code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( _lowercase ): a = ["""image_processor""", """tokenizer"""] a = """Pix2StructImageProcessor""" a = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: Any ): lowerCamelCase__ : Optional[int] = False super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self: Union[str, Any] , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__: bool = True , UpperCamelCase__: Union[bool, str, PaddingStrategy] = False , UpperCamelCase__: Union[bool, str, TruncationStrategy] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[int] = 2_048 , UpperCamelCase__: int = 0 , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[bool] = None , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: bool = True , UpperCamelCase__: Optional[Union[str, TensorType]] = None , **UpperCamelCase__: Optional[Any] , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCamelCase__ : Dict = self.tokenizer lowerCamelCase__ : Any = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCamelCase__ : List[Any] = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_patches=UpperCamelCase__ , **UpperCamelCase__ ) else: # add pixel_values and bbox lowerCamelCase__ : List[str] = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_patches=UpperCamelCase__ , header_text=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and not self.image_processor.is_vqa: lowerCamelCase__ : Optional[Any] = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) if "attention_mask" in text_encoding: lowerCamelCase__ : Dict = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: lowerCamelCase__ : int = text_encoding.pop("""input_ids""" ) else: lowerCamelCase__ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def lowerCamelCase_ ( self: str , *UpperCamelCase__: Optional[Any] , **UpperCamelCase__: List[str] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] , *UpperCamelCase__: Any , **UpperCamelCase__: Optional[int] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = self.tokenizer.model_input_names lowerCamelCase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase : Dict = logging.get_logger(__name__) enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 4 _snake_case = 3 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 4 _snake_case = 4 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (4, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (4, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase_ ) _snake_case = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) _snake_case = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) model_accelerate.to(lowerCAmelCase_ ) model_accelerate.eval() _snake_case = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _snake_case = noise.to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) _snake_case = model_accelerate(lowerCAmelCase_ , lowerCAmelCase_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _snake_case , _snake_case = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ , low_cpu_mem_usage=lowerCAmelCase_ ) model_normal_load.to(lowerCAmelCase_ ) model_normal_load.eval() _snake_case = model_normal_load(lowerCAmelCase_ , lowerCAmelCase_ )['sample'] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(lowerCAmelCase_ ) _snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _snake_case = noise.to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _snake_case = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self , lowerCAmelCase_=(32, 32) ): """simple docstring""" _snake_case = 4 _snake_case = 3 _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } _snake_case = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase_ ) _snake_case = self.dummy_input _snake_case = floats_tensor((4, 3) + (2_56, 2_56) ).to(lowerCAmelCase_ ) _snake_case = noise _snake_case = model(**lowerCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(lowerCAmelCase_ ) _snake_case = 4 _snake_case = 3 _snake_case = (2_56, 2_56) _snake_case = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _snake_case = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-2 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(lowerCAmelCase_ ) _snake_case = 4 _snake_case = 3 _snake_case = (32, 32) _snake_case = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _snake_case = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-2 ) ) def lowerCamelCase ( self ): """simple docstring""" pass
42
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowercase = logging.get_logger(__name__) __lowercase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = """imagegpt""" a__ : int = ["""past_key_values"""] a__ : List[str] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=512 + 1 , __lowercase=32 * 32 , __lowercase=512 , __lowercase=24 , __lowercase=8 , __lowercase=None , __lowercase="quick_gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-5 , __lowercase=0.02 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , **__lowercase , ) -> Optional[Any]: __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Any = n_positions __UpperCamelCase :int = n_embd __UpperCamelCase :Optional[int] = n_layer __UpperCamelCase :Optional[int] = n_head __UpperCamelCase :Optional[Any] = n_inner __UpperCamelCase :str = activation_function __UpperCamelCase :Tuple = resid_pdrop __UpperCamelCase :Dict = embd_pdrop __UpperCamelCase :Optional[Any] = attn_pdrop __UpperCamelCase :Optional[Any] = layer_norm_epsilon __UpperCamelCase :Tuple = initializer_range __UpperCamelCase :Union[str, Any] = scale_attn_weights __UpperCamelCase :Tuple = use_cache __UpperCamelCase :Optional[int] = scale_attn_by_inverse_layer_idx __UpperCamelCase :Tuple = reorder_and_upcast_attn __UpperCamelCase :int = tie_word_embeddings super().__init__(tie_word_embeddings=__lowercase , **__lowercase) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ]) def UpperCamelCase__ ( self , __lowercase , __lowercase = 1 , __lowercase = -1 , __lowercase = False , __lowercase = None , __lowercase = 3 , __lowercase = 32 , __lowercase = 32 , ) -> Mapping[str, Any]: __UpperCamelCase :Optional[int] = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :List[str] = dict(preprocessor(images=__lowercase , return_tensors=__lowercase)) return inputs
43
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _a : Any = TypeVar('T') class __A ( Generic[T] ): _UpperCamelCase : deque[T] # Cache store of keys _UpperCamelCase : set[T] # References of the keys in cache _UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self , a__ ): _lowerCAmelCase : Any = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _lowerCAmelCase : List[Any] = n def __A ( self , a__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Dict = self.dq_store.pop() self.key_reference.remove(a__ ) else: self.dq_store.remove(a__ ) self.dq_store.appendleft(a__ ) self.key_reference.add(a__ ) def __A ( self ): for k in self.dq_store: print(a__ ) def __repr__( self ): return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() _a : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
44
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 1_0) lowercase_ = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase_ = "" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
45
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase = importlib.import_module(F'.{module_name}' , """transformers.models""" ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , """__name__""" , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase = importlib.import_module("""transformers""" ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' lowerCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class lowercase : def __init__( self ) -> str: raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(lowercase ) def _snake_case ( cls , lowercase , **lowercase ) -> Union[str, Any]: lowerCAmelCase = kwargs.pop("""config""" , lowercase ) lowerCAmelCase = kwargs.pop("""trust_remote_code""" , lowercase ) lowerCAmelCase = True lowerCAmelCase , lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(lowercase , **lowercase ) lowerCAmelCase = config_dict.get("""image_processor_type""" , lowercase ) lowerCAmelCase = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): lowerCAmelCase = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCAmelCase = config_dict.pop("""feature_extractor_type""" , lowercase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) lowerCAmelCase = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowerCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] lowerCAmelCase = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase , lowercase ): lowerCAmelCase = AutoConfig.from_pretrained(lowercase , **lowercase ) # It could be in `config.image_processor_type`` lowerCAmelCase = getattr(lowercase , """image_processor_type""" , lowercase ) if hasattr(lowercase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: lowerCAmelCase = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: lowerCAmelCase = image_processor_class_from_name(lowercase ) lowerCAmelCase = image_processor_auto_map is not None lowerCAmelCase = image_processor_class is not None or type(lowercase ) in IMAGE_PROCESSOR_MAPPING lowerCAmelCase = resolve_trust_remote_code( lowercase , lowercase , lowercase , lowercase ) if has_remote_code and trust_remote_code: lowerCAmelCase = get_class_from_dynamic_module( lowercase , lowercase , **lowercase ) lowerCAmelCase = kwargs.pop("""code_revision""" , lowercase ) if os.path.isdir(lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase , **lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase , **lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase ) in IMAGE_PROCESSOR_MAPPING: lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(lowercase )] return image_processor_class.from_dict(lowercase , **lowercase ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _snake_case ( lowercase , lowercase ) -> Optional[Any]: IMAGE_PROCESSOR_MAPPING.register(lowercase , lowercase )
46
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE =len(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =len(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] _SCREAMING_SNAKE_CASE =True for i in range(_UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _SCREAMING_SNAKE_CASE =True if a[i].islower(): _SCREAMING_SNAKE_CASE =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
47
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , ) -> Optional[int]: lowerCamelCase : int = parent lowerCamelCase : int = 13 lowerCamelCase : str = 7 lowerCamelCase : Any = True lowerCamelCase : Optional[int] = True lowerCamelCase : Dict = True lowerCamelCase : List[Any] = 99 lowerCamelCase : List[Any] = 32 lowerCamelCase : str = 2 lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : str = 37 lowerCamelCase : Any = "gelu" lowerCamelCase : Optional[Any] = 0.1 lowerCamelCase : Dict = 0.1 lowerCamelCase : Optional[Any] = 512 lowerCamelCase : Optional[Any] = 16 lowerCamelCase : List[Any] = 2 lowerCamelCase : int = 0.02 lowerCamelCase : Tuple = 3 lowerCamelCase : Optional[int] = 4 lowerCamelCase : Any = None def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Union[str, Any] = None if self.use_input_mask: lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : Tuple = None lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Dict: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Dict = self.prepare_config_and_inputs() lowerCamelCase : Union[str, Any] = True lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : List[Any] = model(UpperCamelCase__ ) lowerCamelCase : int = [input_ids, input_mask] lowerCamelCase : Optional[Any] = model(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = True lowerCamelCase : Union[str, Any] = TFEsmModel(config=UpperCamelCase__ ) lowerCamelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase : List[str] = model(UpperCamelCase__ ) lowerCamelCase : Tuple = [input_ids, input_mask] lowerCamelCase : Dict = model(UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ) # Also check the case where encoder outputs are not passed lowerCamelCase : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: lowerCamelCase : List[str] = TFEsmForMaskedLM(config=UpperCamelCase__ ) lowerCamelCase : Any = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : List[Any] = self.num_labels lowerCamelCase : Dict = TFEsmForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = config_and_inputs lowerCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ : Optional[Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ : Any = False lowerCamelCase_ : Dict = False def _lowercase ( self ) -> Any: lowerCamelCase : Tuple = TFEsmModelTester(self ) lowerCamelCase : int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase ( self ) -> str: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFEsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> List[str]: pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self ) -> Optional[Any]: pass def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase : Any = model.get_bias() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for k, v in name.items(): assert isinstance(UpperCamelCase__ , tf.Variable ) else: lowerCamelCase : str = model.get_output_embeddings() assert x is None lowerCamelCase : Optional[Any] = model.get_bias() assert name is None @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Dict: lowerCamelCase : int = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] lowerCamelCase : Union[str, Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase__ ) # compare the actual values for a slice. lowerCamelCase : List[str] = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowercase ( self ) -> str: lowerCamelCase : Dict = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : Dict = model(UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCamelCase : int = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
48
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _A ( __UpperCAmelCase ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=512 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Any=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = DistilBertModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = DistilBertForMaskedLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = DistilBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = self.num_labels __a = DistilBertForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_labels __a = DistilBertForTokenClassification(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_choices __a = DistilBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __a = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Optional[int] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ : List[str] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : str = True UpperCamelCase__ : List[Any] = True UpperCamelCase__ : Dict = True UpperCamelCase__ : Union[str, Any] = True def _lowerCamelCase ( self : str): '''simple docstring''' __a = DistilBertModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , dim=37) def _lowerCamelCase ( self : Any): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DistilBertModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @slow @require_torch_gpu def _lowerCamelCase ( self : int): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __a = True __a = model_class(config=__SCREAMING_SNAKE_CASE) __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = torch.jit.trace( __SCREAMING_SNAKE_CASE , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , '''traced_model.pt''')) __a = torch.jit.load(os.path.join(__SCREAMING_SNAKE_CASE , '''traced_model.pt''') , map_location=__SCREAMING_SNAKE_CASE) loaded(inputs_dict['''input_ids'''].to(__SCREAMING_SNAKE_CASE) , inputs_dict['''attention_mask'''].to(__SCREAMING_SNAKE_CASE)) @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = DistilBertModel.from_pretrained('''distilbert-base-uncased''') __a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) __a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] __a = torch.Size((1, 11, 768)) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4))
49
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : int = logging.getLogger() def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase__ : Tuple = parser.parse_args() return args.f class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] ) -> None: lowerCamelCase__ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Dict ) -> List[str]: lowerCamelCase__ : Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(UpperCAmelCase , 'argv' , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : Any = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase ) lowerCamelCase__ : List[Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase )
50
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = VQModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]=(32, 32)): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes).to(_snake_case) return {"sample": image} @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self : Dict): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self : List[str]): """simple docstring""" pass def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(_snake_case) UpperCAmelCase_ = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = VQModel.from_pretrained('''fusing/vqgan-dummy''') model.to(_snake_case).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) UpperCAmelCase_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) UpperCAmelCase_ = image.to(_snake_case) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case).sample UpperCAmelCase_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3))
51
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[Any] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Any = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase : Optional[int] = DDIMScheduler() torch.manual_seed(0 ) UpperCamelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase : Any = CLIPTextModel(A_ ) UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : int = torch.manual_seed(A_ ) UpperCamelCase : List[str] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[Any] = self.get_dummy_components() UpperCamelCase : Dict = StableDiffusionPanoramaPipeline(**A_ ) UpperCamelCase : Tuple = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(A_ ) UpperCamelCase : str = sd_pipe(**A_ ).images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Optional[int] = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[Any] = self.get_dummy_components() UpperCamelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**A_ ) UpperCamelCase : Optional[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Dict = self.get_dummy_inputs(A_ ) UpperCamelCase : List[str] = "french fries" UpperCamelCase : Optional[Any] = sd_pipe(**A_ , negative_prompt=A_ ) UpperCamelCase : Any = output.images UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Optional[int] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : int = self.get_dummy_components() UpperCamelCase : List[str] = StableDiffusionPanoramaPipeline(**A_ ) UpperCamelCase : Optional[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(A_ ) UpperCamelCase : Dict = sd_pipe(**A_ , view_batch_size=2 ) UpperCamelCase : Dict = output.images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Tuple = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : int = self.get_dummy_components() UpperCamelCase : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" ) UpperCamelCase : Any = StableDiffusionPanoramaPipeline(**A_ ) UpperCamelCase : Dict = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs(A_ ) UpperCamelCase : Any = sd_pipe(**A_ ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : str = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=A_ ) UpperCamelCase : List[Any] = StableDiffusionPanoramaPipeline(**A_ ) UpperCamelCase : Optional[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(A_ ) UpperCamelCase : Union[str, Any] = sd_pipe(**A_ ).images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Optional[Any] = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self , A_=0 ): '''simple docstring''' UpperCamelCase : Optional[Any] = torch.manual_seed(A_ ) UpperCamelCase : Optional[Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = "stabilityai/stable-diffusion-2-base" UpperCamelCase : str = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) UpperCamelCase : str = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() UpperCamelCase : List[str] = self.get_inputs() UpperCamelCase : Union[str, Any] = pipe(**A_ ).images UpperCamelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) UpperCamelCase : Any = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=A_ ) UpperCamelCase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() UpperCamelCase : str = self.get_inputs() UpperCamelCase : Optional[int] = pipe(**A_ ).images UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) UpperCamelCase : List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = 0 def callback_fn(A_ , A_ , A_ ) -> None: UpperCamelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCamelCase : Tuple = latents[0, -3:, -3:, -1] UpperCamelCase : Any = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCamelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCamelCase : str = latents[0, -3:, -3:, -1] UpperCamelCase : Union[str, Any] = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCamelCase : List[str] = False UpperCamelCase : Optional[int] = "stabilityai/stable-diffusion-2-base" UpperCamelCase : List[str] = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) UpperCamelCase : int = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) UpperCamelCase : str = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() UpperCamelCase : int = self.get_inputs() pipe(**A_ , callback=A_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase : str = "stabilityai/stable-diffusion-2-base" UpperCamelCase : List[str] = DDIMScheduler.from_pretrained(A_ , subfolder="scheduler" ) UpperCamelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) UpperCamelCase : Union[str, Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase : Any = self.get_inputs() UpperCamelCase : Optional[Any] = pipe(**A_ ) UpperCamelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
52
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a__ : int =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[str] , *__A : Optional[int] , **__A : str ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
53
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
"""simple docstring""" import requests a__ : Dict = '''''' # <-- Put your OpenWeatherMap appid here! a__ : Union[str, Any] = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase__ (lowerCAmelCase_ = "Chicago" , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def UpperCAmelCase__ (lowerCAmelCase_ = "Kolkata, India" , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def UpperCAmelCase__ (lowerCAmelCase_ = 55.68 , lowerCAmelCase_ = 12.57 , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: a__ : Any = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
54
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [] lowerCamelCase_ = 1 while len(UpperCAmelCase_ ) < 1E6: constant.append(str(UpperCAmelCase_ ) ) i += 1 lowerCamelCase_ = "".join(UpperCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
55
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' from maths.prime_factors import prime_factors def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase, __UpperCAmelCase ): snake_case_ = F"Input value of [number={number}] must be an integer" raise TypeError(__UpperCAmelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
