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
# Longer text that will definitely require truncation.
UpperCamelCase = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'
' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'
' will only worsen the violence and misery for millions of people.',
]
UpperCamelCase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
try:
UpperCamelCase = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCamelCase__ , tgt_texts=UpperCamelCase__ , max_length=3 , max_target_length=1_0 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 1_0 )
# max_target_length will default to max_length if not specified
UpperCamelCase = tokenizer.prepare_seqaseq_batch(
UpperCamelCase__ , tgt_texts=UpperCamelCase__ , max_length=3 , return_tensors='pt' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
UpperCamelCase = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCamelCase__ , max_length=3 , max_target_length=1_0 , return_tensors='pt' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('decoder_input_ids' , UpperCamelCase__ )
@unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' )
def A ( self : Optional[int] ):
"""simple docstring"""
pass
def A ( self : Optional[int] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
UpperCamelCase = [AddedToken('<special>' , lstrip=UpperCamelCase__ )]
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ )
UpperCamelCase = tokenizer_r.encode('Hey this is a <special> token' )
UpperCamelCase = tokenizer_r.encode('<special>' , add_special_tokens=UpperCamelCase__ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , )
UpperCamelCase = self.tokenizer_class.from_pretrained(
UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ )
UpperCamelCase = tokenizer_p.encode('Hey this is a <special> token' )
UpperCamelCase = tokenizer_cr.encode('Hey this is a <special> token' )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = """facebook/nllb-200-distilled-600M"""
_SCREAMING_SNAKE_CASE = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
_SCREAMING_SNAKE_CASE = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"""
""" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"""
""" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
_SCREAMING_SNAKE_CASE = [
256_047,
16_297,
134_408,
8_165,
248_066,
14_734,
950,
1_135,
105_721,
3_573,
83,
27_352,
108,
49_486,
2,
]
@classmethod
def A ( cls : str ):
"""simple docstring"""
UpperCamelCase = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' )
UpperCamelCase = 1
return cls
def A ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 2_5_6_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 2_5_6_0_0_2 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 2_5_6_0_5_7 )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ )
def A ( self : Any ):
"""simple docstring"""
self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids )
# fmt: off
UpperCamelCase = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7]
# fmt: on
UpperCamelCase = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = ['this is gunna be a long sentence ' * 2_0]
assert isinstance(src_text[0] , UpperCamelCase__ )
UpperCamelCase = 1_0
UpperCamelCase = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , UpperCamelCase__ )
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
def A ( self : int ):
"""simple docstring"""
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [2_5_6_2_0_3, 3] )
def A ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = tempfile.mkdtemp()
UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(UpperCamelCase__ )
UpperCamelCase = NllbTokenizer.from_pretrained(UpperCamelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ )
@require_torch
def A ( self : Any ):
"""simple docstring"""
UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
UpperCamelCase = shift_tokens_right(
batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual((2, 1_5) , batch.input_ids.shape )
self.assertEqual((2, 1_5) , batch.attention_mask.shape )
UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def A ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors='pt' )
UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=1_0 , return_tensors='pt' )
UpperCamelCase = targets['input_ids']
UpperCamelCase = shift_tokens_right(
UpperCamelCase__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def A ( self : str ):
"""simple docstring"""
UpperCamelCase = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
nested_simplify(UpperCamelCase__ ) , {
# A, test, EOS, en_XX
'input_ids': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 2_5_6_0_5_7,
} , )
@require_torch
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] )
UpperCamelCase = False
UpperCamelCase = self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
| 28
|
"""simple docstring"""
from math import isqrt, loga
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = False
return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]]
def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ):
__lowerCAmelCase = degree * loga(_lowerCAmelCase )
__lowerCAmelCase = int(_lowerCAmelCase )
__lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase )
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = len(_lowerCAmelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 301
| 0
|
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ):
'''simple docstring'''
try:
UpperCAmelCase_ : int = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCAmelCase_ : Optional[int] = default
else:
# KEY is set, convert it to True or False.
try:
UpperCAmelCase_ : List[Any] = strtobool(__snake_case )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"If set, {key} must be yes or no." )
return _value
__UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False)
def lowercase__ ( __snake_case : int ):
'''simple docstring'''
return unittest.skip('Test was skipped' )(__snake_case )
def lowercase__ ( __snake_case : Tuple ):
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case )
def lowercase__ ( __snake_case : List[str] ):
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case )
def lowercase__ ( __snake_case : Tuple ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case )
def lowercase__ ( __snake_case : List[str] ):
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case )
def lowercase__ ( __snake_case : str ):
'''simple docstring'''
return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case )
def lowercase__ ( __snake_case : Tuple ):
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case )
def lowercase__ ( __snake_case : str ):
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case )
def lowercase__ ( __snake_case : Dict ):
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case )
def lowercase__ ( __snake_case : Tuple ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case )
def lowercase__ ( __snake_case : Dict ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case )
def lowercase__ ( __snake_case : Optional[int] ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case )
def lowercase__ ( __snake_case : int ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case )
def lowercase__ ( __snake_case : Dict ):
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case )
def lowercase__ ( __snake_case : Tuple ):
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case )
def lowercase__ ( __snake_case : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case )
def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ):
'''simple docstring'''
if test_case is None:
return partial(__snake_case , version=__snake_case )
return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case )
def lowercase__ ( __snake_case : str ):
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case )
def lowercase__ ( __snake_case : List[str] ):
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case )
def lowercase__ ( __snake_case : str ):
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case )
__UpperCAmelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase__ ( __snake_case : List[Any] ):
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case )
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
_snake_case : Union[str, Any] = True
@classmethod
def __UpperCAmelCase ( cls ) -> Union[str, Any]:
UpperCAmelCase_ : List[Any] = tempfile.mkdtemp()
@classmethod
def __UpperCAmelCase ( cls ) -> List[str]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCAmelCase ( self ) -> str:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob('**/*' ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(_UpperCamelCase )
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ) -> Optional[int]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any:
UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase__ ( __snake_case : int ):
'''simple docstring'''
UpperCAmelCase_ : int = AcceleratorState()
UpperCAmelCase_ : str = tensor[None].clone().to(state.device )
UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu()
UpperCAmelCase_ : List[Any] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __snake_case ):
return False
return True
class lowerCamelCase :
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any:
UpperCAmelCase_ : str = returncode
UpperCAmelCase_ : Optional[Any] = stdout
UpperCAmelCase_ : Optional[Any] = stderr
async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ):
'''simple docstring'''
while True:
UpperCAmelCase_ : Dict = await stream.readline()
if line:
callback(__snake_case )
else:
break
async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ):
'''simple docstring'''
if echo:
print('\nRunning: ' , ' '.join(__snake_case ) )
UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : str = []
def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ):
UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip()
sink.append(__snake_case )
if not quiet:
print(__snake_case , __snake_case , file=__snake_case )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ),
] , timeout=__snake_case , )
return _RunOutput(await p.wait() , __snake_case , __snake_case )
def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ):
'''simple docstring'''
UpperCAmelCase_ : str = asyncio.get_event_loop()
UpperCAmelCase_ : int = loop.run_until_complete(
_stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) )
UpperCAmelCase_ : int = ' '.join(__snake_case )
if result.returncode > 0:
UpperCAmelCase_ : int = '\n'.join(result.stderr )
raise RuntimeError(
F"'{cmd_str}' failed with returncode {result.returncode}\n\n"
F"The combined stderr from workers follows:\n{stderr}" )
return result
class lowerCamelCase (_snake_case ):
'''simple docstring'''
pass
def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ):
'''simple docstring'''
try:
UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__snake_case , 'decode' ):
UpperCAmelCase_ : str = output.decode('utf-8' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
| 29
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE_ = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple:
__lowerCAmelCase = d_model
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = prediction_length
__lowerCAmelCase = context_length
__lowerCAmelCase = cardinality
__lowerCAmelCase = num_time_features
__lowerCAmelCase = lags_sequence
__lowerCAmelCase = embedding_dimension
__lowerCAmelCase = is_training
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = context_length
__lowerCAmelCase = prediction_length + label_length
__lowerCAmelCase = label_length
__lowerCAmelCase = moving_average
__lowerCAmelCase = autocorrelation_factor
def A__ ( self ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A__ ( self , snake_case_ ) -> Any:
__lowerCAmelCase = config.context_length + max(config.lags_sequence )
__lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] )
__lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] )
__lowerCAmelCase = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.get_config()
__lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ )
return config, inputs_dict
def A__ ( self ) -> int:
__lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self , snake_case_ , snake_case_ ) -> int:
__lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval()
__lowerCAmelCase = model(**snake_case_ )
__lowerCAmelCase = outputs.encoder_last_hidden_state
__lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowerCAmelCase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowerCAmelCase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowerCAmelCase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowerCAmelCase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowerCAmelCase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(snake_case_ )
__lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ )
__lowerCAmelCase = decoder(
trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_snake_case = (AutoformerForPrediction,) if is_torch_available() else ()
_snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = AutoformerModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ )
def A__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def A__ ( self ) -> Dict:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
__lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ )
self.assertEqual(info["""missing_keys"""] , [] )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def A__ ( self ) -> Any:
pass
def A__ ( self ) -> str:
__lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) )
# The main input is the name of the argument after `self`
__lowerCAmelCase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , snake_case_ )
def A__ ( self ) -> Any:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase = model_class(snake_case_ )
__lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCAmelCase = [*signature.parameters.keys()]
__lowerCAmelCase = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCAmelCase = True
__lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ )
__lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ )
__lowerCAmelCase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowerCAmelCase = True
__lowerCAmelCase = False
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowerCAmelCase = len(snake_case_ )
__lowerCAmelCase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(snake_case_ , snake_case_ )
# decoder attentions
__lowerCAmelCase = outputs.decoder_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowerCAmelCase = outputs.cross_attentions
self.assertIsInstance(snake_case_ , (list, tuple) )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowerCAmelCase = True
__lowerCAmelCase = True
__lowerCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 2 , len(snake_case_ ) )
__lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowercase (_lowerCAmelCase="train-batch.pt" ):
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" )
__lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )
return batch
@require_torch
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self ) -> int:
__lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch()
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__lowerCAmelCase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> List[str]:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , snake_case_ )
__lowerCAmelCase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) )
def A__ ( self ) -> Any:
__lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ )
__lowerCAmelCase = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__lowerCAmelCase = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , snake_case_ )
__lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ )
__lowerCAmelCase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
| 301
| 0
|
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__a = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__a = [0, 2_5, 5_0]
__a = [2_5, 5_0, 7_5]
__a = fuzz.membership.trimf(X, abca)
__a = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__a = np.ones(7_5)
__a = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
__a = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__a = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__a = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__a = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 30
|
"""simple docstring"""
from math import pi, sqrt
def lowercase (_lowerCAmelCase ):
if num <= 0:
raise ValueError("""math domain error""" )
if num > 171.5:
raise OverflowError("""math range error""" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("""num must be an integer or a half-integer""" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase ():
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: '''))
print(F"gamma({num}) = {gamma(num)}")
print('''\nEnter 0 to exit...''')
| 301
| 0
|
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase_ :
'''simple docstring'''
@staticmethod
def _A ( *A : int , **A : Tuple ):
pass
@is_pipeline_test
@require_vision
class lowerCamelCase_ (unittest.TestCase ):
'''simple docstring'''
@require_torch
def _A ( self : str ):
_UpperCAmelCase : Tuple = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
_UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_UpperCAmelCase : Optional[Any] = image_classifier(A , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(A ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
_UpperCAmelCase : Tuple = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
] , )
@require_tf
def _A ( self : Optional[Any] ):
_UpperCAmelCase : Tuple = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
_UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_UpperCAmelCase : List[str] = image_classifier(A , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(A ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
_UpperCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
[
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
{"score": 0.333, "label": ANY(A )},
],
] , )
@slow
@require_torch
def _A ( self : int ):
_UpperCAmelCase : Tuple = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
_UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_UpperCAmelCase : List[str] = image_classifier(A , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(A ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
_UpperCAmelCase : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : Tuple = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
_UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_UpperCAmelCase : Optional[int] = image_classifier(A , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(A ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
_UpperCAmelCase : Dict = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 31
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowercase ():
