code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import math def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : int = len(_lowerCAmelCase) lowerCAmelCase__ : List[str] = int(math.floor(math.sqrt(_lowerCAmelCase))) lowerCAmelCase__ : Optional[Any] = 0 while arr[min(_lowerCAmelCase ,_lowerCAmelCase) - 1] < x: lowerCAmelCase__ : List[str] = step step += int(math.floor(math.sqrt(_lowerCAmelCase))) if prev >= n: return -1 while arr[prev] < x: lowerCAmelCase__ : Optional[Any] = prev + 1 if prev == min(_lowerCAmelCase ,_lowerCAmelCase): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __snake_case : int =input('Enter numbers separated by a comma:\n').strip() __snake_case : Union[str, Any] =[int(item) for item in user_input.split(',')] __snake_case : Dict =int(input('Enter the number to be searched:\n')) __snake_case : Any =jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
129
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowercase : Dict = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowercase : Tuple = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowercase : int = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase : List[str] = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowercase : Union[str, Any] = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _lowerCAmelCase ) return [m.group(0 ) for m in matches] def _snake_case( ) -> Any: lowercase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase : Union[str, Any] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowercase : int = collections.defaultdict(_lowerCAmelCase ) lowercase : int = collections.defaultdict(_lowerCAmelCase ) lowercase : Optional[Any] = collections.defaultdict(_lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowerCAmelCase ): lowercase : Union[str, Any] = None if _re_tf_models.match(_lowerCAmelCase ) is not None: lowercase : Any = tf_models lowercase : str = _re_tf_models.match(_lowerCAmelCase ).groups()[0] elif _re_flax_models.match(_lowerCAmelCase ) is not None: lowercase : Dict = flax_models lowercase : Optional[int] = _re_flax_models.match(_lowerCAmelCase ).groups()[0] elif _re_pt_models.match(_lowerCAmelCase ) is not None: lowercase : List[Any] = pt_models lowercase : List[Any] = _re_pt_models.match(_lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: lowercase : Optional[Any] = True break # Try again after removing the last word in the name lowercase : Optional[Any] = """""".join(camel_case_split(_lowerCAmelCase )[:-1] ) lowercase : List[str] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowercase : List[str] = list(_lowerCAmelCase ) all_models.sort() lowercase : Any = {"""model_type""": all_models} lowercase : int = [pt_models[t] for t in all_models] lowercase : Union[str, Any] = [tf_models[t] for t in all_models] lowercase : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowercase : Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowercase : Optional[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowercase : Optional[Any] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowercase : List[str] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowercase : Dict = """AutoTokenizer""" lowercase : int = [processors[t] for t in all_models] return pd.DataFrame(_lowerCAmelCase ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowercase : Any = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] lowercase : Dict = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(_lowerCAmelCase , _lowerCAmelCase ): continue # First extract all model_names lowercase : List[Any] = [] for name in getattr(_lowerCAmelCase , _lowerCAmelCase ).values(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): model_names.append(_lowerCAmelCase ) else: model_names.extend(list(_lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[int] = get_frameworks_table() lowercase : Dict = Dataset.from_pandas(_lowerCAmelCase ) lowercase : str = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_lowerCAmelCase ) lowercase : str = Dataset.from_json(_lowerCAmelCase ) lowercase : Union[str, Any] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowerCAmelCase ) ) } lowercase : str = update_pipeline_and_auto_class_table(_lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowercase : Any = sorted(table.keys() ) lowercase : Any = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) lowercase : int = Dataset.from_pandas(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowerCAmelCase , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowerCAmelCase , """pipeline_tags.json""" ) ) if commit_sha is not None: lowercase : Optional[int] = ( f"Update with commit {commit_sha}\n\nSee: " f"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: lowercase : List[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=_lowerCAmelCase , repo_type="""dataset""" , token=_lowerCAmelCase , commit_message=_lowerCAmelCase , ) def _snake_case( ) -> Dict: lowercase : Tuple = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowercase : Union[str, Any] = transformers_module.pipelines.SUPPORTED_TASKS lowercase : Tuple = [] for key in pipeline_tasks: if key not in in_table: lowercase : Optional[Any] = pipeline_tasks[key]["""pt"""] if isinstance(_lowerCAmelCase , (list, tuple) ): lowercase : Optional[int] = model[0] lowercase : str = model.__name__ if model not in in_table.values(): missing.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowercase : Optional[Any] = """, """.join(_lowerCAmelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") lowercase : str = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' import re def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCAmelCase ) ) != len(_lowerCAmelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