56
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig A : Optional[Any] = logging.get_logger(__name__) A : Union[str, Any] = "T5Config" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""mt5""" __UpperCAmelCase : Any =MTaConfig class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""mt5""" __UpperCAmelCase : Any =MTaConfig class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] ="""mt5""" __UpperCAmelCase : List[Any] =MTaConfig
57
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: snake_case : Dict = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) snake_case : Union[str, Any] = input_file.read() snake_case : str = regexp.search(snake_case__ ) return match def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str ) -> Dict: '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: snake_case : List[str] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) snake_case : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` snake_case : List[Any] = regexp.finditer(snake_case__ ) snake_case : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' snake_case : List[Any] = Path("./datasets" ) snake_case : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' snake_case : List[str] = Path("./datasets" ) snake_case : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
59
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : List[str] = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _a = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , "vision" ) self.check_model_type(lowercase_ ) def __call__( self , lowercase_ , **lowercase_ ): """simple docstring""" return super().__call__(lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return {}, {}, {} def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = load_image(lowercase_ ) UpperCAmelCase_ : int = image.size UpperCAmelCase_ : Optional[int] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) return model_inputs def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model(**lowercase_ ) return model_outputs def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = model_outputs.predicted_depth UpperCAmelCase_ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowercase_ ) UpperCAmelCase_ : Tuple = prediction.squeeze().cpu().numpy() UpperCAmelCase_ : str = (output * 255 / np.max(lowercase_ )).astype("uint8" ) UpperCAmelCase_ : str = Image.fromarray(lowercase_ ) UpperCAmelCase_ : Any = {} UpperCAmelCase_ : int = predicted_depth UpperCAmelCase_ : Any = depth return output_dict
61
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): for param in module.parameters(): __UpperCamelCase =False def _UpperCAmelCase ( ): __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCamelCase ='mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( ): __UpperCamelCase =datetime.now() __UpperCamelCase =current_time.strftime('%H:%M:%S' ) return timestamp
62
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCAmelCase_ : List[str] = logging.getLogger(__name__) lowerCAmelCase_ : List[Any] = tf.data.AUTOTUNE def _lowerCamelCase ( ) -> Optional[int]: _a = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase , required=lowercase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase , help="Model ID to upload to on the Hugging Face Hub." ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Optional[int]: try: if args.tpu_name: _a = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _a = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase ) tf.tpu.experimental.initialize_tpu_system(lowercase ) return tpu def _lowerCamelCase ( lowercase : List[str] ) -> Any: _a = 0 for file in file_list: _a = file.split("/" )[-1] _a = re.search(r"-\d+-(\d+)\.tfrecord" , lowercase ).group(1 ) _a = int(lowercase ) num_samples += sample_count return num_samples def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Any , lowercase : Tuple , lowercase : Optional[int]=None ) -> int: _a = count_samples(lowercase ) _a = tf.data.Dataset.from_tensor_slices(lowercase ) if shuffle: _a = dataset.shuffle(len(lowercase ) ) _a = tf.data.TFRecordDataset(lowercase , num_parallel_reads=lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _a = dataset.apply(tf.data.experimental.assert_cardinality(lowercase ) ) _a = dataset.map(lowercase , num_parallel_calls=lowercase ) if shuffle: assert shuffle_buffer_size is not None _a = dataset.shuffle(args.shuffle_buffer_size ) _a = dataset.batch(lowercase , drop_remainder=lowercase ) _a = dataset.map(lowercase , num_parallel_calls=lowercase ) _a = dataset.prefetch(lowercase ) return dataset def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict: if not args.no_tpu: _a = initialize_tpu(lowercase ) _a = tf.distribute.TPUStrategy(lowercase ) else: _a = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) _a = AutoTokenizer.from_pretrained(args.tokenizer ) _a = AutoConfig.from_pretrained(args.pretrained_model_config ) _a = tokenizer.vocab_size _a = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) _a = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) _a = count_samples(lowercase ) _a = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _a = steps_per_epoch * args.num_epochs with strategy.scope(): _a = TFAutoModelForMaskedLM.from_config(lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _a , _a = create_optimizer( num_train_steps=lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase , metrics=["accuracy"] ) def decode_fn(lowercase : int ): _a = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase , lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _a = DataCollatorForLanguageModeling( tokenizer=lowercase , mlm_probability=args.mlm_probability , mlm=lowercase , return_tensors="tf" ) def mask_with_collator(lowercase : List[Any] ): # TF really needs an isin() function _a = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) _a , _a = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase , ) return batch _a = args.per_replica_batch_size * strategy.num_replicas_in_sync _a = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) _a = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , ) _a = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase ) ) model.fit( lowercase , validation_data=lowercase , epochs=args.num_epochs , callbacks=lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCAmelCase_ : Any = parse_args() main(args)
63
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Any ): '''simple docstring''' debug_launcher(test_script.main ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' debug_launcher(test_ops.main )
64
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = 10 UpperCAmelCase__ = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) UpperCAmelCase__ = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(__A ) ), }, features=__A, ) return dataset @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=__A ) return filename # FILE_CONTENT + files UpperCamelCase__ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt" UpperCAmelCase__ = FILE_CONTENT with open(__A, "w" ) as f: f.write(__A ) return filename @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' import bza UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" UpperCAmelCase__ = bytes(__A, "utf-8" ) with bza.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) UpperCAmelCase__ = bytes(__A, "utf-8" ) with gzip.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" UpperCAmelCase__ = bytes(__A, "utf-8" ) with lza.frame.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Tuple: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(__A, "w" ) as archive: archive.write(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' import lzma UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.xz" UpperCAmelCase__ = bytes(__A, "utf-8" ) with lzma.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Tuple: '''simple docstring''' import zipfile UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.txt.zst" UpperCAmelCase__ = bytes(__A, "utf-8" ) with zstd.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "file.xml" UpperCAmelCase__ = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(__A, "w" ) as f: f.write(__A ) return filename UpperCamelCase__ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] UpperCamelCase__ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] UpperCamelCase__ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } UpperCamelCase__ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] UpperCamelCase__ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = datasets.Dataset.from_dict(__A ) UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(__A ) ) as con: UpperCAmelCase__ = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(__A, "w", newline="" ) as f: UpperCAmelCase__ = csv.DictWriter(__A, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(__A, "w", newline="" ) as f: UpperCAmelCase__ = csv.DictWriter(__A, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' import bza UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(__A, "rb" ) as f: UpperCAmelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__A, "wb" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(__A ) ) f.write(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(__A, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) UpperCAmelCase__ = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(__A, "wb" ) as f: UpperCAmelCase__ = pq.ParquetWriter(__A, schema=__A ) UpperCAmelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__A ) )] for k in DATA[0]}, schema=__A ) writer.write_table(__A ) writer.close() return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) UpperCAmelCase__ = {"data": DATA} with open(__A, "w" ) as f: json.dump(__A, __A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) UpperCAmelCase__ = {"data": DATA_DICT_OF_LISTS} with open(__A, "w" ) as f: json.dump(__A, __A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(__A, "w" ) as f: for item in DATA: f.write(json.dumps(__A ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(__A, "w" ) as f: for item in DATA: f.write(json.dumps(__A ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(__A, "w" ) as f: for item in DATA_312: f.write(json.dumps(__A ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(__A, "w" ) as f: for item in DATA_STR: f.write(json.dumps(__A ) + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(__A, "rb" ) as orig_file: with gzip.open(__A, "wb" ) as zipped_file: zipped_file.writelines(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Tuple: '''simple docstring''' import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(__A, "rb" ) as orig_file: with gzip.open(__A, "wb" ) as zipped_file: zipped_file.writelines(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(__A ) ) f.write(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.join("nested", os.path.basename(__A ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.basename(__A ) ) f.add(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.join("nested", os.path.basename(__A ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' UpperCAmelCase__ = ["0", "1", "2", "3"] UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(__A, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = ["0", "1", "2", "3"] UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(__A, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = ["0", "1", "2", "3"] UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(__A, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> int: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(__A ) ) f.write(__A, arcname=os.path.basename(__A ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) f.write(__A, arcname=os.path.join("main_dir", os.path.basename(__A ) ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename("unsupported.ext" ) ) f.write(__A, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) UpperCAmelCase__ = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(__A, "w", encoding="utf-8" ) as f: f.write(__A ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(__A, "w" ) as f: f.write(__A, arcname=os.path.basename(__A ) ) f.write(__A, arcname=os.path.basename(__A ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
65
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __a = logging.get_logger(__name__) __a = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(snake_case ) def __call__( self: int , snake_case: torch.LongTensor , snake_case: torch.FloatTensor , **snake_case: Optional[Any] ) -> bool: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: Any , snake_case: int , snake_case: Optional[int] = None ) -> List[str]: snake_case_ :Dict = max_length snake_case_ :Union[str, Any] = max_position_embeddings @add_start_docstrings(snake_case ) def __call__( self: Dict , snake_case: torch.LongTensor , snake_case: torch.FloatTensor , **snake_case: str ) -> bool: snake_case_ :Dict = input_ids.shape[-1] snake_case_ :Union[str, Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: Union[str, Any] , snake_case: int , snake_case: int ) -> Dict: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" , snake_case , ) snake_case_ :Union[str, Any] = start_length snake_case_ :int = max_new_tokens snake_case_ :int = start_length + max_new_tokens @add_start_docstrings(snake_case ) def __call__( self: Optional[int] , snake_case: torch.LongTensor , snake_case: torch.FloatTensor , **snake_case: str ) -> bool: return input_ids.shape[-1] >= self.max_length class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: Optional[int] , snake_case: float , snake_case: Optional[float] = None ) -> Union[str, Any]: snake_case_ :Tuple = max_time snake_case_ :List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case ) def __call__( self: Tuple , snake_case: torch.LongTensor , snake_case: torch.FloatTensor , **snake_case: Union[str, Any] ) -> bool: return time.time() - self.initial_timestamp > self.max_time class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(snake_case ) def __call__( self: str , snake_case: torch.LongTensor , snake_case: torch.FloatTensor , **snake_case: int ) -> bool: return any(criteria(snake_case , snake_case ) for criteria in self ) @property def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: for stopping_criterium in self: if isinstance(snake_case , snake_case ): return stopping_criterium.max_length elif isinstance(snake_case , snake_case ): return stopping_criterium.max_length return None def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = stopping_criteria.max_length snake_case_ :List[str] = deepcopy(_lowercase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""", _lowercase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowercase ) ) return new_stopping_criteria
66
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCAmelCase =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __UpperCAmelCase =[] __UpperCAmelCase =[] __UpperCAmelCase ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __UpperCAmelCase =[ { "type": "header", "text": { "type": "plain_text", "text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] __UpperCAmelCase =0 for log in Path().glob("*.log"): __UpperCAmelCase =0 with open(log, "r") as f: for line in f: __UpperCAmelCase =json.loads(line) if line.get("nodeid", "") != "": __UpperCAmelCase =line["nodeid"] if line.get("duration", None) is not None: __UpperCAmelCase =f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCAmelCase =[] log.unlink() __UpperCAmelCase ="" __UpperCAmelCase =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __UpperCAmelCase =[] __UpperCAmelCase ={} for test in failed_tests: __UpperCAmelCase =test[0].split("::") __UpperCAmelCase =data[0].split("/")[-1] if data[0] not in filesafailed: __UpperCAmelCase =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCAmelCase =[test[0] for test in failed_table] __UpperCAmelCase =list(set(files)) # Count number of instances in failed_tests __UpperCAmelCase =[] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCAmelCase =tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: __UpperCAmelCase ="Too many failed tests, please see the full report in the Action results." __UpperCAmelCase =len(err) + 1_0 __UpperCAmelCase =message[: 3_0_0_0 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: __UpperCAmelCase ="No failed tests! 🤗" print(f'## {message}') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __UpperCAmelCase =WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __UpperCAmelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __UpperCAmelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) __UpperCAmelCase ={ "type": "context", "elements": [ { "type": "plain_text", "text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) __UpperCAmelCase =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __UpperCAmelCase =response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCAmelCase ="" for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCAmelCase =row[0] else: __UpperCAmelCase ="" __UpperCAmelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
67
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = None __lowerCamelCase = None def lowerCAmelCase__ ( ) -> Node | None: '''simple docstring''' A__ = Node(1 ) A__ = Node(2 ) A__ = Node(3 ) A__ = Node(4 ) A__ = Node(5 ) return tree def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] if root is None: return output A__ = deque([root] ) while process_queue: A__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] A__ = [] A__ = 0 A__ = height(SCREAMING_SNAKE_CASE_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 0 return output def lowerCAmelCase__ ( ) -> None: # Main function for testing. '''simple docstring''' A__ = make_tree() print(F'In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print(F'Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(SCREAMING_SNAKE_CASE_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
68
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase ( ) -> str: snake_case_ = 10 snake_case_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) snake_case_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(UpperCAmelCase ) ), } , features=UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=UpperCAmelCase ) return filename # FILE_CONTENT + files __UpperCamelCase = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt' snake_case_ = FILE_CONTENT with open(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Any: import bza snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' snake_case_ = bytes(UpperCAmelCase , 'utf-8' ) with bza.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Union[str, Any]: import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) snake_case_ = bytes(UpperCAmelCase , 'utf-8' ) with gzip.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' snake_case_ = bytes(UpperCAmelCase , 'utf-8' ) with lza.frame.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(UpperCAmelCase , 'w' ) as archive: archive.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: import tarfile snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(UpperCAmelCase , 'w' ) as f: f.add(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: import lzma snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' snake_case_ = bytes(UpperCAmelCase , 'utf-8' ) with lzma.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: import zipfile snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' snake_case_ = bytes(UpperCAmelCase , 'utf-8' ) with zstd.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.xml' snake_case_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase ) return filename __UpperCamelCase = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __UpperCamelCase = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __UpperCamelCase = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __UpperCamelCase = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __UpperCamelCase = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = datasets.Dataset.from_dict(UpperCAmelCase ) snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(UpperCAmelCase ) ) as con: snake_case_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(UpperCAmelCase , 'w' , newline='' ) as f: snake_case_ = csv.DictWriter(UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(UpperCAmelCase , 'w' , newline='' ) as f: snake_case_ = csv.DictWriter(UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: import bza snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(UpperCAmelCase , 'rb' ) as f: snake_case_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCAmelCase , 'wb' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) snake_case_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(UpperCAmelCase , 'wb' ) as f: snake_case_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase ) snake_case_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCAmelCase ) )] for k in DATA[0]} , schema=UpperCAmelCase ) writer.write_table(UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) snake_case_ = {'data': DATA} with open(UpperCAmelCase , 'w' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) snake_case_ = {'data': DATA_DICT_OF_LISTS} with open(UpperCAmelCase , 'w' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(UpperCAmelCase , 'w' ) as f: f.add(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) f.add(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(UpperCAmelCase , 'w' ) as f: f.add(UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = ['0', '1', '2', '3'] snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = ['0', '1', '2', '3'] snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = ['0', '1', '2', '3'] snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) f.write(UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( ) -> Optional[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase ( ) -> str: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(UpperCAmelCase , 'w' ) as f: f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ) ) f.write(UpperCAmelCase , arcname=os.path.basename(UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
69
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ : Tuple =logging.get_logger(__name__) A__ : List[Any] ={ '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class UpperCAmelCase ( snake_case_ ): _lowercase: Any = '''bart''' _lowercase: Union[str, Any] = ['''past_key_values'''] _lowercase: str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Tuple , __snake_case : List[str]=5_02_65 , __snake_case : List[str]=10_24 , __snake_case : Union[str, Any]=12 , __snake_case : Optional[Any]=40_96 , __snake_case : Tuple=16 , __snake_case : Optional[Any]=12 , __snake_case : List[Any]=40_96 , __snake_case : Dict=16 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=10_24 , __snake_case : int=0.1 , __snake_case : int=0.0 , __snake_case : List[str]=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : List[Any]=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Any=3 , __snake_case : List[Any]=1 , __snake_case : List[str]=0 , __snake_case : Optional[Any]=2 , __snake_case : int=True , __snake_case : List[str]=2 , __snake_case : Optional[int]=2 , **__snake_case : Union[str, Any] , ) -> Optional[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = classifier_dropout _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): _lowerCAmelCase = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" ) class UpperCAmelCase ( snake_case_ ): @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase = {0: """batch"""} _lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} _lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(__snake_case ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(__snake_case , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(__snake_case ): _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowercase__ ( self : Optional[int] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) _lowerCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape _lowerCAmelCase = common_inputs["""decoder_input_ids"""].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(__snake_case , __snake_case ) _lowerCAmelCase = max(__snake_case , __snake_case ) - min_num_layers _lowerCAmelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def lowercase__ ( self : Tuple , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["""attention_mask"""].dtype _lowerCAmelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def lowercase__ ( self : Any , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(__snake_case ) _lowerCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def lowercase__ ( self : Dict , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def lowercase__ ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : int ) -> List[Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: _lowerCAmelCase = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