# Get the sagemaker specific mp parameters from smp_options variable.
__lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__lowerCAmelCase = json.loads(_lowerCAmelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def A__ ( self ) -> Tuple:
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , snake_case_ , )
@cached_property
def A__ ( self ) -> "torch.device":
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__lowerCAmelCase = torch.device("""cpu""" )
__lowerCAmelCase = 0
elif is_sagemaker_model_parallel_available():
__lowerCAmelCase = smp.local_rank()
__lowerCAmelCase = torch.device("""cuda""" , snake_case_ )
__lowerCAmelCase = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__lowerCAmelCase = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__lowerCAmelCase = torch.device("""cuda""" , self.local_rank )
__lowerCAmelCase = 1
if device.type == "cuda":
torch.cuda.set_device(snake_case_ )
return device
@property
def A__ ( self ) -> Dict:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def A__ ( self ) -> Optional[int]:
return not is_sagemaker_model_parallel_available()
@property
def A__ ( self ) -> Tuple:
return False
| 301
| 0
|
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('socket.socket' )
@patch('builtins.open' )
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Any ) -> Optional[int]:
"""simple docstring"""
a_ : Any = Mock()
a_ : Dict = conn, Mock()
a_ : Optional[int] = iter([1, None] )
a_ : List[str] = lambda __A : next(__A )
# ===== invoke =====
send_file(filename='mytext.txt' , testing=__A )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 301
| 0
|
"""simple docstring"""
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__A : str = parser.parse_args()
__A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__A : Dict = CLIPImageProcessor()
__A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__A : List[str] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 33
|
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE_ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = path + """.py"""
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
__lowerCAmelCase = expected_configs[0]
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
__lowerCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 301
| 0
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _a ( unittest.TestCase ):
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''swish''' )
self.assertIsInstance(lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''silu''' )
self.assertIsInstance(lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''mish''' )
self.assertIsInstance(lowercase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''gelu''' )
self.assertIsInstance(lowercase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 34
|
"""simple docstring"""
def lowercase (_lowerCAmelCase = 100_0000 ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = {1: 1}
for inputa in range(2 , _lowerCAmelCase ):
__lowerCAmelCase = 0
__lowerCAmelCase = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__lowerCAmelCase = (3 * number) + 1
counter += 1
if inputa not in counters:
__lowerCAmelCase = counter
if counter > pre_counter:
__lowerCAmelCase = inputa
__lowerCAmelCase = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 301
| 0
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__a = logging.get_logger(__name__)
class UpperCAmelCase_ ( _a ):
"""simple docstring"""
def __init__( self : Tuple , *snake_case_ : List[Any] , **snake_case_ : Optional[int] ):
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , snake_case_ , )
super().__init__(*snake_case_ , **snake_case_ )
| 35
|
"""simple docstring"""
import sys
import turtle
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
SCREAMING_SNAKE_CASE_ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 301
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase_ ( a , a , a , unittest.TestCase):
lowerCamelCase__ = StableDiffusionInpaintPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCamelCase__ = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCamelCase__ = frozenset([])
def snake_case__ ( self):
'''simple docstring'''
torch.manual_seed(0)
_lowerCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=__a, )
_lowerCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=__a)
torch.manual_seed(0)
_lowerCAmelCase : List[Any] = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, )
torch.manual_seed(0)
_lowerCAmelCase : Union[str, Any] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=512, )