80
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCamelCase_ = random.Random() def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]=1.0 , _lowerCamelCase : Tuple=None , _lowerCamelCase : List[Any]=None ) -> Union[str, Any]: if rng is None: _lowerCAmelCase : str = global_rng _lowerCAmelCase : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a_ (unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=4_0_0 , snake_case_=2_0_0_0 , snake_case_=2_4 , snake_case_=2_4 , snake_case_=0.0 , snake_case_=1_6_0_0_0 , snake_case_=True , snake_case_=True , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Any = min_seq_length _lowerCAmelCase : List[str] = max_seq_length _lowerCAmelCase : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Tuple = feature_size _lowerCAmelCase : List[str] = num_mel_bins _lowerCAmelCase : Tuple = padding_value _lowerCAmelCase : int = sampling_rate _lowerCAmelCase : Optional[Any] = return_attention_mask _lowerCAmelCase : Tuple = do_normalize def __UpperCamelCase ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _lowerCAmelCase : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Any = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ (A__ , unittest.TestCase ): __lowerCAmelCase : List[str] = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = SpeechaTextFeatureExtractionTester(self ) def __UpperCamelCase ( self , snake_case_ ): self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : str = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase : Optional[Any] = feature_extractor(snake_case_ , padding=snake_case_ , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _lowerCAmelCase : Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _lowerCAmelCase : int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched _lowerCAmelCase : int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCAmelCase : int = np.asarray(snake_case_ ) _lowerCAmelCase : int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features _lowerCAmelCase : int = feature_extractor(snake_case_ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Union[str, Any] = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : Tuple = [None, 1_6, None] for max_length, padding in zip(snake_case_ , snake_case_ ): _lowerCAmelCase : str = feature_extractor( snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_attention_mask=snake_case_ ) _lowerCAmelCase : List[str] = inputs.input_features _lowerCAmelCase : List[str] = inputs.attention_mask _lowerCAmelCase : int = [np.sum(snake_case_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : Optional[Any] = [None, 1_6, None] for max_length, padding in zip(snake_case_ , snake_case_ ): _lowerCAmelCase : Union[str, Any] = feature_extractor( snake_case_ , max_length=snake_case_ , padding=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ ) _lowerCAmelCase : List[str] = inputs.input_features _lowerCAmelCase : Union[str, Any] = inputs.attention_mask _lowerCAmelCase : Tuple = [np.sum(snake_case_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Union[str, Any] = feature_extractor( snake_case_ , padding="""max_length""" , max_length=4 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , ) _lowerCAmelCase : str = inputs.input_features _lowerCAmelCase : List[str] = inputs.attention_mask _lowerCAmelCase : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : int = feature_extractor( snake_case_ , padding="""longest""" , max_length=4 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , ) _lowerCAmelCase : Optional[Any] = inputs.input_features _lowerCAmelCase : int = inputs.attention_mask _lowerCAmelCase : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) _lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Any = feature_extractor( snake_case_ , padding="""longest""" , max_length=1_6 , truncation=snake_case_ , return_tensors="""np""" , return_attention_mask=snake_case_ , ) _lowerCAmelCase : Any = inputs.input_features _lowerCAmelCase : Optional[int] = inputs.attention_mask _lowerCAmelCase : List[str] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __UpperCamelCase ( self ): import torch _lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Any = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _lowerCAmelCase : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCamelCase ( self , snake_case_ ): from datasets import load_dataset _lowerCAmelCase : Dict = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _lowerCAmelCase : str = ds.sort("""id""" ).select(range(snake_case_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : Any = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _lowerCAmelCase : Optional[Any] = self._load_datasamples(1 ) _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , snake_case_ , atol=1E-4 ) )
309