70
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A ( ) -> int: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __UpperCamelCase : Dict ='__test_patch_submodule_mock__' with patch_submodule(_test_patching ,'os.path.join' ,a_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os ,_PatchedModuleObj ) assert isinstance(_test_patching.os.path ,_PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path ,_PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os ,_PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path ,_PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path ,_PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A ( ) -> Any: assert _test_patching.open is open __UpperCamelCase : Optional[int] ='__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching ,'open' ,a_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A ( ) -> Union[str, Any]: # pandas.read_csv is not present in _test_patching __UpperCamelCase : List[str] ='__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching ,'pandas.read_csv' ,a_ ): pass def A ( ) -> str: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __UpperCamelCase : Any ='__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching ,'len' ,a_ ) is None with patch_submodule(_test_patching ,'len' ,a_ ): assert _test_patching.len is mock assert _test_patching.len is len def A ( ) -> Dict: __UpperCamelCase : List[Any] ='__test_patch_submodule_start_and_stop_mock__' __UpperCamelCase : Tuple =patch_submodule(_test_patching ,'open' ,a_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __UpperCamelCase : str ='__test_patch_submodule_successive_join__' __UpperCamelCase : Optional[int] ='__test_patch_submodule_successive_dirname__' __UpperCamelCase : Any ='__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching ,'os.path.join' ,a_ ): with patch_submodule(_test_patching ,'os.rename' ,a_ ): with patch_submodule(_test_patching ,'os.path.dirname' ,a_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching ,'os.rename' ,a_ ): with patch_submodule(_test_patching ,'os.path.join' ,a_ ): with patch_submodule(_test_patching ,'os.path.dirname' ,a_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A ( ) -> Any: __UpperCamelCase : Optional[Any] ='__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching ,'__module_that_doesn_exist__.__attribute_that_doesn_exist__' ,a_ ): pass with patch_submodule(_test_patching ,'os.__attribute_that_doesn_exist__' ,a_ ): pass
71
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def snake_case_ ( A_ : list, A_ : list, A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : Any = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A_ )] ) _lowerCamelCase : Optional[int] = np.array(A_ ) _lowerCamelCase : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), A_ ) ), x.transpose() ), A_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def snake_case_ ( A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : List[str] = (1, 2, 1) _lowerCamelCase : Any = (1, 1, 0, 7) _lowerCamelCase : int = SARIMAX( A_, exog=A_, order=A_, seasonal_order=A_ ) _lowerCamelCase : Optional[int] = model.fit(disp=A_, maxiter=6_00, method='''nm''' ) _lowerCamelCase : Any = model_fit.predict(1, len(A_ ), exog=[test_match] ) return result[0] def snake_case_ ( A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : Any = SVR(kernel='''rbf''', C=1, gamma=0.1, epsilon=0.1 ) regressor.fit(A_, A_ ) _lowerCamelCase : Optional[Any] = regressor.predict(A_ ) return y_pred[0] def snake_case_ ( A_ : list ): '''simple docstring''' train_user.sort() _lowerCamelCase : Dict = np.percentile(A_, 25 ) _lowerCamelCase : Optional[int] = np.percentile(A_, 75 ) _lowerCamelCase : Dict = qa - qa _lowerCamelCase : Tuple = qa - (iqr * 0.1) return low_lim def snake_case_ ( A_ : list, A_ : float ): '''simple docstring''' _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = 0 for i in list_vote: if i > actual_result: _lowerCamelCase : Optional[Any] = not_safe + 1 else: if abs(abs(A_ ) - abs(A_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCAmelCase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowerCAmelCase__ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) lowerCAmelCase__ = Normalizer().fit_transform(data_input_df.values) # split data lowerCAmelCase__ = normalize_df[:, 2].tolist() lowerCAmelCase__ = normalize_df[:, 0].tolist() lowerCAmelCase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCAmelCase__ = normalize_df[:, [1, 2]].tolist() lowerCAmelCase__ = x[: len(x) - 1] lowerCAmelCase__ = x[len(x) - 1 :] # for linear regression & sarimax lowerCAmelCase__ = total_date[: len(total_date) - 1] lowerCAmelCase__ = total_user[: len(total_user) - 1] lowerCAmelCase__ = total_match[: len(total_match) - 1] lowerCAmelCase__ = total_date[len(total_date) - 1 :] lowerCAmelCase__ = total_user[len(total_user) - 1 :] lowerCAmelCase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCAmelCase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCAmelCase__ = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
72
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Any): __lowerCamelCase : Optional[int] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') __lowerCamelCase : List[str] = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE__)['last_hidden_state'] __lowerCamelCase : str = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) # compare the actual values for a slice. __lowerCamelCase : Any = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
73
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : Dict ): # initialize config if "resnet-50" in model_name: A = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: A = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) A = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes A = 'panoptic' in model_name if is_panoptic: A = 250 else: A = 91 A = 'huggingface/label-files' A = 'coco-detection-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case ( snake_case__ : int ): # here we list all keys to be renamed (original name on the left, our name on the right) A = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): A = state_dict.pop(snake_case__ ) A = val def _snake_case ( snake_case__ : int , snake_case__ : Optional[int]=False ): A = '' if is_panoptic: A = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A = in_proj_weight_cross_attn[:256, :] A = in_proj_bias_cross_attn[:256] A = in_proj_weight_cross_attn[256:512, :] A = in_proj_bias_cross_attn[256:512] A = in_proj_weight_cross_attn[-256:, :] A = in_proj_bias_cross_attn[-256:] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _snake_case ( snake_case__ : Any , snake_case__ : List[Any]=None , snake_case__ : int=False ): A , A = get_detr_config(snake_case__ ) # load original model from torch hub A = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'Converting model {model_name}...' ) A = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() A = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: A = 'detr.' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): A = state_dict.pop(snake_case__ ) A = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A = state_dict.pop(snake_case__ ) A = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: A = state_dict.pop(snake_case__ ) A = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): A = state_dict.pop(snake_case__ ) A = val # finally, create HuggingFace model and load state dict A = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image A = 'coco_panoptic' if is_panoptic else 'coco_detection' A = DetrImageProcessor(format=snake_case__ ) A = processor(images=prepare_img() , return_tensors='pt' ) A = encoding['pixel_values'] A = detr(snake_case__ ) A = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _lowercase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a_ : Dict = HfApi() a_ : Tuple = {} # fmt: off a_ : Union[str, Any] = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) a_ : List[str] = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) a_ : Tuple = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) a_ : Union[str, Any] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) a_ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) a_ : Union[str, Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) a_ : Optional[int] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) a_ : Tuple = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) a_ : List[Any] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) a_ : Tuple = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) a_ : List[str] = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) a_ : int = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) a_ : Union[str, Any] = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) a_ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) a_ : Optional[int] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on a_ : Union[str, Any] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a_ : Optional[Any] = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): a_ : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a_ : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a_ : Optional[Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a_ : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a_ : List[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
75
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='AutoTokenizer' lowerCamelCase__ =['tokenizer'] lowerCamelCase__ ={ 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : Any , a : int , a : Any=None ) -> List[Any]: """simple docstring""" super().__init__(a ) SCREAMING_SNAKE_CASE : Tuple = speaker_embeddings @classmethod def __UpperCamelCase ( cls : Optional[int] , a : Optional[Any] , a : Any="speaker_embeddings_path.json" , **a : List[str] ) -> List[str]: """simple docstring""" if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE : List[Any] = get_file_from_repo( a , a , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(a , a )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) SCREAMING_SNAKE_CASE : Union[str, Any] = None else: with open(a ) as speaker_embeddings_json: SCREAMING_SNAKE_CASE : str = json.load(a ) else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a , **a ) return cls(tokenizer=a , speaker_embeddings=a ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Tuple="speaker_embeddings_path.json" , a : Union[str, Any]="speaker_embeddings" , a : bool = False , **a : List[str] , ) -> List[Any]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(a , a , "v2" ) , exist_ok=a ) SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : int = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE : Tuple = self._load_voice_preset(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , a , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=a , ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a , F"{prompt_key}_{key}.npy" ) SCREAMING_SNAKE_CASE : int = tmp_dict with open(os.path.join(a , a ) , "w" ) as fp: json.dump(a , a ) super().save_pretrained(a , a , **a ) def __UpperCamelCase ( self : List[str] , a : str = None , **a : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) SCREAMING_SNAKE_CASE : Optional[int] = np.load(a ) return voice_preset_dict def __UpperCamelCase ( self : Dict , a : Optional[dict] = None ) -> List[Any]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Union[str, Any] , a : Dict=None , a : Dict=None , a : Tuple="pt" , a : List[Any]=256 , a : Optional[Any]=False , a : Tuple=True , a : str=False , **a : List[str] , ) -> Tuple: """simple docstring""" if voice_preset is not None and not isinstance(a , a ): if ( isinstance(a , a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE : str = self._load_voice_preset(a ) else: if isinstance(a , a ) and not voice_preset.endswith(".npz" ): SCREAMING_SNAKE_CASE : List[str] = voice_preset + ".npz" SCREAMING_SNAKE_CASE : Dict = np.load(a ) if voice_preset is not None: self._validate_voice_preset_dict(a , **a ) SCREAMING_SNAKE_CASE : Dict = BatchFeature(data=a , tensor_type=a ) SCREAMING_SNAKE_CASE : str = self.tokenizer( a , return_tensors=a , padding="max_length" , max_length=a , return_attention_mask=a , return_token_type_ids=a , add_special_tokens=a , **a , ) if voice_preset is not None: SCREAMING_SNAKE_CASE : Optional[int] = voice_preset return encoded_text
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> Union[str, Any]: lowercase__ : Dict = psutil.Process() lowercase__ : int = False def _UpperCAmelCase ( self ) -> str: lowercase__ : List[str] = -1 while True: lowercase__ : str = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[Any] = True lowercase__ : Optional[int] = threading.Thread(target=self.peak_monitor ) lowercase__ : List[str] = True self.thread.start() def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = False self.thread.join() return self.cpu_memory_peak _UpperCamelCase : Optional[Any] = PeakCPUMemory() def a_ ( ): '''simple docstring''' lowercase__ : Any = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ : Tuple = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ : Union[str, Any] = torch.cuda.memory_allocated(_lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : int = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowercase__ : Any = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ : Optional[int] = (torch.cuda.memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**20 lowercase__ : Union[str, Any] = (torch.cuda.max_memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**20 return measures def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): '''simple docstring''' print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(_lowerCAmelCase )]:.2f}MiB""" ) lowercase__ : List[Any] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
77
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[Any] ) -> str: UpperCAmelCase = get_activation('swish' ) self.assertIsInstance(lowercase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self :List[str] ) -> List[str]: UpperCAmelCase = get_activation('silu' ) self.assertIsInstance(lowercase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self :List[Any] ) -> List[str]: UpperCAmelCase = get_activation('mish' ) self.assertIsInstance(lowercase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase__ ( self :str ) -> Optional[Any]: UpperCAmelCase = get_activation('gelu' ) self.assertIsInstance(lowercase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
78
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase_ = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase_ = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' _A = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0] @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def __lowercase ( __lowercase ) -> List[Any]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: _A = _readaa(__lowercase ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _A = _readaa(__lowercase ) _A = _readaa(__lowercase ) _A = _readaa(__lowercase ) _A = bytestream.read(rows * cols * num_images ) _A = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) _A = data.reshape(__lowercase , __lowercase , __lowercase , 1 ) return data @deprecated(__lowercase , "Please use tf.one_hot on tensors." ) def __lowercase ( __lowercase , __lowercase ) -> int: '''simple docstring''' _A = labels_dense.shape[0] _A = numpy.arange(__lowercase ) * num_classes _A = numpy.zeros((num_labels, num_classes) ) _A = 1 return labels_one_hot @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def __lowercase ( __lowercase , __lowercase=False , __lowercase=10 ) -> List[Any]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: _A = _readaa(__lowercase ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _A = _readaa(__lowercase ) _A = bytestream.read(__lowercase ) _A = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase , __lowercase ) return labels class _UpperCAmelCase : """simple docstring""" @deprecated( __UpperCAmelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[Any]=dtypes.floataa , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=None , ): '''simple docstring''' _A , _A = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _A = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _A = 10000 _A = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' _A = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _A = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _A = images.astype(numpy.floataa ) _A = numpy.multiply(__UpperCAmelCase , 1.0 / 255.0 ) _A = images _A = labels _A = 0 _A = 0 @property def lowerCAmelCase ( self : int ): '''simple docstring''' return self._images @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self._labels @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self._num_examples @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self._epochs_completed def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): '''simple docstring''' if fake_data: _A = [1] * 784 _A = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) _A = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _A = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) _A = self.images[perma] _A = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _A = self._num_examples - start _A = self._images[start : self._num_examples] _A = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _A = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) _A = self.images[perm] _A = self.labels[perm] # Start next epoch _A = 0 _A = batch_size - rest_num_examples _A = self._index_in_epoch _A = self._images[start:end] _A = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _A = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase , "Please write your own downloading logic." ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) _A = os.path.join(__lowercase , __lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: _A = f.size() print("Successfully downloaded" , __lowercase , __lowercase , "bytes." ) return filepath @deprecated( __lowercase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def __lowercase ( __lowercase , __lowercase=False , __lowercase=False , __lowercase=dtypes.floataa , __lowercase=True , __lowercase=5000 , __lowercase=None , __lowercase=DEFAULT_SOURCE_URL , ) -> List[str]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase ) _A = fake() _A = fake() _A = fake() return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase ) if not source_url: # empty string check _A = DEFAULT_SOURCE_URL _A = "train-images-idx3-ubyte.gz" _A = "train-labels-idx1-ubyte.gz" _A = "t10k-images-idx3-ubyte.gz" _A = "t10k-labels-idx1-ubyte.gz" _A = _maybe_download( __lowercase , __lowercase , source_url + train_images_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_images(__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + train_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_labels(__lowercase , one_hot=__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + test_images_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_images(__lowercase ) _A = _maybe_download( __lowercase , __lowercase , source_url + test_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: _A = _extract_labels(__lowercase , one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): _A = ( "Validation size should be between 0 and " F'''{len(__lowercase )}. Received: {validation_size}.''' ) raise ValueError(__lowercase ) _A = train_images[:validation_size] _A = train_labels[:validation_size] _A = train_images[validation_size:] _A = train_labels[validation_size:] _A = {"dtype": dtype, "reshape": reshape, "seed": seed} _A = _DataSet(__lowercase , __lowercase , **__lowercase ) _A = _DataSet(__lowercase , __lowercase , **__lowercase ) _A = _DataSet(__lowercase , __lowercase , **__lowercase ) return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
79
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase_ ( a__ , a__ , a__ , unittest.TestCase ): __UpperCAmelCase = StableDiffusionInpaintPipeline __UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase = frozenset([] ) def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) UpperCamelCase__ = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCamelCase__ = CLIPTextModel(a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , a , a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(a ) ).convert("RGB" ).resize((64, 64) ) UpperCamelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a ) else: UpperCamelCase__ = torch.Generator(device=a ).manual_seed(a ) UpperCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ): UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInpaintPipeline(**a ) UpperCamelCase__ = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = self.get_dummy_inputs(a ) UpperCamelCase__ = sd_pipe(**a ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" UpperCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() UpperCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="np" , ) UpperCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __a ( self ): UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" UpperCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() UpperCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="np" , ) UpperCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __a ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" UpperCamelCase__ = PNDMScheduler.from_pretrained(a , subfolder="scheduler" ) UpperCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="np" , ) UpperCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
80