_lowerCAmelCase : List[Any] = CLIPTextModel(__a)
_lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
_lowerCAmelCase : str = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def snake_case__ ( self, __a, __a=0):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(__a)).to(__a)
_lowerCAmelCase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0]
_lowerCAmelCase : Dict = Image.fromarray(np.uinta(__a)).convert("RGB").resize((64, 64))
_lowerCAmelCase : List[str] = Image.fromarray(np.uinta(image + 4)).convert("RGB").resize((64, 64))
if str(__a).startswith("mps"):
_lowerCAmelCase : Any = torch.manual_seed(__a)
else:
_lowerCAmelCase : int = torch.Generator(device=__a).manual_seed(__a)
_lowerCAmelCase : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : Union[str, Any] = self.get_dummy_components()
_lowerCAmelCase : List[str] = StableDiffusionInpaintPipeline(**__a)
_lowerCAmelCase : Tuple = sd_pipe.to(__a)
sd_pipe.set_progress_bar_config(disable=__a)
_lowerCAmelCase : List[Any] = self.get_dummy_inputs(__a)
_lowerCAmelCase : Dict = sd_pipe(**__a).images
_lowerCAmelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : Tuple = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def snake_case__ ( self):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3)
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase):
def snake_case__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png")
_lowerCAmelCase : Dict = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png")
_lowerCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy")
_lowerCAmelCase : List[Any] = "stabilityai/stable-diffusion-2-inpainting"
_lowerCAmelCase : int = StableDiffusionInpaintPipeline.from_pretrained(__a, safety_checker=__a)
pipe.to(__a)
pipe.set_progress_bar_config(disable=__a)
pipe.enable_attention_slicing()
_lowerCAmelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench"
_lowerCAmelCase : List[str] = torch.manual_seed(0)
_lowerCAmelCase : Optional[Any] = pipe(
prompt=__a, image=__a, mask_image=__a, generator=__a, output_type="np", )
_lowerCAmelCase : Any = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 9E-3
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png")
_lowerCAmelCase : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png")
_lowerCAmelCase : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy")
_lowerCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting"
_lowerCAmelCase : Any = StableDiffusionInpaintPipeline.from_pretrained(
__a, torch_dtype=torch.floataa, safety_checker=__a, )
pipe.to(__a)
pipe.set_progress_bar_config(disable=__a)
pipe.enable_attention_slicing()
_lowerCAmelCase : Optional[Any] = "Face of a yellow cat, high resolution, sitting on a park bench"
_lowerCAmelCase : Optional[Any] = torch.manual_seed(0)
_lowerCAmelCase : Tuple = pipe(
prompt=__a, image=__a, mask_image=__a, generator=__a, output_type="np", )
_lowerCAmelCase : List[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5E-1
def snake_case__ ( self):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase : int = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png")
_lowerCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png")
_lowerCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting"
_lowerCAmelCase : Tuple = PNDMScheduler.from_pretrained(__a, subfolder="scheduler")
_lowerCAmelCase : int = StableDiffusionInpaintPipeline.from_pretrained(
__a, safety_checker=__a, scheduler=__a, torch_dtype=torch.floataa, )
pipe.to(__a)
pipe.set_progress_bar_config(disable=__a)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench"
_lowerCAmelCase : int = torch.manual_seed(0)
_lowerCAmelCase : Union[str, Any] = pipe(
prompt=__a, image=__a, mask_image=__a, generator=__a, num_inference_steps=2, output_type="np", )
_lowerCAmelCase : str = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 36
|
"""simple docstring"""
def lowercase (_lowerCAmelCase ):
__lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__lowerCAmelCase = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
SCREAMING_SNAKE_CASE_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 301
| 0
|
'''simple docstring'''
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
_lowerCAmelCase = {
'''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'''
}
def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "dhaka" , UpperCamelCase = 5 ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = min(UpperCamelCase , 50 ) # Prevent abuse!