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : int ): A = [] def A (self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): self.events.append("""on_init_end""" ) def A (self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : str , **_lowerCAmelCase : str ): self.events.append("""on_train_begin""" ) def A (self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): self.events.append("""on_train_end""" ) def A (self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , **_lowerCAmelCase : List[Any] ): self.events.append("""on_epoch_begin""" ) def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , **_lowerCAmelCase : Any ): self.events.append("""on_epoch_end""" ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : str ): self.events.append("""on_step_begin""" ) def A (self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : int , **_lowerCAmelCase : int ): self.events.append("""on_step_end""" ) def A (self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): self.events.append("""on_evaluate""" ) def A (self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : List[str] ): self.events.append("""on_predict""" ) def A (self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): self.events.append("""on_save""" ) def A (self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Union[str, Any] ): self.events.append("""on_log""" ) def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[int] ): self.events.append("""on_prediction_step""" ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = tempfile.mkdtemp() def A (self : List[Any] ): shutil.rmtree(self.output_dir ) def A (self : Tuple , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Union[str, Any]=64 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : int=None , _lowerCAmelCase : Optional[int]=False , **_lowerCAmelCase : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. A = RegressionDataset(length=snake_case_ ) A = RegressionDataset(length=snake_case_ ) A = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) A = RegressionPreTrainedModel(snake_case_ ) A = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def A (self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter A = sorted(snake_case_ , key=lambda _lowerCAmelCase : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) A = sorted(snake_case_ , key=lambda _lowerCAmelCase : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def A (self : Tuple , _lowerCAmelCase : Any ): A = ["""on_init_end""", """on_train_begin"""] A = 0 A = len(trainer.get_eval_dataloader() ) A = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def A (self : Optional[int] ): A = self.get_trainer() A = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks A = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback A = self.get_trainer(disable_tqdm=snake_case_ ) A = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def A (self : List[Any] ): A = DEFAULT_CALLBACKS.copy() + [ProgressCallback] A = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) A = self.get_trainer() A = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance A = self.get_trainer() A = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) A = self.get_trainer() A = trainer.callback_handler.callbacks[0] A = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def A (self : Optional[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case_ ) A = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval A = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) A = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) A = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) A = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything A = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() A = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: A = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : str = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __UpperCamelCase : Any = f'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : List[str] = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __UpperCamelCase : str = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __UpperCamelCase : Union[str, Any] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
307
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
import argparse from collections import defaultdict def lowerCamelCase__ ( A__ : Any , A__ : List[Any] , A__ : int , A__ : Dict , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(_lowerCAmelCase , """r""" ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = f'class {class_name}(' __lowerCamelCase = f'{4 * " "}def {test_name}(' __lowerCamelCase = f'{8 * " "}{correct_line.split()[0]}' __lowerCamelCase = f'{16 * " "}{correct_line.split()[0]}' __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] for line in lines: if line.startswith(_lowerCAmelCase ): __lowerCamelCase = True elif in_class and line.startswith(_lowerCAmelCase ): __lowerCamelCase = True elif in_class and in_func and (line.startswith(_lowerCAmelCase ) or line.startswith(_lowerCAmelCase )): __lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = False else: new_lines.append(_lowerCAmelCase ) with open(_lowerCAmelCase , """w""" ) as f: for line in new_lines: f.write(_lowerCAmelCase ) def lowerCamelCase__ ( A__ : int , A__ : List[str]=None ): '''simple docstring''' if fail is not None: with open(_lowerCAmelCase , """r""" ) as f: __lowerCamelCase = {l.strip() for l in f.readlines()} else: __lowerCamelCase = None with open(_lowerCAmelCase , """r""" ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = defaultdict(_lowerCAmelCase ) for line in correct_lines: __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) UpperCAmelCase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __SCREAMING_SNAKE_CASE : int = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __SCREAMING_SNAKE_CASE : Optional[Any] = 10 __SCREAMING_SNAKE_CASE : str = 256 def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" if len(_lowerCAmelCase ) < MIN_NUM_TOKENS: return None _UpperCAmelCase : List[Any] = MinHash(num_perm=_lowerCAmelCase ) for token in set(_lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return {t for t in NON_ALPHA.split(_lowerCAmelCase ) if len(t.strip() ) > 0} class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , *, A : Optional[int] = 0.85 , ): _UpperCAmelCase : List[str] = duplication_jaccard_threshold _UpperCAmelCase : Dict = NUM_PERM _UpperCAmelCase : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _UpperCAmelCase : Optional[int] = defaultdict(snake_case_ ) def _A ( self : Optional[Any] , A : Dict , A : Any ): _UpperCAmelCase : Optional[Any] = self._index.query(snake_case_ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(snake_case_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(snake_case_ ) def _A ( self : str ): _UpperCAmelCase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): _UpperCAmelCase : Optional[int] = [base] + list(snake_case_ ) # reformat the cluster to be a list of dict _UpperCAmelCase : List[str] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(snake_case_ ) return duplicate_clusters def _A ( self : List[Any] , A : Optional[Any] ): _UpperCAmelCase : List[str] = self.get_duplicate_clusters() with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( _UpperCAmelCase : Dict ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = element _UpperCAmelCase : Any = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowerCAmelCase , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(_lowerCAmelCase , _lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = get_tokens(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = get_tokens(_lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __SCREAMING_SNAKE_CASE : int = None def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] for elementa in cluster: _UpperCAmelCase : Any = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: _UpperCAmelCase : List[Any] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowerCAmelCase , _lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _UpperCAmelCase : List[Any] = 1 extremes.append(_lowerCAmelCase ) return extremes def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" global _shared_dataset _UpperCAmelCase : List[str] = dataset _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCAmelCase , _lowerCAmelCase , ) , total=len(_lowerCAmelCase ) , ): extremes_list.append(_lowerCAmelCase ) return extremes_list def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] = 0.8_5 ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = make_duplicate_clusters(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase : List[str] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} _UpperCAmelCase : Any = {} _UpperCAmelCase : Any = find_extremes(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: _UpperCAmelCase : str = element _UpperCAmelCase : Optional[Any] = duplicate_indices - set(extreme_dict.keys() ) _UpperCAmelCase : List[Any] = dataset.filter(lambda _UpperCAmelCase , _UpperCAmelCase : idx not in remove_indices , with_indices=_lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _UpperCAmelCase : Tuple = element["base_index"] in extreme_dict if element["is_extreme"]: _UpperCAmelCase : Dict = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(_lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(_lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(_lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( A__ ): lowerCamelCase : Optional[Any] =["image_processor", "tokenizer"] lowerCamelCase : Optional[Any] ="ViTImageProcessor" lowerCamelCase : str =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , a : List[str]=None , a : Optional[int]=None , **a : str ): """simple docstring""" __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case_ , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : Dict , a : Optional[Any]=None , a : Union[str, Any]=None , a : Dict=None , a : Any=None , **a : Tuple ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: __lowerCamelCase = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None: __lowerCamelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: __lowerCamelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None and images is not None: __lowerCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __lowerCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *a : Union[str, Any] , **a : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : List[str] , **a : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case_ , ) return self.image_processor
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
268
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' from math import pi, sqrt def __UpperCAmelCase ( a_: str ): if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __a = 1.0 while num: __a = float(input('Gamma of: ')) print(f'gamma({num}) = {gamma(num)}') print('\nEnter 0 to exit...')