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( lowerCamelCase__ ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_snake_case , """num_heads""" ) ) class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=64 , _snake_case=3 , _snake_case=[16, 48, 96] , _snake_case=[1, 3, 6] , _snake_case=[1, 2, 10] , _snake_case=[7, 3, 3] , _snake_case=[4, 2, 2] , _snake_case=[2, 1, 1] , _snake_case=[2, 2, 2] , _snake_case=[False, False, True] , _snake_case=[0.0, 0.0, 0.0] , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=True , _snake_case=True , _snake_case=2 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_sizes _lowerCAmelCase = patch_stride _lowerCAmelCase = patch_padding _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = num_labels _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = num_heads _lowerCAmelCase = stride_kv _lowerCAmelCase = depth _lowerCAmelCase = cls_token _lowerCAmelCase = attention_drop_rate _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps def snake_case ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCvtModel(config=_snake_case ) _lowerCAmelCase = model(_snake_case , training=_snake_case ) _lowerCAmelCase = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFCvtForImageClassification(_snake_case ) _lowerCAmelCase = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtModelTester(self ) _lowerCAmelCase = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def snake_case ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def snake_case ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFCvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass _lowerCAmelCase = model(**_snake_case ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _lowerCAmelCase = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
82
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = ["""pixel_values"""] def __init__( self : Optional[Any] ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[int, float] = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Tuple = size if size is not None else {'shortest_edge': 224} _UpperCamelCase : Optional[Any] = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) _UpperCamelCase : int = do_resize _UpperCamelCase : Tuple = size _UpperCamelCase : int = resample _UpperCamelCase : Optional[int] = do_center_crop _UpperCamelCase : Optional[int] = crop_size _UpperCamelCase : str = do_rescale _UpperCamelCase : List[Any] = rescale_factor _UpperCamelCase : int = do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCamelCase : int = int((256 / 224) * size['shortest_edge'] ) _UpperCamelCase : int = get_resize_output_image_size(lowerCamelCase__ ,size=lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : Dict = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase__ ,size=(size_dict['height'], size_dict['width']) ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[str] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase__ ,size=(size['height'], size['width']) ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Any ,): '''simple docstring''' return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Dict[str, int]] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Dict[str, int]] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[float] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None ,lowerCamelCase__ : Optional[TensorType] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : Optional[int] ,): '''simple docstring''' _UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Any = resample if resample is not None else self.resample _UpperCamelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Any = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : Any = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) _UpperCamelCase : Optional[int] = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _UpperCamelCase : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _UpperCamelCase : Dict = [self.resize(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_center_crop: _UpperCamelCase : Dict = [self.center_crop(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_rescale: _UpperCamelCase : int = [self.rescale(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_normalize: _UpperCamelCase : Union[str, Any] = [self.normalize(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : Optional[Any] = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ )
83
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=3 , __A=18 , __A=30 , __A=400 , __A=True , __A=None , __A=True , ) -> Optional[Any]: lowerCAmelCase_ :int = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase_ :int = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :Optional[Any] = num_channels lowerCAmelCase_ :Optional[Any] = image_size lowerCAmelCase_ :int = min_resolution lowerCAmelCase_ :List[Any] = max_resolution lowerCAmelCase_ :List[Any] = do_resize lowerCAmelCase_ :Tuple = size lowerCAmelCase_ :Dict = apply_ocr def __lowerCAmelCase ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Tuple = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """apply_ocr""" ) ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase_ :Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Dict: # Initialize image_processing lowerCAmelCase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCAmelCase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched lowerCAmelCase_ :str = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> str: # Initialize image_processing lowerCAmelCase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input lowerCAmelCase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ :Dict = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase_ :str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input lowerCAmelCase_ :str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ :int = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> List[Any]: # with apply_OCR = True lowerCAmelCase_ :str = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase_ :int = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) lowerCAmelCase_ :Optional[Any] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase_ :Optional[Any] = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase_ :List[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase_ :Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False lowerCAmelCase_ :int = LayoutLMvaImageProcessor(apply_ocr=__A ) lowerCAmelCase_ :int = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
84
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() snake_case_ = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case_ = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } snake_case_ = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16_000, "return_attention_mask": False, "do_normalize": True, } snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , a__ ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) # load decoder from hub snake_case_ = "hf-internal-testing/ngram-beam-search-decoder" def lowerCAmelCase__ ( self , **a__ ) -> Tuple: '''simple docstring''' snake_case_ = self.add_kwargs_tokens_map.copy() kwargs.update(a__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> int: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Optional[int]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_tokenizer() snake_case_ = self.get_feature_extractor() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case_ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(a__ , "include" ): WavaVecaProcessorWithLM( tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = floats_list((3, 1_000) ) snake_case_ = feature_extractor(a__ , return_tensors="np" ) snake_case_ = processor(a__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = "This is a test string" snake_case_ = processor(text=a__ ) snake_case_ = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self , a__=(2, 10, 16) , a__=77 ) -> Union[str, Any]: '''simple docstring''' np.random.seed(a__ ) return np.random.rand(*a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = self._get_dummy_logits(shape=(10, 16) , seed=13 ) snake_case_ = processor.decode(a__ ) snake_case_ = decoder.decode_beams(a__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case_ = processor.batch_decode(a__ ) else: with get_context(a__ ).Pool() as pool: snake_case_ = processor.batch_decode(a__ , a__ ) snake_case_ = list(a__ ) with get_context("fork" ).Pool() as p: snake_case_ = decoder.decode_beams_batch(a__ , a__ ) snake_case_ , snake_case_ , snake_case_ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a__ , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(a__ , decoded_processor.logit_score ) self.assertListEqual(a__ , decoded_processor.lm_score ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = self._get_dummy_logits() snake_case_ = 15 snake_case_ = -2_0.0 snake_case_ = -4.0 snake_case_ = processor.batch_decode( a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) snake_case_ = decoded_processor_out.text snake_case_ = list(a__ ) with get_context("fork" ).Pool() as pool: snake_case_ = decoder.decode_beams_batch( a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) snake_case_ = [d[0][0] for d in decoded_decoder_out] snake_case_ = [d[0][2] for d in decoded_decoder_out] snake_case_ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , a__ ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , a__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , a__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) snake_case_ = self._get_dummy_logits() snake_case_ = 2.0 snake_case_ = 5.0 snake_case_ = -2_0.0 snake_case_ = True snake_case_ = processor.batch_decode( a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) snake_case_ = decoded_processor_out.text snake_case_ = list(a__ ) decoder.reset_params( alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) with get_context("fork" ).Pool() as pool: snake_case_ = decoder.decode_beams_batch( a__ , a__ , ) snake_case_ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , a__ ) snake_case_ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ = processor.decoder.model_container[processor.decoder._model_key] snake_case_ = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case_ = os.listdir(a__ ) snake_case_ = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a__ , a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = snapshot_download("hf-internal-testing/processor_with_lm" ) snake_case_ = WavaVecaProcessorWithLM.from_pretrained(a__ ) snake_case_ = processor.decoder.model_container[processor.decoder._model_key] snake_case_ = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case_ = os.listdir(a__ ) snake_case_ = os.listdir(a__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a__ , a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ = floats_list((3, 1_000) ) snake_case_ = processor_wavaveca(a__ , return_tensors="np" ) snake_case_ = processor_auto(a__ , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) snake_case_ = self._get_dummy_logits() snake_case_ = processor_wavaveca.batch_decode(a__ ) snake_case_ = processor_auto.batch_decode(a__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = self.get_decoder() snake_case_ = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def lowerCAmelCase__ ( a__ , a__ ) -> int: '''simple docstring''' snake_case_ = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ = self._get_dummy_logits()[0] snake_case_ = processor.decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case_ = self._get_dummy_logits() snake_case_ = processor.batch_decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertListEqual( [" ".join(self.get_from_offsets(a__ , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import torch snake_case_ = load_dataset("common_voice" , "en" , split="train" , streaming=a__ ) snake_case_ = ds.cast_column("audio" , datasets.Audio(sampling_rate=16_000 ) ) snake_case_ = iter(a__ ) snake_case_ = next(a__ ) snake_case_ = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) snake_case_ = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case_ = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): snake_case_ = model(a__ ).logits.cpu().numpy() snake_case_ = processor.decode(logits[0] , output_word_offsets=a__ ) snake_case_ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case_ = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] snake_case_ = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(a__ , "word" ) ) , a__ ) self.assertEqual(" ".join(self.get_from_offsets(a__ , "word" ) ) , output.text ) # output times snake_case_ = torch.tensor(self.get_from_offsets(a__ , "start_time" ) ) snake_case_ = torch.tensor(self.get_from_offsets(a__ , "end_time" ) ) # fmt: off snake_case_ = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) snake_case_ = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(a__ , a__ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(a__ , a__ , atol=0.0_1 ) )
85
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
"""simple docstring""" from __future__ import annotations import bisect def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : Tuple = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCAmelCase : int = mid + 1 else: __lowerCAmelCase : List[str] = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_left(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_right(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = len(_UpperCamelCase ) - 1 while left <= right: __lowerCAmelCase : List[Any] = left + (right - left) // 2 __lowerCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCAmelCase : Tuple = midpoint - 1 else: __lowerCAmelCase : str = midpoint + 1 return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = bisect.bisect_left(_UpperCamelCase , _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if right < left: return None __lowerCAmelCase : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , midpoint + 1 , _UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = sorted(int(item) for item in user_input.split(""",""")) lowerCamelCase__ = int(input("""Enter a single number to be found in the list:\n""")) lowerCamelCase__ = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
86
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : str=None , UpperCamelCase__ : int=None ) -> List[str]: """simple docstring""" __magic_name__ = list(poly_a or [0] )[:] __magic_name__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __magic_name__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __magic_name__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __magic_name__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __magic_name__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __magic_name__ = self.__multiply() def _lowercase ( self : int , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase__ ) <= 1: return dft[0] # __magic_name__ = self.c_max_length // 2 while next_ncol > 0: __magic_name__ = [[] for i in range(UpperCamelCase__ )] __magic_name__ = self.root**next_ncol # First half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __magic_name__ = new_dft __magic_name__ = next_ncol // 2 return dft[0] def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ = self.__dft("""A""" ) __magic_name__ = self.__dft("""B""" ) __magic_name__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __magic_name__ = 2 while next_ncol <= self.c_max_length: __magic_name__ = [[] for i in range(UpperCamelCase__ )] __magic_name__ = self.root ** (next_ncol // 2) __magic_name__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __magic_name__ = new_inverse_c next_ncol *= 2 # Unpack __magic_name__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[Any] ) -> Dict: """simple docstring""" __magic_name__ = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __magic_name__ = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __magic_name__ = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: print('Loading config file...' ) def flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_="." ): _a : Optional[Any] = [] for k, v in d.items(): _a : str = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_ , sep=lowerCAmelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase_ ) _a : Optional[Any] = argparse.Namespace() with open(lowerCAmelCase_ , 'r' ) as yaml_file: try: _a : List[str] = yaml.load(lowerCAmelCase_ , Loader=yaml.FullLoader ) _a : str = flatten_yaml_as_dict(lowerCAmelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) ) return config def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : int = MobileViTVaConfig() _a : Tuple = False # dataset if task_name.startswith('imagenet1k_' ): _a : Any = 1000 if int(task_name.strip().split('_' )[-1] ) == 384: _a : Optional[Any] = 384 else: _a : List[Any] = 256 _a : Optional[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _a : str = 21000 if int(task_name.strip().split('_' )[-1] ) == 384: _a : Any = 384 else: _a : int = 256 _a : List[Any] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _a : Union[str, Any] = 151 _a : Any = 512 _a : str = 'ade20k-id2label.json' _a : int = True elif task_name.startswith('voc_' ): _a : Tuple = 21 _a : Optional[Any] = 512 _a : Optional[int] = 'pascal-voc-id2label.json' _a : Tuple = True # orig_config _a : List[str] = load_orig_config_file(lowerCAmelCase_ ) assert getattr(lowerCAmelCase_ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _a : List[str] = getattr(lowerCAmelCase_ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(lowerCAmelCase_ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _a : Tuple = getattr(lowerCAmelCase_ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _a : Tuple = getattr(lowerCAmelCase_ , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _a : str = getattr(lowerCAmelCase_ , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _a : str = getattr(lowerCAmelCase_ , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) _a : int = getattr(lowerCAmelCase_ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _a : Optional[int] = 'huggingface/label-files' _a : int = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _a : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _a : int = idalabel _a : List[Any] = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _a : List[Any] = dct.pop(lowerCAmelCase_ ) _a : List[Any] = val def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Union[str, Any]: if base_model: _a : str = '' else: _a : Optional[int] = 'mobilevitv2.' _a : Tuple = [] for k in state_dict.keys(): if k[:8] == "encoder.": _a : Optional[Any] = k[8:] else: _a : Union[str, Any] = k if ".block." in k: _a : List[Any] = k_new.replace('.block.' , '.' ) if ".conv." in k: _a : Tuple = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _a : Optional[Any] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _a : List[str] = k_new.replace('conv_1.' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: _a : Optional[int] = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: _a : int = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _a : Tuple = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: _a : Union[str, Any] = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: _a : Tuple = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: _a : int = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: _a : Dict = [0, 1] elif i == 4: _a : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _a : Union[str, Any] = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: _a : Optional[Any] = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: _a : Dict = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: _a : Any = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: _a : List[str] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _a : Tuple = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _a : Optional[Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _a : Union[str, Any] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _a : Optional[int] = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _a : List[Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _a : str = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _a : Tuple = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _a : List[str] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : Any = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(lowerCAmelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( ) -> Any: _a : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _a : Union[str, Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : Union[str, Any] = get_mobilevitva_config(lowerCAmelCase_ , lowerCAmelCase_ ) # load original state_dict _a : Optional[int] = torch.load(lowerCAmelCase_ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _a : Optional[Any] = MobileViTVaForSemanticSegmentation(lowerCAmelCase_ ).eval() _a : Tuple = False else: _a : int = MobileViTVaForImageClassification(lowerCAmelCase_ ).eval() _a : Optional[Any] = False # remove and rename some keys of load the original model _a : str = checkpoint remove_unused_keys(lowerCAmelCase_ ) _a : Dict = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load modified state_dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _a : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _a : Dict = image_processor(images=prepare_img() , return_tensors='pt' ) _a : Dict = model(**lowerCAmelCase_ ) # verify classification model if task_name.startswith('imagenet' ): _a : Dict = outputs.logits _a : int = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _a : List[str] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
89
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __A = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BeitFeatureExtractor"] __A = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
"""simple docstring""" def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[str]] = [[] for _ in range(__a )] SCREAMING_SNAKE_CASE_ : str = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__a ) <= key: return input_string for position, character in enumerate(__a ): SCREAMING_SNAKE_CASE_ : Optional[int] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : int = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__a ) SCREAMING_SNAKE_CASE_ : List[str] = [''''''.join(__a ) for row in temp_grid] SCREAMING_SNAKE_CASE_ : Any = ''''''.join(__a ) return output_string def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : List[str] = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string SCREAMING_SNAKE_CASE_ : list[list[str]] = [[] for _ in range(__a )] # generates template for position in range(len(__a ) ): SCREAMING_SNAKE_CASE_ : str = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : Tuple = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE_ : str = input_string[counter : counter + len(__a )] grid.append(list(__a ) ) counter += len(__a ) SCREAMING_SNAKE_CASE_ : Any = '''''' # reads as zigzag for position in range(len(__a ) ): SCREAMING_SNAKE_CASE_ : Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ : Tuple = min(__a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _A (__a ) -> dict[int, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} for key_guess in range(1 , len(__a ) ): # tries every key SCREAMING_SNAKE_CASE_ : List[Any] = decrypt(__a , __a ) return results if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class a__ ( snake_case__ ): def __init__( self , _A , _A ): """simple docstring""" __lowerCAmelCase = params __lowerCAmelCase = np.array(_A ) __lowerCAmelCase = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _A ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ): """simple docstring""" return len(self.lengths ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.params.max_model_input_size __lowerCAmelCase = self.lengths > max_len logger.info(f"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A , _A ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] __lowerCAmelCase = [] __lowerCAmelCase = [] if self.params.mlm: __lowerCAmelCase , __lowerCAmelCase = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: __lowerCAmelCase , __lowerCAmelCase = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __lowerCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __lowerCAmelCase = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: __lowerCAmelCase = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) __lowerCAmelCase = np.array(_A ) __lowerCAmelCase = np.array(_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = len(self ) __lowerCAmelCase = self.lengths > 1_1 __lowerCAmelCase = self.token_ids[indices] __lowerCAmelCase = self.lengths[indices] __lowerCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __lowerCAmelCase = self.params.special_tok_ids["unk_token"] __lowerCAmelCase = len(self ) __lowerCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __lowerCAmelCase = (unk_occs / self.lengths) < 0.5 __lowerCAmelCase = self.token_ids[indices] __lowerCAmelCase = self.lengths[indices] __lowerCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [t[0] for t in batch] __lowerCAmelCase = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings __lowerCAmelCase = max(_A ) # Pad token ids if self.params.mlm: __lowerCAmelCase = self.params.special_tok_ids["pad_token"] else: __lowerCAmelCase = self.params.special_tok_ids["unk_token"] __lowerCAmelCase = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) __lowerCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) __lowerCAmelCase = torch.tensor(_A ) # (bs) return tk_t, lg_t