lowerCAmelCase__ : List[Any] = {
"""q""": query,
"""tbm""": """isch""",
"""hl""": """en""",
"""ijn""": """0""",
}
lowerCAmelCase__ : List[Any] = requests.get("""https://www.google.com/search""" , params=UpperCamelCase , headers=UpperCamelCase )
lowerCAmelCase__ : List[Any] = BeautifulSoup(html.text , """html.parser""" )
lowerCAmelCase__ : int = """""".join(
re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
lowerCAmelCase__ : Dict = json.dumps(UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = json.loads(UpperCamelCase )
lowerCAmelCase__ : Dict = re.findall(
R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , UpperCamelCase , )
if not matched_google_image_data:
return 0
lowerCAmelCase__ : Tuple = re.sub(
R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(UpperCamelCase ) , )
lowerCAmelCase__ : Union[str, Any] = re.findall(
R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , UpperCamelCase , )
for index, fixed_full_res_image in enumerate(UpperCamelCase ):
if index >= max_images:
return index
lowerCAmelCase__ : Optional[int] = bytes(UpperCamelCase , """ascii""" ).decode(
"""unicode-escape""" )
lowerCAmelCase__ : Optional[Any] = bytes(UpperCamelCase , """ascii""" ).decode(
"""unicode-escape""" )
lowerCAmelCase__ : Tuple = urllib.request.build_opener()
lowerCAmelCase__ : int = [
(
"""User-Agent""",
"""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
)
]
urllib.request.install_opener(UpperCamelCase )
lowerCAmelCase__ : List[Any] = f"""query_{query.replace(' ' , '_' )}"""
if not os.path.exists(UpperCamelCase ):
os.makedirs(UpperCamelCase )
urllib.request.urlretrieve( # noqa: S310
UpperCamelCase , f"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
_lowerCAmelCase = download_images_from_google_query(sys.argv[1])
print(F"""{image_count} images were downloaded to disk.""")
except IndexError:
print('''Please provide a search term.''')
raise
| 37
|
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE_ = '''bart'''
SCREAMING_SNAKE_CASE_ = True
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
__lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
__lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
__lowerCAmelCase = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase )
wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_lowerCAmelCase )
def lowercase ():
__lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
__lowerCAmelCase = elia["""train_eli5"""]
__lowerCAmelCase = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
__lowerCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(_lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data()
def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]]
return nn_examples
def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
_lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , )
__lowerCAmelCase = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
__lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None),
} )
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
SCREAMING_SNAKE_CASE_ = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE_ = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE_ = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''')
if demo_options:
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
SCREAMING_SNAKE_CASE_ = action_list.index(action_st)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages'''
else:
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
SCREAMING_SNAKE_CASE_ = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
SCREAMING_SNAKE_CASE_ = '''wiki40b'''
SCREAMING_SNAKE_CASE_ = '''dense'''
SCREAMING_SNAKE_CASE_ = '''beam'''
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 64
SCREAMING_SNAKE_CASE_ = 256
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''')
if generate_options:
SCREAMING_SNAKE_CASE_ = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE_ = None
# start main text
SCREAMING_SNAKE_CASE_ = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
SCREAMING_SNAKE_CASE_ = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''')
else:
SCREAMING_SNAKE_CASE_ = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
SCREAMING_SNAKE_CASE_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE_ = support_list[:10]
SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
SCREAMING_SNAKE_CASE_ = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''')
SCREAMING_SNAKE_CASE_ = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE_ = find_nearest_training(question)
SCREAMING_SNAKE_CASE_ = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
SCREAMING_SNAKE_CASE_ = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
SCREAMING_SNAKE_CASE_ = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 301
| 0
|
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
UpperCAmelCase_ : Tuple = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
UpperCAmelCase_ : List[str] = [0, 25, 50]
UpperCAmelCase_ : Dict = [25, 50, 75]
UpperCAmelCase_ : Tuple = fuzz.membership.trimf(X, abca)
UpperCAmelCase_ : str = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
UpperCAmelCase_ : Tuple = np.ones(75)
UpperCAmelCase_ : Optional[int] = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
UpperCAmelCase_ : Tuple = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
UpperCAmelCase_ : str = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
UpperCAmelCase_ : int = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
UpperCAmelCase_ : int = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
UpperCAmelCase_ : Union[str, Any] = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