92
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Dict = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''git_vision_model''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2_24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE="quick_gelu" , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Any = hidden_size lowercase_ : Any = intermediate_size lowercase_ : Any = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Union[str, Any] = num_channels lowercase_ : Tuple = patch_size lowercase_ : Union[str, Any] = image_size lowercase_ : int = initializer_range lowercase_ : Optional[Any] = attention_dropout lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = hidden_act @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Union[str, Any] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowercase_ : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''git''' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_05_22 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10_24 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1_01 , __SCREAMING_SNAKE_CASE=1_02 , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if vision_config is None: lowercase_ : str = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowercase_ : List[Any] = GitVisionConfig(**__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = vocab_size lowercase_ : int = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Tuple = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : int = position_embedding_type lowercase_ : Dict = use_cache lowercase_ : List[str] = tie_word_embeddings lowercase_ : Union[str, Any] = num_image_with_embedding lowercase_ : int = bos_token_id lowercase_ : int = eos_token_id def _snake_case ( self ): """simple docstring""" lowercase_ : str = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[int] = self.vision_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
93
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : Dict = '''facebook/wmt19-en-de''' snake_case : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : Optional[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : Optional[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test snake_case : Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') snake_case : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save snake_case : Optional[int] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
94
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _A ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =cva.getAffineTransform(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return cva.warpAffine(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase : Optional[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value UpperCAmelCase : Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase , UpperCAmelCase : Optional[int] = gray_img.shape # set different points to rotate image UpperCAmelCase : Optional[Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase : Optional[Any] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase : Dict = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase : Any = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase : int = plt.figure(1) UpperCAmelCase : Any = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
95
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase=None , lowercase=None ): _lowerCamelCase : Any = start _lowerCamelCase : Optional[Any] = end _lowerCamelCase : Optional[int] = val _lowerCamelCase : List[str] = (start + end) // 2 _lowerCamelCase : Any = left _lowerCamelCase : Tuple = right def __repr__( self ): return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : List[Any] = collection _lowerCamelCase : Tuple = function if self.collection: _lowerCamelCase : str = self._build_tree(0 , len(lowercase ) - 1 ) def A_ ( self , lowercase , lowercase ): self._update_tree(self.root , lowercase , lowercase ) def A_ ( self , lowercase , lowercase ): return self._query_range(self.root , lowercase , lowercase ) def A_ ( self , lowercase , lowercase ): if start == end: return SegmentTreeNode(lowercase , lowercase , self.collection[start] ) _lowerCamelCase : int = (start + end) // 2 _lowerCamelCase : Any = self._build_tree(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = self._build_tree(mid + 1 , lowercase ) return SegmentTreeNode(lowercase , lowercase , self.fn(left.val , right.val ) , lowercase , lowercase ) def A_ ( self , lowercase , lowercase , lowercase ): if node.start == i and node.end == i: _lowerCamelCase : Any = val return if i <= node.mid: self._update_tree(node.left , lowercase , lowercase ) else: self._update_tree(node.right , lowercase , lowercase ) _lowerCamelCase : List[str] = self.fn(node.left.val , node.right.val ) def A_ ( self , lowercase , lowercase , lowercase ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowercase , lowercase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowercase , node.mid ) , self._query_range(node.right , node.mid + 1 , lowercase ) , ) else: # range in right child tree return self._query_range(node.right , lowercase , lowercase ) def A_ ( self ): if self.root is not None: _lowerCamelCase : List[str] = Queue() queue.put(self.root ) while not queue.empty(): _lowerCamelCase : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) lowercase__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
96
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ : Union[str, Any] = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a_ ( lowerCamelCase , lowerCamelCase ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a_ ( lowerCamelCase ): UpperCAmelCase__ = _TestCommandArgs(dataset=lowerCamelCase , all_configs=lowerCamelCase , save_infos=lowerCamelCase ) UpperCAmelCase__ = TestCommand(*lowerCamelCase ) test_command.run() UpperCAmelCase__ = os.path.join(lowerCamelCase , 'README.md' ) assert os.path.exists(lowerCamelCase ) UpperCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase ) UpperCAmelCase__ = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 2_3_5_1_5_6_3, 'num_examples': 1_0_0_0_0, }, { 'name': 'validation', 'num_bytes': 2_3_8_4_1_8, 'num_examples': 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ = getattr(dataset_infos['default'] , lowerCamelCase ), getattr(expected_dataset_infos['default'] , lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(lowerCamelCase , lowerCamelCase ) elif key == "splits": assert list(lowerCamelCase ) == list(lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
98
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
from __future__ import annotations import queue class A__ : """simple docstring""" def __init__( self , lowercase) -> Any: '''simple docstring''' a__ : List[str] = data a__ : Tuple = None a__ : int = None def A_ ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) a__ : Tuple = input('Enter the value of the root node: ' ).strip().lower() a__ : queue.Queue = queue.Queue() a__ : List[Any] = TreeNode(int(A__ ) ) q.put(A__ ) while not q.empty(): a__ : int = q.get() a__ : Optional[Any] = F'Enter the left node of {node_found.data}: ' a__ : List[Any] = input(A__ ).strip().lower() or 'n' if check == "n": return tree_node a__ : Tuple = TreeNode(int(A__ ) ) a__ : Union[str, Any] = left_node q.put(A__ ) a__ : List[str] = F'Enter the right node of {node_found.data}: ' a__ : str = input(A__ ).strip().lower() or 'n' if check == "n": return tree_node a__ : int = TreeNode(int(A__ ) ) a__ : List[Any] = right_node q.put(A__ ) raise def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : queue.Queue = queue.Queue() q.put(A__ ) while not q.empty(): a__ : Optional[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : queue.Queue = queue.Queue() q.put(A__ ) while not q.empty(): a__ : Dict = [] while not q.empty(): a__ : Optional[int] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(A__ ) def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : list[TreeNode] = [] a__ : Any = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(A__ ) a__ : Union[str, Any] = n.left # end of while means current node doesn't have left child a__ : int = stack.pop() # start to traverse its right child a__ : Tuple = n.right def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ : list[TreeNode] = [] a__ : Tuple = node while n or stack: while n: stack.append(A__ ) a__ : Optional[int] = n.left a__ : Any = stack.pop() print(n.data , end=',' ) a__ : List[str] = n.right def A_ ( A__ ) -> None: if not isinstance(A__ , A__ ) or not node: return a__ , a__ : Optional[Any] = [], [] a__ : str = node stacka.append(A__ ) while stacka: # to find the reversed order of post order, store it in stack2 a__ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(A__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A_ ( A__ = "" , A__=50 , A__="*" ) -> str: if not s: return "\n" + width * char a__ , a__ : Dict = divmod(width - len(A__ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowercase : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
99
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __magic_name__ = logging.getLogger() __magic_name__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""source""": """What is love ?""", """target""": """life"""} __SCREAMING_SNAKE_CASE = {"""train""": 1_2, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __SCREAMING_SNAKE_CASE = """\n""".join([contents[field]] * n_lines[split]) with open(os.path.join(lowerCAmelCase__ , f"{split}.{field}") , """w""") as f: f.write(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "pytorch"): __SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , """output""") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , """data""") self._create_dummy_data(data_dir=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}") if is_apex_available(): testargs.append("""--fp16""") else: testargs.append("""--gpus=0""") testargs.append("""--distributed_backend=ddp_cpu""") testargs.append("""--num_processes=2""") __SCREAMING_SNAKE_CASE = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs execute_subprocess_async(lowerCAmelCase__ , env=self.get_env()) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , """metrics.json""") with open(lowerCAmelCase__) as f: __SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__) return result @require_torch_gpu def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self._run_finetune(gpus=1) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2) @require_torch_multi_gpu def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self._run_finetune(gpus=2) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2) @require_torch_gpu @require_ray def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self._run_finetune(gpus=1 , distributed_retriever="""ray""") self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2) @require_torch_multi_gpu @require_ray def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self._run_finetune(gpus=1 , distributed_retriever="""ray""") self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2)
100
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(A__) processor.save_pretrained(self.tmpdirname) def A__ ( self ,**A__): return AutoProcessor.from_pretrained(self.tmpdirname ,**A__).image_processor def A__ ( self): shutil.rmtree(self.tmpdirname) def A__ ( self): lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta)] lowercase = [Image.fromarray(np.moveaxis(A__ ,0 ,-1)) for x in image_inputs] return image_inputs def A__ ( self): lowercase = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowercase = self.get_image_processor(do_normalize=A__ ,padding_value=1.0) lowercase = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A__ ,padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor ,A__) def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ ,return_tensors='''np''') lowercase = processor(images=A__ ,return_tensors='''np''') input_feat_extract.pop('''original_sizes''') # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''') # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2) @require_torch def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = [torch.ones((1, 3, 5, 5))] lowercase = [[1_7_6_4, 2_6_4_6]] lowercase = [[6_8_3, 1_0_2_4]] lowercase = processor.post_process_masks(A__ ,A__ ,A__) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) lowercase = processor.post_process_masks( A__ ,torch.tensor(A__) ,torch.tensor(A__)) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) # should also work with np lowercase = [np.ones((1, 3, 5, 5))] lowercase = processor.post_process_masks(A__ ,np.array(A__) ,np.array(A__)) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) lowercase = [[1, 0], [0, 1]] with self.assertRaises(A__): lowercase = processor.post_process_masks(A__ ,np.array(A__) ,np.array(A__)) @require_vision @require_tf class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(A__) processor.save_pretrained(self.tmpdirname) def A__ ( self ,**A__): return AutoProcessor.from_pretrained(self.tmpdirname ,**A__).image_processor def A__ ( self): shutil.rmtree(self.tmpdirname) def A__ ( self): lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta)] lowercase = [Image.fromarray(np.moveaxis(A__ ,0 ,-1)) for x in image_inputs] return image_inputs def A__ ( self): lowercase = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowercase = self.get_image_processor(do_normalize=A__ ,padding_value=1.0) lowercase = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A__ ,padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor ,A__) def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ ,return_tensors='''np''') lowercase = processor(images=A__ ,return_tensors='''np''') input_feat_extract.pop('''original_sizes''') # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''') # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2) @require_tf def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = [tf.ones((1, 3, 5, 5))] lowercase = [[1_7_6_4, 2_6_4_6]] lowercase = [[6_8_3, 1_0_2_4]] lowercase = processor.post_process_masks(A__ ,A__ ,A__ ,return_tensors='''tf''') self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) lowercase = processor.post_process_masks( A__ ,tf.convert_to_tensor(A__) ,tf.convert_to_tensor(A__) ,return_tensors='''tf''' ,) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) # should also work with np lowercase = [np.ones((1, 3, 5, 5))] lowercase = processor.post_process_masks( A__ ,np.array(A__) ,np.array(A__) ,return_tensors='''tf''') self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6)) lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError): lowercase = processor.post_process_masks( A__ ,np.array(A__) ,np.array(A__) ,return_tensors='''tf''') @require_vision @require_torchvision class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(A__) processor.save_pretrained(self.tmpdirname) def A__ ( self ,**A__): return AutoProcessor.from_pretrained(self.tmpdirname ,**A__).image_processor def A__ ( self): shutil.rmtree(self.tmpdirname) def A__ ( self): lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta)] lowercase = [Image.fromarray(np.moveaxis(A__ ,0 ,-1)) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = np.random.randint(0 ,2 ,size=(1, 3, 5, 5)).astype(np.floataa) lowercase = [tf.convert_to_tensor(A__)] lowercase = [torch.tensor(A__)] lowercase = [[1_7_6_4, 2_6_4_6]] lowercase = [[6_8_3, 1_0_2_4]] lowercase = processor.post_process_masks( A__ ,A__ ,A__ ,return_tensors='''tf''') lowercase = processor.post_process_masks( A__ ,A__ ,A__ ,return_tensors='''pt''') self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy())) @is_pt_tf_cross_test def A__ ( self): lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=A__) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ ,return_tensors='''pt''')['''pixel_values'''].numpy() lowercase = processor(images=A__ ,return_tensors='''pt''')['''pixel_values'''].numpy() lowercase = image_processor(A__ ,return_tensors='''tf''')['''pixel_values'''].numpy() lowercase = processor(images=A__ ,return_tensors='''tf''')['''pixel_values'''].numpy() self.assertTrue(np.allclose(A__ ,A__)) self.assertTrue(np.allclose(A__ ,A__)) self.assertTrue(np.allclose(A__ ,A__))
101
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='nllb-moe' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=12_81_12 , a_=10_24 , a_=12 , a_=40_96 , a_=16 , a_=12 , a_=40_96 , a_=16 , a_=0.05 , a_=0.05 , a_=True , a_=True , a_="relu" , a_=10_24 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.02 , a_=2 , a_=True , a_=False , a_="float32" , a_=False , a_=1_28 , a_=64 , a_=4 , a_=4 , a_=0.001 , a_=0.001 , a_="all" , a_=False , a_=False , a_=1.0 , a_=0.2 , a_=1 , a_=0 , a_=2 , a_=False , **a_ , ): '''simple docstring''' __snake_case : Optional[Any] = vocab_size __snake_case : int = max_position_embeddings __snake_case : int = d_model __snake_case : List[str] = encoder_ffn_dim __snake_case : Optional[Any] = encoder_layers __snake_case : Dict = encoder_attention_heads __snake_case : str = decoder_ffn_dim __snake_case : Dict = decoder_layers __snake_case : Union[str, Any] = decoder_attention_heads __snake_case : Optional[Any] = dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : Union[str, Any] = activation_dropout __snake_case : List[Any] = activation_function __snake_case : int = init_std __snake_case : List[Any] = encoder_layerdrop __snake_case : Optional[Any] = decoder_layerdrop __snake_case : Tuple = use_cache __snake_case : Dict = encoder_layers __snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : List[str] = router_z_loss_coef __snake_case : int = router_aux_loss_coef __snake_case : Union[str, Any] = decoder_sparse_step __snake_case : Tuple = encoder_sparse_step __snake_case : int = num_experts __snake_case : List[Any] = expert_capacity __snake_case : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __snake_case : Optional[int] = router_dtype __snake_case : Tuple = router_ignore_padding_tokens __snake_case : List[Any] = batch_prioritized_routing __snake_case : Optional[int] = second_expert_policy __snake_case : Any = normalize_router_prob_before_dropping __snake_case : List[Any] = moe_eval_capacity_token_fraction __snake_case : Optional[int] = moe_token_dropout __snake_case : int = output_router_logits super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , **a_ , )
102
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
from typing import Any class __snake_case : def __init__( self : Optional[int] , A_ : Any): lowerCAmelCase_ : int = data lowerCAmelCase_ : Any = None def __repr__( self : Any): return F"""Node({self.data})""" class __snake_case : def __init__( self : List[str]): lowerCAmelCase_ : Optional[int] = None def __iter__( self : Optional[int]): lowerCAmelCase_ : List[Any] = self.head while node: yield node.data lowerCAmelCase_ : int = node.next def __len__( self : List[Any]): return sum(1 for _ in self) def __repr__( self : List[str]): return "->".join([str(A_) for item in self]) def __getitem__( self : Optional[int] , A_ : int): if not 0 <= index < len(self): raise ValueError('''list index out of range.''') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self : str , A_ : int , A_ : Any): if not 0 <= index < len(self): raise ValueError('''list index out of range.''') lowerCAmelCase_ : Optional[Any] = self.head for _ in range(A_): lowerCAmelCase_ : Tuple = current.next lowerCAmelCase_ : List[str] = data def UpperCAmelCase__ ( self : List[Any] , A_ : Any): self.insert_nth(len(self) , A_) def UpperCAmelCase__ ( self : Optional[int] , A_ : Any): self.insert_nth(0 , A_) def UpperCAmelCase__ ( self : Tuple , A_ : int , A_ : Any): if not 0 <= index <= len(self): raise IndexError('''list index out of range''') lowerCAmelCase_ : Any = Node(A_) if self.head is None: lowerCAmelCase_ : Any = new_node elif index == 0: lowerCAmelCase_ : List[Any] = self.head # link new_node to head lowerCAmelCase_ : Union[str, Any] = new_node else: lowerCAmelCase_ : Optional[Any] = self.head for _ in range(index - 1): lowerCAmelCase_ : Union[str, Any] = temp.next lowerCAmelCase_ : str = temp.next lowerCAmelCase_ : List[str] = new_node def UpperCAmelCase__ ( self : List[Any]): # print every node data print(self) def UpperCAmelCase__ ( self : str): return self.delete_nth(0) def UpperCAmelCase__ ( self : Any): # delete from tail return self.delete_nth(len(self) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int = 0): if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('''List index out of range.''') lowerCAmelCase_ : Optional[Any] = self.head # default first node if index == 0: lowerCAmelCase_ : Any = self.head.next else: lowerCAmelCase_ : int = self.head for _ in range(index - 1): lowerCAmelCase_ : Dict = temp.next lowerCAmelCase_ : Any = temp.next lowerCAmelCase_ : str = temp.next.next return delete_node.data def UpperCAmelCase__ ( self : str): return self.head is None def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : List[Any] = self.head while current: # Store the current node's next node. lowerCAmelCase_ : Optional[int] = current.next # Make the current node's next point backwards lowerCAmelCase_ : Tuple = prev # Make the previous node be the current node lowerCAmelCase_ : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase_ : List[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase_ : Tuple = prev def UpperCamelCase( ): lowerCAmelCase_ : int = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): lowerCAmelCase_ : int = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def UpperCamelCase( ): lowerCAmelCase_ : Dict = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] lowerCAmelCase_ : Any = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase_ : int = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase_ : Optional[int] = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase_ : Dict = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def UpperCamelCase( ): from doctest import testmod testmod() lowerCAmelCase_ : Any = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__UpperCamelCase ) print('''\nReading/changing Node data using indexing:''' ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase_ : Optional[Any] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__UpperCamelCase ) print(f"""length of linked_list is : {len(__UpperCamelCase )}""" ) if __name__ == "__main__": main()
103
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase = 2**power __lowercase = 0 while n: __lowercase , __lowercase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
104
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _SCREAMING_SNAKE_CASE ( _lowercase : int = 200_0000 ) ->int: '''simple docstring''' a : list[int] = [0] a : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a : int = 0 # the area corresponding to the grid that gives the product closest to target a : int = 0 # an estimate of b, using the quadratic formula a : float # the largest integer less than b_estimate a : int # the largest integer less than b_estimate a : int # the triangle number corresponding to b_floor a : int # the triangle number corresponding to b_ceil a : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a : Union[str, Any] = floor(_lowercase ) a : str = ceil(_lowercase ) a : Tuple = triangle_numbers[b_floor] a : Tuple = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a : str = triangle_b_first_guess * triangle_a a : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a : Dict = triangle_b_second_guess * triangle_a a : str = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
105
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" from manim import * class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[Any] = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase__ : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ : Dict = Rectangle(height=0.25 ,width=0.25 ) lowerCAmelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Any = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Optional[int] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Dict = VGroup(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Dict = Text('''CPU''' ,font_size=2_4 ) lowerCAmelCase__ : Optional[int] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : str = [mem.copy() for i in range(4 )] lowerCAmelCase__ : Dict = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : List[Any] = Text('''GPU''' ,font_size=2_4 ) lowerCAmelCase__ : List[str] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : int = [mem.copy() for i in range(6 )] lowerCAmelCase__ : str = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : int = Text('''Model''' ,font_size=2_4 ) lowerCAmelCase__ : Optional[int] = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Tuple = [] for i, rect in enumerate(lowercase_ ): lowerCAmelCase__ : Optional[Any] = fill.copy().set_fill(lowercase_ ,opacity=0.8 ) target.move_to(lowercase_ ) model_arr.append(lowercase_ ) lowerCAmelCase__ : int = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(lowercase_ ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowercase_ ) self.add(*lowercase_ ,*lowercase_ ) lowerCAmelCase__ : Any = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[int] = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Tuple = VGroup(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0 ) lowerCAmelCase__ : Dict = Text('''Disk''' ,font_size=2_4 ) lowerCAmelCase__ : int = Group(lowercase_ ,lowercase_ ).arrange(lowercase_ ,buff=0.5 ,aligned_edge=lowercase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : str = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=1_8 ,) blue_text.next_to(lowercase_ ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(lowercase_ ) lowerCAmelCase__ : List[str] = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) ) lowerCAmelCase__ : List[Any] = Square(0.3 ) input.set_fill(lowercase_ ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,lowercase_ ,buff=0.5 ) self.play(Write(lowercase_ ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=lowercase_ ,buff=0.02 ) self.play(MoveToTarget(lowercase_ ) ) self.play(FadeOut(lowercase_ ) ) lowerCAmelCase__ : str = Arrow(start=lowercase_ ,end=lowercase_ ,color=lowercase_ ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,lowercase_ ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase__ : Tuple = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ,run_time=3 ) ) lowerCAmelCase__ : Optional[int] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(lowercase_ ) ,Circumscribe(model_arr[0] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(model_cpu_arr[0] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(gpu_rect[0] ,color=lowercase_ ,**lowercase_ ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase__ : List[Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,lowercase_ ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase__ : List[str] = AnimationGroup( FadeOut(lowercase_ ,run_time=0.5 ) ,MoveToTarget(lowercase_ ,run_time=0.5 ) ,FadeIn(lowercase_ ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(lowercase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase__ : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] ,**lowercase_ ) ,Circumscribe(cpu_left_col_base[i] ,**lowercase_ ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(gpu_rect[0] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(model_arr[i + 1] ,color=lowercase_ ,**lowercase_ ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(cpu_left_col_base[-1] ,color=lowercase_ ,**lowercase_ ) ,Circumscribe(gpu_rect[0] ,color=lowercase_ ,**lowercase_ ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase__ : List[str] = a_c lowerCAmelCase__ : str = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(lowercase_ ) ,FadeOut(lowercase_ ,run_time=0.5 ) ,) lowerCAmelCase__ : List[Any] = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ,run_time=3 ) ,MoveToTarget(lowercase_ ) ) self.wait()
106
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a__ ( SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' lowerCAmelCase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' i -= len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = i // 3 lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase : Union[str, Any] = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase : Optional[Any] = any(char in ascii_uppercase for char in password ) lowerCAmelCase : List[str] = any(char in ascii_lowercase for char in password ) lowerCAmelCase : Optional[int] = any(char in digits for char in password ) lowerCAmelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a__ ( ): '''simple docstring''' lowerCAmelCase : int = int(input("Please indicate the max length of your password: " ).strip() ) lowerCAmelCase : int = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
108
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan A: str = 637_8137.0 A: List[Any] = 635_6752.31_4245 A: Any = 6_3_7_8_1_3_7 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Optional[int] = (AXIS_A - AXIS_B) / AXIS_A UpperCAmelCase : Optional[int] = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) UpperCAmelCase : List[Any] = radians(UpperCamelCase ) UpperCAmelCase : Dict = radians(UpperCamelCase ) # Equation UpperCAmelCase : Dict = sin((phi_a - phi_a) / 2 ) UpperCAmelCase : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCAmelCase : List[str] = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCamelCase ( __A , __A=0.999 , __A="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCamelCase__ = [] for i in range(_lowerCAmelCase ): UpperCamelCase__ = i / num_diffusion_timesteps UpperCamelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class lowercase_ ( A__ , A__ ): __UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase = 2 @register_to_config def __init__( self , a = 10_00 , a = 0.0_0085 , a = 0.012 , a = "linear" , a = None , a = "epsilon" , a = False , a = False , a = 1.0 , a = "linspace" , a = 0 , ): if trained_betas is not None: UpperCamelCase__ = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase__ = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ = betas_for_alpha_bar(snake_case_ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": UpperCamelCase__ = betas_for_alpha_bar(snake_case_ , alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCamelCase__ = 1.0 - self.betas UpperCamelCase__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = use_karras_sigmas def __a ( self , a , a=None ): if schedule_timesteps is None: UpperCamelCase__ = self.timesteps UpperCamelCase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase__ = 1 if len(snake_case_ ) > 1 else 0 else: UpperCamelCase__ = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep UpperCamelCase__ = self._index_counter[timestep_int] return indices[pos].item() @property def __a ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __a ( self , a , a , ): UpperCamelCase__ = self.index_for_timestep(snake_case_ ) UpperCamelCase__ = self.sigmas[step_index] UpperCamelCase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def __a ( self , a , a = None , a = None , ): UpperCamelCase__ = num_inference_steps UpperCamelCase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase__ = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) UpperCamelCase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase__ = np.log(snake_case_ ) UpperCamelCase__ = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) if self.config.use_karras_sigmas: UpperCamelCase__ = self._convert_to_karras(in_sigmas=snake_case_ , num_inference_steps=self.num_inference_steps ) UpperCamelCase__ = np.array([self._sigma_to_t(snake_case_ , snake_case_ ) for sigma in sigmas] ) UpperCamelCase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase__ = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) UpperCamelCase__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase__ = torch.from_numpy(snake_case_ ) UpperCamelCase__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 UpperCamelCase__ = timesteps.to(snake_case_ , dtype=torch.floataa ) else: UpperCamelCase__ = timesteps.to(device=snake_case_ ) # empty dt and derivative UpperCamelCase__ = None UpperCamelCase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase__ = defaultdict(snake_case_ ) def __a ( self , a , a ): # get log sigma UpperCamelCase__ = np.log(snake_case_ ) # get distribution UpperCamelCase__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCamelCase__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCamelCase__ = low_idx + 1 UpperCamelCase__ = log_sigmas[low_idx] UpperCamelCase__ = log_sigmas[high_idx] # interpolate sigmas UpperCamelCase__ = (low - log_sigma) / (low - high) UpperCamelCase__ = np.clip(snake_case_ , 0 , 1 ) # transform interpolation to time range UpperCamelCase__ = (1 - w) * low_idx + w * high_idx UpperCamelCase__ = t.reshape(sigma.shape ) return t def __a ( self , a , a ): UpperCamelCase__ = in_sigmas[-1].item() UpperCamelCase__ = in_sigmas[0].item() UpperCamelCase__ = 7.0 # 7.0 is the value used in the paper UpperCamelCase__ = np.linspace(0 , 1 , snake_case_ ) UpperCamelCase__ = sigma_min ** (1 / rho) UpperCamelCase__ = sigma_max ** (1 / rho) UpperCamelCase__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __a ( self ): return self.dt is None def __a ( self , a , a , a , a = True , ): UpperCamelCase__ = self.index_for_timestep(snake_case_ ) # advance index counter by 1 UpperCamelCase__ = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase__ = self.sigmas[step_index] UpperCamelCase__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCamelCase__ = self.sigmas[step_index - 1] UpperCamelCase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase__ = 0 UpperCamelCase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase__ = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCamelCase__ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: UpperCamelCase__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase__ = sigma_next - sigma_hat # store for 2nd order step UpperCamelCase__ = derivative UpperCamelCase__ = dt UpperCamelCase__ = sample else: # 2. 2nd order / Heun's method UpperCamelCase__ = (sample - pred_original_sample) / sigma_next UpperCamelCase__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCamelCase__ = self.dt UpperCamelCase__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __a ( self , a , a , a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 UpperCamelCase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCamelCase__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCamelCase__ = self.timesteps.to(original_samples.device ) UpperCamelCase__ = timesteps.to(original_samples.device ) UpperCamelCase__ = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] UpperCamelCase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase__ = sigma.unsqueeze(-1 ) UpperCamelCase__ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
80
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ) -> Union[str, Any]: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) _lowerCAmelCase : Optional[int] = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" A = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] A = True if """large""" in model_name or """huge""" in model_name else False A = True if """large""" in model_name or """huge""" in model_name else False A = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: A = [3, 3, 3, 3] A = [5, 5, 5, 5] elif "fl4" in model_name: A = [4, 4, 4, 4] A = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: A = [3, 3, 3, 3] if "lrf" in model_name: A = [3, 3, 3, 3] else: A = [2, 2, 2, 2] if "tiny" in model_name: A = 96 elif "small" in model_name: A = 96 elif "base" in model_name: A = 128 elif "large" in model_name: A = 192 elif "xlarge" in model_name: A = 256 elif "huge" in model_name: A = 352 # set label information A = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: A = """imagenet-22k-id2label.json""" else: A = """imagenet-1k-id2label.json""" A = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = FocalNetConfig( embed_dim=_lowerCAmelCase , depths=_lowerCAmelCase , focal_levels=_lowerCAmelCase , focal_windows=_lowerCAmelCase , use_conv_embed=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase , use_post_layernorm=_lowerCAmelCase , use_layerscale=_lowerCAmelCase , ) return config def __a ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: A = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: A = """encoder.""" + name if "encoder.layers" in name: A = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: A = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: A = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: A = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: A = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: A = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": A = """layernorm.weight""" if name == "norm.bias": A = """layernorm.bias""" if "head" in name: A = name.replace("""head""" , """classifier""" ) else: A = """focalnet.""" + name return name def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" A = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on A = model_name_to_url[model_name] print("""Checkpoint URL: """ , _lowerCAmelCase ) A = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): A = state_dict.pop(_lowerCAmelCase ) A = val A = get_focalnet_config(_lowerCAmelCase ) A = FocalNetForImageClassification(_lowerCAmelCase ) model.eval() # load state dict model.load_state_dict(_lowerCAmelCase ) # verify conversion A = """http://images.cocodataset.org/val2017/000000039769.jpg""" A = BitImageProcessor( do_resize=_lowerCAmelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase , crop_size=224 , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , ) A = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) A = processor(images=_lowerCAmelCase , return_tensors="""pt""" ) A = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) A = image_transforms(_lowerCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowerCAmelCase , atol=1E-4 ) A = model(**_lowerCAmelCase ) A = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": A = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": A = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": A = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": A = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": A = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": A = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _lowerCamelCase : str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
258
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
from __future__ import annotations from cmath import sqrt def a_ ( _A , _A , _A ) -> Any: """simple docstring""" if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) snake_case__ = b * b - 4 * a * c snake_case__ = (-b + sqrt(_lowerCAmelCase )) / (2 * a) snake_case__ = (-b - sqrt(_lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = quadratic_roots(a=5 , b=6 , c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput UpperCAmelCase_ = 8 def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any]=BITS ): '''simple docstring''' __lowerCamelCase = x.device __lowerCamelCase = (x * 255).int().clamp(0 , 255 ) __lowerCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase ) __lowerCamelCase = rearrange(_lowerCAmelCase , """d -> d 1 1""" ) __lowerCamelCase = rearrange(_lowerCAmelCase , """b c h w -> b c 1 h w""" ) __lowerCamelCase = ((x & mask) != 0).float() __lowerCamelCase = rearrange(_lowerCAmelCase , """b c d h w -> b (c d) h w""" ) __lowerCamelCase = bits * 2 - 1 return bits def lowerCamelCase__ ( A__ : Dict , A__ : Union[str, Any]=BITS ): '''simple docstring''' __lowerCamelCase = x.device __lowerCamelCase = (x > 0).int() __lowerCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase , dtype=torch.intaa ) __lowerCamelCase = rearrange(_lowerCAmelCase , """d -> d 1 1""" ) __lowerCamelCase = rearrange(_lowerCAmelCase , """b (c d) h w -> b c d h w""" , d=8 ) __lowerCamelCase = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCamelCase__ ( self : int , A__ : Optional[int] , A__ : List[str] , A__ : Any , A__ : int = 0.0 , A__ : Optional[Any] = True , A__ : Tuple=None , A__ : Dict = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCamelCase = self.alphas_cumprod[timestep] __lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCamelCase = self.bit_scale if self.config.clip_sample: __lowerCamelCase = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowerCamelCase = self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCamelCase = model_output.device if torch.is_tensor(_lowerCAmelCase ) else """cpu""" __lowerCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) __lowerCamelCase = self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) ** 0.5 * eta * noise __lowerCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , A__ : Union[str, Any] , A__ : int , A__ : Optional[Any] , A__ : Dict="epsilon" , A__ : Any=None , A__ : Dict = True , ): '''simple docstring''' __lowerCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCamelCase, __lowerCamelCase = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas __lowerCamelCase = self.alphas_cumprod[t] __lowerCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" __lowerCamelCase = self.bit_scale if self.config.clip_sample: __lowerCamelCase = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase = 0 if t > 0: __lowerCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_lowerCAmelCase ).to(model_output.device ) __lowerCamelCase = (self._get_variance(_lowerCAmelCase , predicted_variance=_lowerCAmelCase ) ** 0.5) * noise __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) class lowerCamelCase__( A__): def __init__( self: int , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] = 1.0 , ): super().__init__() __lowerCamelCase = bit_scale __lowerCamelCase = ( ddim_bit_scheduler_step if isinstance(snake_case_ , snake_case_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self: int , UpperCamelCase_: str = 2_56 , UpperCamelCase_: Tuple = 2_56 , UpperCamelCase_: Dict = 50 , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: int = 1 , UpperCamelCase_: List[Any] = "pil" , UpperCamelCase_: Any = True , **UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=snake_case_ , ) __lowerCamelCase = decimal_to_bits(snake_case_ ) * self.bit_scale __lowerCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(snake_case_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCamelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample __lowerCamelCase = bits_to_decimal(snake_case_ ) if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" return str(_lowerCAmelCase ) == str(_lowerCAmelCase )[::-1] def UpperCamelCase_ ( _UpperCAmelCase : Any ) -> str: """simple docstring""" return int(_lowerCAmelCase ) + int(str(_lowerCAmelCase )[::-1] ) def UpperCamelCase_ ( _UpperCAmelCase : int = 10_000 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = [] for num in range(1 , _lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = num while iterations < 50: _UpperCAmelCase : Dict = sum_reverse(_lowerCAmelCase ) iterations += 1 if is_palindrome(_lowerCAmelCase ): break else: lychrel_nums.append(_lowerCAmelCase ) return len(_lowerCAmelCase ) if __name__ == "__main__": print(F'{solution() = }')
31
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a__ ( A__ ): def __lt__( self : Optional[int] , a : Any ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , a : List[Any] ): """simple docstring""" return self[-1] == other[-1] def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: __lowerCamelCase = [] # sort into stacks for element in collection: __lowerCamelCase = Stack([element] ) __lowerCamelCase = bisect_left(_lowerCAmelCase , _lowerCAmelCase ) if i != len(_lowerCAmelCase ): stacks[i].append(_lowerCAmelCase ) else: stacks.append(_lowerCAmelCase ) # use a heap-based merge to merge stack efficiently __lowerCamelCase = merge(*(reversed(_lowerCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __UpperCAmelCase =input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase =[int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
67