UpperCAmelCase_ : Optional[int] = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
UpperCAmelCase_ : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
UpperCAmelCase_ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 38
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ = getLogger(__name__)
SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ):
__lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" )
__lowerCAmelCase = str(_lowerCAmelCase )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
if fpaa:
__lowerCAmelCase = model.half()
__lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
__lowerCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase )
if prefix is None:
__lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ):
__lowerCAmelCase = [prefix + text for text in examples_chunk]
__lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase )
__lowerCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , )
__lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__lowerCAmelCase = int(time.time() - start_time ) # seconds
__lowerCAmelCase = len(_lowerCAmelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowercase ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def lowercase (_lowerCAmelCase=True ):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args()
__lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
__lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowerCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__lowerCAmelCase = generate_summaries_or_translations(
_lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , )
if args.reference_path is None:
return {}
# Compute scores
__lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
__lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )]
__lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase )
scores.update(_lowerCAmelCase )
if args.dump_args:
scores.update(_lowerCAmelCase )
if args.info:
__lowerCAmelCase = args.info
if verbose:
print(_lowerCAmelCase )
if args.score_path is not None:
json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 301
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
UpperCamelCase__ = "roformer"
def __init__( self , UpperCAmelCase=5_0000 , UpperCAmelCase=None , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1536 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ):
"""simple docstring"""
super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size if embedding_size is None else embedding_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = rotary_value
_UpperCAmelCase = use_cache
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
@property
def UpperCamelCase ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 39
|
"""simple docstring"""
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f:
__lowerCAmelCase = json.load(_lowerCAmelCase )
__lowerCAmelCase = {}
__lowerCAmelCase = []
__lowerCAmelCase = []
for key, info in class_info.items():
__lowerCAmelCase = info["""name"""]
class_names.append(info["""name"""] )
if info["isthing"]:
thing_ids.append(int(_lowerCAmelCase ) )
__lowerCAmelCase = thing_ids
__lowerCAmelCase = class_names
return metadata
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
__lowerCAmelCase = do_resize
__lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size
__lowerCAmelCase = do_normalize
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = class_info_file
__lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ )
__lowerCAmelCase = num_text
__lowerCAmelCase = repo_path
# for the post_process_functions
__lowerCAmelCase = 2
__lowerCAmelCase = 10
__lowerCAmelCase = 10
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = num_labels
__lowerCAmelCase = do_reduce_labels
__lowerCAmelCase = ignore_index
def A__ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def A__ ( self , snake_case_ , snake_case_=False ) -> Dict:
if not batched:
__lowerCAmelCase = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
__lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w )
__lowerCAmelCase = self.size["""shortest_edge"""]
elif w > h:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h )
else:
__lowerCAmelCase = self.size["""shortest_edge"""]
__lowerCAmelCase = self.size["""shortest_edge"""]
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0]
__lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1]
return expected_height, expected_width
def A__ ( self ) -> Tuple:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class lowerCAmelCase_ ( A__ , unittest.TestCase ):
'''simple docstring'''
_snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
_snake_case = image_processing_class
def A__ ( self ) -> str:
__lowerCAmelCase = OneFormerImageProcessorTester(self )
@property
def A__ ( self ) -> Dict:
return self.image_processing_tester.prepare_image_processor_dict()
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , """image_mean""" ) )
self.assertTrue(hasattr(snake_case_ , """image_std""" ) )
self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case_ , """do_resize""" ) )
self.assertTrue(hasattr(snake_case_ , """size""" ) )
self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) )
self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) )
self.assertTrue(hasattr(snake_case_ , """num_text""" ) )
self.assertTrue(hasattr(snake_case_ , """repo_path""" ) )
self.assertTrue(hasattr(snake_case_ , """metadata""" ) )
self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) )
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Union[str, Any]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> List[str]:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self ) -> Tuple:
# Initialize image_processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ )
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowerCAmelCase = self.image_processing_tester.num_labels
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ )
if with_segmentation_maps:
__lowerCAmelCase = num_labels
if is_instance_map:
__lowerCAmelCase = list(range(snake_case_ ) ) * 2
__lowerCAmelCase = dict(enumerate(snake_case_ ) )
__lowerCAmelCase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations]
__lowerCAmelCase = image_processor(
snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , )
return inputs
def A__ ( self ) -> List[str]:
pass
def A__ ( self ) -> Optional[Any]:
def common(snake_case_=False , snake_case_=None ):
__lowerCAmelCase = self.comm_get_image_processor_inputs(
with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ )
__lowerCAmelCase = inputs["""mask_labels"""]
__lowerCAmelCase = inputs["""class_labels"""]
__lowerCAmelCase = inputs["""pixel_values"""]
__lowerCAmelCase = inputs["""text_inputs"""]
# check the batch_size
for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=snake_case_ )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
common(is_instance_map=snake_case_ , segmentation_type="""pil""" )
def A__ ( self ) -> Optional[int]:
__lowerCAmelCase = np.zeros((20, 50) )
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = 1
__lowerCAmelCase = binary_mask_to_rle(snake_case_ )
self.assertEqual(len(snake_case_ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def A__ ( self ) -> Optional[Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ )
self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def A__ ( self ) -> Union[str, Any]:
__lowerCAmelCase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , )
__lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 )
self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("""segmentation""" in el )
self.assertTrue("""segments_info""" in el )
self.assertEqual(type(el["""segments_info"""] ) , snake_case_ )
self.assertEqual(
el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 301
| 0
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__lowercase = """examples/"""
__lowercase = {
"""examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""),
"""doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
__lowercase = {
"""init""": """src/diffusers/__init__.py""",
"""setup""": """setup.py""",
}
__lowercase = """README.md"""
def lowercase ( A_ , A_ , A_ )-> Dict:
'''simple docstring'''
with open(A_ , "r" , encoding="utf-8" , newline="\n" ) as f:
a : str = f.read()
a , a : Union[str, Any] = REPLACE_PATTERNS[pattern]
a : Optional[Any] = replace.replace("VERSION" , A_ )
a : Tuple = re_pattern.sub(A_ , A_ )
with open(A_ , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(A_ )
def lowercase ( A_ )-> Optional[Any]:
'''simple docstring'''
for folder, directories, fnames in os.walk(A_ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects" )
if "legacy" in directories:
directories.remove("legacy" )
for fname in fnames:
if fname.endswith(".py" ):
update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern="examples" )
def lowercase ( A_ , A_=False )-> List[Any]:
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(A_ , A_ , A_ )
if not patch:
update_version_in_examples(A_ )
def lowercase ( )-> Tuple:
'''simple docstring'''
a : str = "🤗 Transformers currently provides the following architectures"
a : List[str] = "1. Want to contribute a new model?"
with open(A_ , "r" , encoding="utf-8" , newline="\n" ) as f:
a : Optional[int] = f.readlines()
# Find the start of the list.
a : int = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
a : List[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("1." ):
a : Optional[Any] = lines[index].replace(
"https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , )
index += 1
with open(A_ , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(A_ )
def lowercase ( )-> int:
'''simple docstring'''
with open(REPLACE_FILES["init"] , "r" ) as f:
a : Any = f.read()
a : str = REPLACE_PATTERNS["init"][0].search(A_ ).groups()[0]
return packaging.version.parse(A_ )
def lowercase ( A_=False )-> Optional[Any]:
'''simple docstring'''
a : int = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" )
if default_version.is_devrelease:
a : Dict = default_version.base_version
elif patch:
a : Any = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
a : int = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
a : List[Any] = input(F'''Which version are you releasing? [{default_version}]''' )
if len(A_ ) == 0:
a : Dict = default_version
print(F'''Updating version to {version}.''' )
global_version_update(A_ , patch=A_ )
def lowercase ( )-> Union[str, Any]:
'''simple docstring'''
a : Dict = get_version()
a : Union[str, Any] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
a : Optional[int] = current_version.base_version
# Check with the user we got that right.
a : Any = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(A_ ) == 0:
a : List[Any] = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(A_ )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
__lowercase = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 40
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
SCREAMING_SNAKE_CASE_ = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class lowerCAmelCase_ ( _BaseAutoModelClass ):
'''simple docstring'''
_snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 301
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.