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): __magic_name__ = None def snake_case ( A__ ,A__ ,): import pyspark def generate_fn(): UpperCAmelCase_ : Optional[int] = df.select("*" ,pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: UpperCAmelCase_ : Union[str, Any] = df_with_partition_id.select("*" ).where(F"""part_id = {partition_id}""" ).drop("part_id" ) UpperCAmelCase_ : Dict = partition_df.collect() UpperCAmelCase_ : Tuple = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase_ (_BaseExamplesIterable ): def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , ) -> Any: UpperCAmelCase_ : Tuple = df UpperCAmelCase_ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase_ : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ) -> str: yield from self.generate_examples_fn() def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str ) -> "SparkExamplesIterable": UpperCAmelCase_ : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ) -> "SparkExamplesIterable": UpperCAmelCase_ : str = self.split_shard_indices_by_worker(snake_case_ , snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return len(self.partition_order ) class UpperCamelCase_ (datasets.DatasetBuilder ): __magic_name__ = SparkConfig def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[int]: import pyspark UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase_ : Union[str, Any] = df UpperCAmelCase_ : Optional[int] = working_dir super().__init__( cache_dir=snake_case_ , config_name=str(self.df.semanticHash() ) , **snake_case_ , ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase_ : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case_ ) UpperCAmelCase_ : Tuple = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case_ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase_ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict ) -> List[str]: import pyspark def get_arrow_batch_size(lowerCAmelCase_ : Optional[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) UpperCAmelCase_ : Tuple = self.df.count() UpperCAmelCase_ : Optional[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase_ : Optional[Any] = ( self.df.limit(snake_case_ ) .repartition(1 ) .mapInArrow(snake_case_ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase_ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase_ : List[Any] = min(snake_case_ , int(approx_total_size / max_shard_size ) ) UpperCAmelCase_ : List[Any] = self.df.repartition(snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark UpperCAmelCase_ : List[Any] = ParquetWriter if file_format == "parquet" else ArrowWriter UpperCAmelCase_ : Any = os.path.join(self._working_dir , os.path.basename(snake_case_ ) ) if self._working_dir else fpath UpperCAmelCase_ : Optional[int] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase_ : str = self.config.features UpperCAmelCase_ : Optional[Any] = self._writer_batch_size UpperCAmelCase_ : List[Any] = self._fs.storage_options def write_arrow(lowerCAmelCase_ : Union[str, Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase_ : Union[str, Any] = pyspark.TaskContext().taskAttemptId() UpperCAmelCase_ : Any = next(snake_case_ , snake_case_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = writer_class( features=snake_case_ , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) UpperCAmelCase_ : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase_ , UpperCAmelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 UpperCAmelCase_ : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) UpperCAmelCase_ : str = pa.Table.from_batches([batch] ) writer.write_table(snake_case_ ) if writer._num_bytes > 0: UpperCAmelCase_ , UpperCAmelCase_ : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case_ ) ): UpperCAmelCase_ : List[Any] = os.path.join(os.path.dirname(snake_case_ ) , os.path.basename(snake_case_ ) ) shutil.move(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = ( self.df.mapInArrow(snake_case_ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str = "arrow" , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : List[Any] , ) -> List[Any]: self._validate_cache_dir() UpperCAmelCase_ : Any = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case_ ) UpperCAmelCase_ : Any = not is_remote_filesystem(self._fs ) UpperCAmelCase_ : str = os.path.join if is_local else posixpath.join UpperCAmelCase_ : Optional[Any] = "-TTTTT-SSSSS-of-NNNNN" UpperCAmelCase_ : Union[str, Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" UpperCAmelCase_ : List[Any] = path_join(self._output_dir , snake_case_ ) UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] for task_id, content in self._prepare_split_single(snake_case_ , snake_case_ , snake_case_ ): ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case_ ) UpperCAmelCase_ : Dict = total_num_examples UpperCAmelCase_ : List[str] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: UpperCAmelCase_ : Optional[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase_ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , ): rename( snake_case_ , fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , f"""{global_shard_id:05d}""" ).replace("NNNNN" , f"""{total_shards:05d}""" ) , ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : int = 0 for i in range(len(snake_case_ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = task_id_and_num_shards[i] for shard_id in range(snake_case_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case_ , len(snake_case_ ) ).map(lambda lowerCAmelCase_ : _rename_shard(*snake_case_ ) ).collect() else: # don't use any pattern UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace(snake_case_ , "" ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
'''simple docstring''' from __future__ import annotations __a = [True] * 1_000_001 __a = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): __a = False i += 1 def __UpperCAmelCase ( a_: List[str] ): return seive[n] def __UpperCAmelCase ( a_: Tuple ): return any(digit in "02468" for digit in str(_lowerCAmelCase ) ) def __UpperCAmelCase ( a_: int = 1_000_000 ): _UpperCAmelCase : str = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(_lowerCAmelCase ) and not contains_an_even_digit(_lowerCAmelCase ): _UpperCAmelCase : List[str] = str(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(_lowerCAmelCase ) )] if all(is_prime(_lowerCAmelCase ) for i in list_nums ): result.append(_lowerCAmelCase ) return result def __UpperCAmelCase ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : Any =logging.get_logger(__name__) __snake_case : str ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __snake_case : Tuple ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __snake_case : List[str] ={ 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ( list(range(ord('''!''') ,ord('''~''') + 1)) + list(range(ord('''¡''') ,ord('''¬''') + 1)) + list(range(ord('''®''') ,ord('''ÿ''') + 1)) ) lowerCAmelCase__ : Union[str, Any] = bs[:] lowerCAmelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(_lowerCAmelCase) cs.append(2**8 + n) n += 1 lowerCAmelCase__ : int = [chr(_lowerCAmelCase) for n in cs] return dict(zip(_lowerCAmelCase ,_lowerCAmelCase)) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : str = set() lowerCAmelCase__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase__ : Tuple = char return pairs class lowerCamelCase__ ( A__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="replace" ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase=False ,**__lowerCamelCase ,) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else bos_token lowerCAmelCase__ : Union[str, Any] = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else eos_token lowerCAmelCase__ : Dict = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else sep_token lowerCAmelCase__ : Optional[Any] = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else cls_token lowerCAmelCase__ : List[str] = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else unk_token lowerCAmelCase__ : Tuple = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : int = AddedToken(snake_case_ ,lstrip=snake_case_ ,rstrip=snake_case_ ) if isinstance(snake_case_ ,snake_case_ ) else mask_token super().__init__( errors=snake_case_ ,bos_token=snake_case_ ,eos_token=snake_case_ ,unk_token=snake_case_ ,sep_token=snake_case_ ,cls_token=snake_case_ ,pad_token=snake_case_ ,mask_token=snake_case_ ,add_prefix_space=snake_case_ ,**snake_case_ ,) with open(snake_case_ ,encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ : str = json.load(snake_case_ ) lowerCAmelCase__ : int = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : Optional[Any] = errors # how to handle errors in decoding lowerCAmelCase__ : Dict = bytes_to_unicode() lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ ,encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ : Any = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ : Tuple = dict(zip(snake_case_ ,range(len(snake_case_ ) ) ) ) lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ : Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return len(self.encoder ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ : Optional[int] = tuple(snake_case_ ) lowerCAmelCase__ : Dict = get_pairs(snake_case_ ) if not pairs: return token while True: lowerCAmelCase__ : Optional[Any] = min(snake_case_ ,key=lambda __lowerCamelCase : self.bpe_ranks.get(snake_case_ ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : Dict = bigram lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Optional[int] = 0 while i < len(snake_case_ ): try: lowerCAmelCase__ : str = word.index(snake_case_ ,snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : str = tuple(snake_case_ ) lowerCAmelCase__ : Union[str, Any] = new_word if len(snake_case_ ) == 1: break else: lowerCAmelCase__ : Dict = get_pairs(snake_case_ ) lowerCAmelCase__ : Optional[int] = ''' '''.join(snake_case_ ) lowerCAmelCase__ : Optional[int] = word return word def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = [] for token in re.findall(self.pat ,snake_case_ ): lowerCAmelCase__ : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.encoder.get(snake_case_ ,self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" return self.decoder.get(snake_case_ ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = ''''''.join(snake_case_ ) lowerCAmelCase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[Any] = os.path.join( snake_case_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Union[str, Any] = os.path.join( snake_case_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=snake_case_ ,ensure_ascii=snake_case_ ) + '''\n''' ) lowerCAmelCase__ : int = 0 with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ : Dict = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : str = [self.cls_token_id] lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ ,token_ids_a=snake_case_ ,already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=False ,**__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): lowerCAmelCase__ : Dict = ''' ''' + text return (text, kwargs)
129
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=64 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Any = parent lowercase : Any = batch_size lowercase : int = seq_length lowercase : Union[str, Any] = is_training lowercase : List[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : int = use_labels lowercase : int = vocab_size lowercase : Optional[Any] = hidden_size lowercase : Any = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_act lowercase : Any = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : str = type_vocab_size lowercase : Any = type_sequence_label_size lowercase : Dict = initializer_range lowercase : Dict = num_labels lowercase : Union[str, Any] = num_choices lowercase : Union[str, Any] = scope lowercase : List[str] = vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : str = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : int = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : int = self.get_config() return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case_ ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Union[str, Any] = self.prepare_config_and_inputs() lowercase : Any = True return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : Dict = model(snake_case_ ,attention_mask=snake_case_ ) lowercase : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = True lowercase : List[Any] = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : Optional[int] = model(snake_case_ ,attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : List[Any] = model(snake_case_ ,attention_mask=snake_case_ ,labels=snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_labels lowercase : Tuple = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : Union[str, Any] = model(snake_case_ ,attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.num_labels lowercase : int = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Union[str, Any] = model(snake_case_ ,attention_mask=snake_case_ ,labels=snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.num_labels lowercase : List[str] = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase : Dict = model(snake_case_ ,attention_mask=snake_case_ ,labels=snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = True lowercase : Any = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass lowercase : List[Any] = model(snake_case_ ,attention_mask=snake_case_ ,use_cache=snake_case_ ) lowercase : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase : Union[str, Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase : str = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase : Dict = model(snake_case_ ,attention_mask=snake_case_ ,output_hidden_states=snake_case_ ) lowercase : str = output_from_no_past["""hidden_states"""][0] lowercase : Optional[int] = model( snake_case_ ,attention_mask=snake_case_ ,past_key_values=snake_case_ ,output_hidden_states=snake_case_ ,)["""hidden_states"""][0] # select random slice lowercase : Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ ,snake_case_ ,atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : str = config_and_inputs lowercase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( A__ , A__ , A__ , unittest.TestCase ): _a : Tuple= ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _a : List[str]= (GPTNeoXForCausalLM,) if is_torch_available() else () _a : List[str]= ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _a : str= False _a : Optional[Any]= False _a : Any= False _a : Tuple= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = GPTNeoXModelTester(self ) lowercase : Tuple = ConfigTester(self ,config_class=snake_case_ ,hidden_size=64 ,num_attention_heads=8 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ ,snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ ,snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ ,snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ ,snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : int = ids_tensor([1, 10] ,config.vocab_size ) lowercase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase : str = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() lowercase : Any = original_model(snake_case_ ).last_hidden_state lowercase : List[Any] = original_model(snake_case_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase : str = {"""type""": scaling_type, """factor""": 10.0} lowercase : List[str] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() lowercase : int = scaled_model(snake_case_ ).last_hidden_state lowercase : str = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ ,snake_case_ ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ ,snake_case_ ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ ,snake_case_ ,atol=1e-5 ) ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: lowercase : List[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) lowercase : Union[str, Any] = tokenizer("""My favorite food is""" ,return_tensors="""pt""" ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase : Any = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" lowercase : Optional[int] = model.generate(**snake_case_ ,do_sample=snake_case_ ,max_new_tokens=20 ) lowercase : Tuple = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ ,snake_case_ )
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' def _UpperCamelCase ( __A , __A ) -> Any: '''simple docstring''' return x if y == 0 else greatest_common_divisor(_lowerCAmelCase , x % y ) def _UpperCamelCase ( __A , __A ) -> Optional[Any]: '''simple docstring''' return (x * y) // greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase ) def _UpperCamelCase ( __A = 20 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 for i in range(1 , n + 1 ): UpperCamelCase__ = lcm(_lowerCAmelCase , _lowerCAmelCase ) return g if __name__ == "__main__": print(F"""{solution() = }""")
80
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCamelCase_ = logging.getLogger(__name__) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] ) -> List[Any]: # save results if os.path.exists(_lowerCAmelCase ): if os.path.exists(os.path.join(_lowerCAmelCase , """config.json""" ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , """config.json""" ) ): os.remove(os.path.join(_lowerCAmelCase , """config.json""" ) ) if os.path.exists(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ): os.remove(os.path.join(_lowerCAmelCase , """pytorch_model.bin""" ) ) else: os.makedirs(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=False ) -> Dict: _lowerCAmelCase : Union[str, Any] = 2 if unlogit: _lowerCAmelCase : List[Any] = torch.pow(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = p * torch.log(_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = 0 return -plogp.sum(dim=-1 ) def _UpperCAmelCase ( _lowerCamelCase : Optional[int] ) -> Dict: logger.info("""lv, h >\t""" + """\t""".join(f'{x + 1}' for x in range(len(_lowerCAmelCase ) ) ) ) for row in range(len(_lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + """\t""".join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + """\t""".join(f'{x:d}' for x in tensor[row].cpu().data ) ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : int=True , _lowerCamelCase : str=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=False ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads _lowerCAmelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) _lowerCAmelCase : Any = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) if head_mask is None: _lowerCAmelCase : Any = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCAmelCase : Dict = None _lowerCAmelCase : Any = 0.0 _lowerCAmelCase : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): _lowerCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_lowerCAmelCase ) , ) : Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCAmelCase : List[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCAmelCase ): _lowerCAmelCase : Dict = entropy(attn.detach() , _lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : Any = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _lowerCAmelCase : Any = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_lowerCAmelCase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_lowerCAmelCase ) logger.info("""Head ranked by importance scores""" ) _lowerCAmelCase : List[str] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCAmelCase : List[str] = torch.arange( head_importance.numel() , device=args.device ) _lowerCAmelCase : Optional[Any] = head_ranks.view_as(_lowerCAmelCase ) print_ad_tensor(_lowerCAmelCase ) return attn_entropy, head_importance, total_loss def _UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ) -> Any: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase ) _lowerCAmelCase : List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _lowerCAmelCase , original_score * args.masking_threshold ) _lowerCAmelCase : int = torch.ones_like(_lowerCAmelCase ) _lowerCAmelCase : str = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCAmelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: _lowerCAmelCase : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCAmelCase : List[str] = float("""Inf""" ) _lowerCAmelCase : Dict = head_importance.view(-1 ).sort()[1] if len(_lowerCAmelCase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads _lowerCAmelCase : str = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) _lowerCAmelCase : Optional[int] = new_head_mask.view(-1 ) _lowerCAmelCase : List[Any] = 0.0 _lowerCAmelCase : Any = new_head_mask.view_as(_lowerCAmelCase ) _lowerCAmelCase : str = new_head_mask.clone().detach() print_ad_tensor(_lowerCAmelCase ) # Compute metric and head importance again _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowerCAmelCase : Dict = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("""Final head mask""" ) print_ad_tensor(_lowerCAmelCase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] ) -> int: _lowerCAmelCase : List[str] = datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = 1 / loss _lowerCAmelCase : Any = datetime.now() - before_time _lowerCAmelCase : Union[str, Any] = sum(p.numel() for p in model.parameters() ) _lowerCAmelCase : Tuple = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase : Any = [ v, ] assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) _lowerCAmelCase : Optional[int] = datetime.now() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , ) _lowerCAmelCase : Dict = 1 / loss _lowerCAmelCase : Any = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowerCAmelCase , _lowerCAmelCase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_00 ) save_model(_lowerCAmelCase , args.output_dir ) def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_lowerCAmelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_lowerCAmelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_lowerCAmelCase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowerCAmelCase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=_lowerCAmelCase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_lowerCAmelCase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_lowerCAmelCase , default=42 ) parser.add_argument("""--local_rank""" , type=_lowerCAmelCase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_lowerCAmelCase , default="""""" , help="""Can be used for distant debugging.""" ) _lowerCAmelCase : List[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) _lowerCAmelCase : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCAmelCase : Any = torch.device("""cuda""" , args.local_rank ) _lowerCAmelCase : Tuple = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCAmelCase : int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCAmelCase : Any = nn.parallel.DistributedDataParallel( _lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase ) elif args.n_gpu > 1: _lowerCAmelCase : Union[str, Any] = nn.DataParallel(_lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _lowerCAmelCase ) # Prepare dataset _lowerCAmelCase : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCAmelCase : Any = (torch.from_numpy(_lowerCAmelCase ),) _lowerCAmelCase : Optional[Any] = TensorDataset(*_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = RandomSampler(_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCAmelCase : Dict = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
309
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') _lowerCamelCase : List[Any] = {'target_lang': 'fi', 'source_lang': 'en'} _lowerCamelCase : Optional[Any] = '>>zh<<' _lowerCamelCase : Dict = 'Helsinki-NLP/' if is_torch_available(): _lowerCamelCase : Union[str, Any] = 'pt' elif is_tf_available(): _lowerCamelCase : Optional[Any] = 'tf' else: _lowerCamelCase : Tuple = 'jax' @require_sentencepiece class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MarianTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def A (self : List[Any] ): super().setUp() A = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] A = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) A = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) A = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A (self : Optional[int] , **_lowerCAmelCase : Dict ): return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A (self : Any , _lowerCAmelCase : Union[str, Any] ): return ( "This is a test", "This is a test", ) def A (self : Union[str, Any] ): A = """</s>""" A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A (self : Dict ): A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(snake_case_ ) , 9 ) def A (self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def A (self : Dict ): A = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) A = en_de_tokenizer(["""I am a small frog"""] , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) A = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(snake_case_ , batch.input_ids[0] ) A = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case_ ) A = [x.name for x in Path(snake_case_ ).glob("""*""" )] self.assertIn("""source.spm""" , snake_case_ ) MarianTokenizer.from_pretrained(snake_case_ ) def A (self : Optional[Any] ): A = self.get_tokenizer() A = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def A (self : Any ): A = self.get_tokenizer() A = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def A (self : Optional[int] ): # fmt: off A = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def A (self : Optional[Any] ): A = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) A = """Tämä on testi""" A = """This is a test""" A = [76, 7, 2047, 2] A = [69, 12, 11, 940, 2] A = tokenizer(snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) A = tokenizer(text_target=snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) A = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
import random def a_ ( _A , _A ) -> Tuple: """simple docstring""" snake_case__ , snake_case__ , snake_case__ = [], [], [] for element in data: if element < pivot: less.append(_lowerCAmelCase ) elif element > pivot: greater.append(_lowerCAmelCase ) else: equal.append(_lowerCAmelCase ) return less, equal, greater def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_lowerCAmelCase ) or index < 0: return None snake_case__ = items[random.randint(0 , len(_lowerCAmelCase ) - 1 )] snake_case__ = 0 snake_case__ , snake_case__ , snake_case__ = _partition(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ = len(_lowerCAmelCase ) snake_case__ = len(_lowerCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowerCAmelCase , _lowerCAmelCase ) # must be in larger else: return quick_select(_lowerCAmelCase , index - (m + count) )
307
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
def lowerCamelCase__ ( A__ : List[Any] , A__ : List[Any] , A__ : Any ): '''simple docstring''' __lowerCamelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase__ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' from timeit import timeit def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) _UpperCAmelCase : int = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) _UpperCAmelCase : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" def do_benchmark(_UpperCAmelCase : Union[str, Any] ) -> None: _UpperCAmelCase : str = "import __main__ as z" print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(_lowerCAmelCase ) = }""" ) _UpperCAmelCase : Union[str, Any] = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_lowerCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(_lowerCAmelCase ) = }""" ) _UpperCAmelCase : str = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_lowerCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(_lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __UpperCAmelCase =CLIPImageProcessor() __UpperCAmelCase =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __UpperCAmelCase =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase_ = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' lowerCamelCase_ = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' lowerCamelCase_ = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def snake_case ( A__ ,A__ ): return float((preds == labels).mean() ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = simple_accuracy(_lowerCAmelCase ,_lowerCAmelCase ) UpperCAmelCase_ : int = float(fa_score(y_true=_lowerCAmelCase ,y_pred=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = np.array(_lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = np.array(_lowerCAmelCase ) UpperCAmelCase_ : str = en_sentvecs.shape[0] # mean centering UpperCAmelCase_ : Dict = en_sentvecs - np.mean(_lowerCAmelCase ,axis=0 ) UpperCAmelCase_ : Tuple = in_sentvecs - np.mean(_lowerCAmelCase ,axis=0 ) UpperCAmelCase_ : Tuple = cdist(_lowerCAmelCase ,_lowerCAmelCase ,"cosine" ) UpperCAmelCase_ : Dict = np.array(range(_lowerCAmelCase ) ) UpperCAmelCase_ : List[str] = sim.argsort(axis=1 )[:, :10] UpperCAmelCase_ : int = np.any(preds == actual[:, None] ,axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(snake_case_ , snake_case_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(snake_case_ , snake_case_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
268
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __a = getLogger(__name__) __a = 'cuda' if torch.cuda.is_available() else 'cpu' def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any], a_: Union[str, Any], a_: str = 8, a_: Union[str, Any] = DEFAULT_DEVICE, a_: str=False, a_: Optional[Any]="summarization", a_: str=None, **a_: Any, ): _UpperCAmelCase : Tuple = Path(_lowerCAmelCase ).open("w", encoding="utf-8" ) _UpperCAmelCase : List[str] = str(_lowerCAmelCase ) _UpperCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: _UpperCAmelCase : Dict = model.half() _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _UpperCAmelCase : Optional[Any] = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase, _lowerCAmelCase ) if prefix is None: _UpperCAmelCase : Union[str, Any] = prefix or getattr(model.config, "prefix", "" ) or "" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase, _lowerCAmelCase ) ) ): _UpperCAmelCase : Tuple = [prefix + text for text in examples_chunk] _UpperCAmelCase : List[str] = tokenizer(_lowerCAmelCase, return_tensors="pt", truncation=_lowerCAmelCase, padding="longest" ).to(_lowerCAmelCase ) _UpperCAmelCase : List[str] = model.generate( input_ids=batch.input_ids, attention_mask=batch.attention_mask, **_lowerCAmelCase, ) _UpperCAmelCase : int = tokenizer.batch_decode(_lowerCAmelCase, skip_special_tokens=_lowerCAmelCase, clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() _UpperCAmelCase : Any = int(time.time() - start_time ) # seconds _UpperCAmelCase : Dict = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4 )} def __UpperCAmelCase ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def __UpperCAmelCase ( a_: Any=True ): _UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("model_name", type=_lowerCAmelCase, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path", type=_lowerCAmelCase, help="like cnn_dm/test.source" ) parser.add_argument("save_path", type=_lowerCAmelCase, help="where to save summaries" ) parser.add_argument("--reference_path", type=_lowerCAmelCase, required=_lowerCAmelCase, help="like cnn_dm/test.target" ) parser.add_argument("--score_path", type=_lowerCAmelCase, required=_lowerCAmelCase, default="metrics.json", help="where to save metrics" ) parser.add_argument("--device", type=_lowerCAmelCase, required=_lowerCAmelCase, default=_lowerCAmelCase, help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix", type=_lowerCAmelCase, required=_lowerCAmelCase, default=_lowerCAmelCase, help="will be added to the begininng of src examples" ) parser.add_argument("--task", type=_lowerCAmelCase, default="summarization", help="used for task_specific_params + metrics" ) parser.add_argument("--bs", type=_lowerCAmelCase, default=8, required=_lowerCAmelCase, help="batch size" ) parser.add_argument( "--n_obs", type=_lowerCAmelCase, default=-1, required=_lowerCAmelCase, help="How many observations. Defaults to all." ) parser.add_argument("--fp16", action="store_true" ) parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results" ) parser.add_argument( "--info", nargs="?", type=_lowerCAmelCase, const=datetime_now(), help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ), ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _UpperCAmelCase , _UpperCAmelCase : Any = parser.parse_known_args() _UpperCAmelCase : List[str] = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _UpperCAmelCase : int = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _UpperCAmelCase : Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) _UpperCAmelCase : List[Any] = generate_summaries_or_translations( _lowerCAmelCase, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fpaa=args.fpaa, task=args.task, prefix=args.prefix, **_lowerCAmelCase, ) if args.reference_path is None: return {} # Compute scores _UpperCAmelCase : int = calculate_bleu if "translation" in args.task else calculate_rouge _UpperCAmelCase : Any = [x.rstrip() for x in open(args.save_path ).readlines()] _UpperCAmelCase : Optional[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] _UpperCAmelCase : Dict = score_fn(_lowerCAmelCase, _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: _UpperCAmelCase : Any = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase, open(args.score_path, "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] = 4000000): '''simple docstring''' lowerCAmelCase__ : Dict = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowerCAmelCase) lowerCAmelCase__ , lowerCAmelCase__ : str = b, a + b return sum(_lowerCAmelCase) if __name__ == "__main__": print(f"""{solution() = }""")
129
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : Optional[Any]= 42 _a : str= None _a : int= None lowercase : str = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_lowerCAmelCase ) != count_coins(_lowerCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : int = get_distrib(node.right ) lowercase : int = 1 - left_distrib_excess lowercase : Dict = 1 - right_distrib_excess lowercase : Any = ( left_distrib_moves + right_distrib_moves + abs(_lowerCAmelCase ) + abs(_lowerCAmelCase ) ) lowercase : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowerCAmelCase , _lowerCAmelCase ) return get_distrib(_lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' from timeit import timeit a__ : Tuple = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = len(_lowerCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' UpperCamelCase__ = len(_lowerCAmelCase ) // 2 UpperCamelCase__ = len(_lowerCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_lowerCAmelCase ) ) def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' if len(_lowerCAmelCase ) <= 2: return True if s[0] == s[len(_lowerCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCamelCase__ = F'''from __main__ import test_data, {name}''' UpperCamelCase__ = 500000 UpperCamelCase__ = timeit(stmt=_lowerCAmelCase , setup=_lowerCAmelCase , number=_lowerCAmelCase ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
80
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> Any: _lowerCAmelCase : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a_ (A__ , A__ , A__ , unittest.TestCase ): __lowerCAmelCase : List[str] = StableDiffusionLatentUpscalePipeline __lowerCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowerCAmelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowerCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCAmelCase : int = frozenset([] ) __lowerCAmelCase : str = True @property def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Dict = (1_6, 1_6) _lowerCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=snake_case_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=snake_case_ , only_cross_attention=snake_case_ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) _lowerCAmelCase : Tuple = EulerDiscreteScheduler(prediction_type="""sample""" ) _lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""quick_gelu""" , projection_dim=5_1_2 , ) _lowerCAmelCase : Optional[int] = CLIPTextModel(snake_case_ ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase : Union[str, Any] = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def __UpperCamelCase ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Any = """cpu""" _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Tuple = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : str = pipe(**snake_case_ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) _lowerCAmelCase : List[Any] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) _lowerCAmelCase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def __UpperCamelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**snake_case_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Union[str, Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCAmelCase : Optional[Any] = getattr(snake_case_ , scheduler_enum.name ) _lowerCAmelCase : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCAmelCase : Optional[Any] = pipe(**snake_case_ )[0] outputs.append(snake_case_ ) assert check_same_shape(snake_case_ ) @require_torch_gpu @slow class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): _lowerCAmelCase : Any = torch.manual_seed(3_3 ) _lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) _lowerCAmelCase : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) _lowerCAmelCase : Optional[int] = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" _lowerCAmelCase : List[str] = pipe(snake_case_ , generator=snake_case_ , output_type="""latent""" ).images _lowerCAmelCase : Optional[int] = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type="""np""" , ).images[0] _lowerCAmelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = torch.manual_seed(3_3 ) _lowerCAmelCase : str = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) _lowerCAmelCase : Any = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" _lowerCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) _lowerCAmelCase : Dict = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type="""np""" , ).images[0] _lowerCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : int=512 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Optional[Any]=None , ): A = parent A = 13 A = 7 A = True A = True A = True A = True A = 99 A = 384 A = 2 A = 4 A = 37 A = """gelu""" A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = 128 A = 2 A = 9 A = 1 A = None def A (self : List[Any] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A (self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ): A = TFConvBertModel(config=snake_case_ ) A = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A = [input_ids, input_mask] A = model(snake_case_ ) A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A (self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): A = TFConvBertForMaskedLM(config=snake_case_ ) A = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A (self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): A = self.num_labels A = TFConvBertForSequenceClassification(config=snake_case_ ) A = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A (self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): A = self.num_choices A = TFConvBertForMultipleChoice(config=snake_case_ ) A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A (self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str ): A = self.num_labels A = TFConvBertForTokenClassification(config=snake_case_ ) A = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A (self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ): A = TFConvBertForQuestionAnswering(config=snake_case_ ) A = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A (self : Tuple ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Optional[int] ): A = TFConvBertModelTester(self ) A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def A (self : Dict ): self.config_tester.run_common_tests() def A (self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A (self : Optional[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def A (self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def A (self : Optional[int] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def A (self : Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def A (self : List[Any] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = True if hasattr(snake_case_ , """use_cache""" ): A = True A = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) A = getattr(self.model_tester , """key_length""" , snake_case_ ) for model_class in self.all_model_classes: A = self._prepare_for_class(snake_case_ , snake_case_ ) A = model_class(snake_case_ ) A = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) A = os.path.join(snake_case_ , """saved_model""" , """1""" ) A = tf.keras.models.load_model(snake_case_ ) A = model(snake_case_ ) if self.is_encoder_decoder: A = outputs["""encoder_hidden_states"""] A = outputs["""encoder_attentions"""] else: A = outputs["""hidden_states"""] A = outputs["""attentions"""] self.assertEqual(len(snake_case_ ) , snake_case_ ) A = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A (self : Optional[Any] ): A = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(snake_case_ ) def A (self : Tuple ): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) A = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) A = getattr(self.model_tester , """key_length""" , snake_case_ ) A = getattr(self.model_tester , """key_length""" , snake_case_ ) def check_decoder_attentions_output(_lowerCAmelCase : Any ): A = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) A = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowerCAmelCase : Tuple ): A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A = True A = False A = model_class(snake_case_ ) A = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) A = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: A = model_class(snake_case_ ) A = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A = True A = model_class(snake_case_ ) A = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine A = True A = True A = model_class(snake_case_ ) A = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(snake_case_ )[0] A = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) A = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-4 )
258
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __UpperCamelCase : Dict = TypeVar("""T""") class __SCREAMING_SNAKE_CASE( Generic[T] ): def __init__( self: str , UpperCamelCase: List[Any] = True ) -> None: snake_case__ = {} # dictionary of lists snake_case__ = directed def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) self.adj_list[destination_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) snake_case__ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case_ ) snake_case__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case__ = [destination_vertex] snake_case__ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) snake_case__ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case__ = [destination_vertex] snake_case__ = [] return self def __repr__( self: Optional[int] ) -> str: return pformat(self.adj_list )
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
def lowerCamelCase__ ( A__ : Any , A__ : Any ): '''simple docstring''' __lowerCamelCase = int(_lowerCAmelCase ) # Initialize Result __lowerCamelCase = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase_ = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) UpperCAmelCase_ = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] UpperCAmelCase_ = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __SCREAMING_SNAKE_CASE : str = R""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(A__ ) class lowerCamelCase_ (A__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = "rag" __UpperCamelCase: List[str] = True def __init__( self : Tuple , A : List[str]=None , A : Dict=True , A : Tuple=None , A : Optional[int]=None , A : int=None , A : List[str]=None , A : int=None , A : List[str]=" / " , A : int=" // " , A : Tuple=5 , A : List[str]=300 , A : List[Any]=768 , A : Optional[int]=8 , A : Dict="wiki_dpr" , A : Optional[int]="train" , A : Tuple="compressed" , A : List[Any]=None , A : str=None , A : Union[str, Any]=False , A : List[str]=False , A : Tuple=0.0 , A : List[Any]=True , A : List[str]=False , A : Optional[Any]=False , A : str=False , A : Union[str, Any]=True , A : List[Any]=None , **A : str , ): super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCAmelCase : int = kwargs.pop("question_encoder" ) _UpperCAmelCase : Optional[int] = question_encoder_config.pop("model_type" ) _UpperCAmelCase : str = kwargs.pop("generator" ) _UpperCAmelCase : Optional[int] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCAmelCase : List[str] = AutoConfig.for_model(snake_case_ , **snake_case_ ) _UpperCAmelCase : List[Any] = AutoConfig.for_model(snake_case_ , **snake_case_ ) _UpperCAmelCase : int = reduce_loss _UpperCAmelCase : Union[str, Any] = label_smoothing _UpperCAmelCase : List[Any] = exclude_bos_score _UpperCAmelCase : Tuple = do_marginalize _UpperCAmelCase : Optional[int] = title_sep _UpperCAmelCase : Any = doc_sep _UpperCAmelCase : Dict = n_docs _UpperCAmelCase : List[Any] = max_combined_length _UpperCAmelCase : Optional[int] = dataset _UpperCAmelCase : List[str] = dataset_split _UpperCAmelCase : List[Any] = index_name _UpperCAmelCase : Optional[Any] = retrieval_vector_size _UpperCAmelCase : Dict = retrieval_batch_size _UpperCAmelCase : Tuple = passages_path _UpperCAmelCase : str = index_path _UpperCAmelCase : List[Any] = use_dummy_dataset _UpperCAmelCase : Dict = output_retrieved _UpperCAmelCase : int = do_deduplication _UpperCAmelCase : Dict = use_cache if self.forced_eos_token_id is None: _UpperCAmelCase : Optional[Any] = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def _A ( cls : List[Any] , A : Tuple , A : Union[str, Any] , **A : int ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def _A ( self : List[Any] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : List[str] = self.question_encoder.to_dict() _UpperCAmelCase : Union[str, Any] = self.generator.to_dict() _UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
31
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
'''simple docstring''' import gc import threading import time import psutil import torch class a__ : def __init__( self : Optional[int] ): """simple docstring""" __lowerCamelCase = psutil.Process() __lowerCamelCase = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = -1 while True: __lowerCamelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = True __lowerCamelCase = threading.Thread(target=self.peak_monitor ) __lowerCamelCase = True self.thread.start() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = False self.thread.join() return self.cpu_memory_peak __UpperCAmelCase =PeakCPUMemory() def __lowerCAmelCase ( ) -> List[Any]: # Time __lowerCamelCase = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase = torch.cuda.memory_allocated(_lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCAmelCase ( UpperCamelCase__ ) -> Dict: # Time __lowerCamelCase = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __lowerCamelCase = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase = (torch.cuda.memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**20 __lowerCamelCase = (torch.cuda.max_memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**20 return measures def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: print(f"""{description}:""" ) print(f"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(_lowerCAmelCase )]:.2f}MiB""" ) __lowerCamelCase = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
67
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''falcon''' UpperCamelCase_ : List[str] = ['''past_key_values'''] def __init__( self : int , lowerCAmelCase__ : Dict=6_5_0_2_4 , lowerCAmelCase__ : Optional[int]=4_5_4_4 , lowerCAmelCase__ : Optional[Any]=3_2 , lowerCAmelCase__ : Optional[Any]=7_1 , lowerCAmelCase__ : int=1e-5 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[str]=1_1 , lowerCAmelCase__ : List[Any]=1_1 , **lowerCAmelCase__ : List[str] , ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : List[str] = kwargs.pop("n_embed" , snake_case_ ) _UpperCAmelCase : Any = hidden_size if n_embed is None else n_embed _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = layer_norm_epsilon _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : Union[str, Any] = hidden_dropout _UpperCAmelCase : Optional[int] = attention_dropout _UpperCAmelCase : List[str] = bos_token_id _UpperCAmelCase : Union[str, Any] = eos_token_id _UpperCAmelCase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : List[str] = alibi _UpperCAmelCase : Optional[Any] = new_decoder_architecture _UpperCAmelCase : List[Any] = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Optional[Any] = parallel_attn _UpperCAmelCase : int = bias super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return not self.alibi
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0