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
import math def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_lowerCAmelCase) + 1) ,6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] = 0.1): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1): primes += is_prime(_lowerCAmelCase) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
129
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __snake_case : _a : Optional[Any]= MBartConfig _a : Dict= {} _a : Union[str, Any]= "gelu" def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=False ,snake_case=99 ,snake_case=32 ,snake_case=2 ,snake_case=4 ,snake_case=37 ,snake_case=0.1 ,snake_case=0.1 ,snake_case=20 ,snake_case=2 ,snake_case=1 ,snake_case=0 ,): '''simple docstring''' lowercase : int = parent lowercase : Dict = batch_size lowercase : int = seq_length lowercase : Optional[int] = is_training lowercase : Tuple = use_labels lowercase : List[Any] = vocab_size lowercase : str = hidden_size lowercase : int = num_hidden_layers lowercase : str = num_attention_heads lowercase : Any = intermediate_size lowercase : Tuple = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Tuple = eos_token_id lowercase : Any = pad_token_id lowercase : str = bos_token_id def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowercase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowercase : List[str] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Tuple = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowercase : List[str] = prepare_mbart_inputs_dict(snake_case_ ,snake_case_ ,snake_case_ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = TFMBartModel(config=snake_case_ ).get_decoder() lowercase : List[str] = inputs_dict["""input_ids"""] lowercase : Any = input_ids[:1, :] lowercase : Optional[int] = inputs_dict["""attention_mask"""][:1, :] lowercase : Optional[int] = inputs_dict["""head_mask"""] lowercase : int = 1 # first forward pass lowercase : Optional[Any] = model(snake_case_ ,attention_mask=snake_case_ ,head_mask=snake_case_ ,use_cache=snake_case_ ) lowercase , lowercase : List[str] = outputs.to_tuple() lowercase : List[str] = past_key_values[1] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ) -> List[Any]: if attention_mask is None: lowercase : Tuple = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( A__ , A__ , unittest.TestCase ): _a : int= (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _a : Union[str, Any]= (TFMBartForConditionalGeneration,) if is_tf_available() else () _a : Tuple= ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _a : Tuple= True _a : Any= False _a : List[Any]= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFMBartModelTester(self ) lowercase : int = ConfigTester(self ,config_class=snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): _a : Union[str, Any]= [ " UN Chief Says There Is No Military Solution in Syria", ] _a : Any= [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] _a : Optional[Any]= "facebook/mbart-large-en-ro" @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : List[Any] = self.translate_src_text(**snake_case_ ) self.assertListEqual(self.expected_text ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = self.tokenizer(self.src_text ,**snake_case_ ,return_tensors="""tf""" ) lowercase : Dict = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) lowercase : Dict = self.tokenizer.batch_decode(snake_case_ ,skip_special_tokens=snake_case_ ) return generated_words @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) a__ : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def _UpperCamelCase ( __A , __A , __A , __A ) -> str: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCamelCase__ = TOKENIZER_CLASSES else: UpperCamelCase__ = {tokenizer_name: getattr(_lowerCAmelCase , tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCamelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase__ = True if checkpoint_name is None: UpperCamelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase__ = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCamelCase__ = tokenizer_class.from_pretrained(_lowerCAmelCase , force_download=_lowerCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase__ , UpperCamelCase__ = checkpoint.split("/" ) UpperCamelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) elif add_prefix: UpperCamelCase__ = checkpoint UpperCamelCase__ = dump_path else: UpperCamelCase__ = None UpperCamelCase__ = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase__ = file_path.split(_lowerCAmelCase )[-1][0] if next_char == "/": UpperCamelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase__ = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCamelCase__ = tokenizer.save_pretrained( _lowerCAmelCase , legacy_format=_lowerCAmelCase , filename_prefix=_lowerCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_lowerCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) a__ : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
80
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ) -> int: _lowerCAmelCase : int = """""" for i in table: res += inp[i - 1] return res def _UpperCAmelCase ( _lowerCamelCase : List[str] ) -> List[Any]: return data[1:] + data[0] def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : int = """""" for i in range(len(_lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] ) -> int: _lowerCAmelCase : str = int("""0b""" + data[0] + data[-1] , 2 ) _lowerCAmelCase : int = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ) -> Union[str, Any]: _lowerCAmelCase : List[str] = message[:4] _lowerCAmelCase : List[str] = message[4:] _lowerCAmelCase : Tuple = apply_table(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase : Any = xor(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase : str = apply_sbox(_lowerCAmelCase , temp[:4] ) # noqa: E741 _lowerCAmelCase : int = apply_sbox(_lowerCAmelCase , temp[4:] ) _lowerCAmelCase : Union[str, Any] = """0""" * (2 - len(_lowerCAmelCase )) + l # noqa: E741 _lowerCAmelCase : Union[str, Any] = """0""" * (2 - len(_lowerCAmelCase )) + r _lowerCAmelCase : Optional[int] = apply_table(l + r , _lowerCAmelCase ) _lowerCAmelCase : Optional[int] = xor(_lowerCAmelCase , _lowerCAmelCase ) return temp + right if __name__ == "__main__": UpperCamelCase_ = input("""Enter 10 bit key: """) UpperCamelCase_ = input("""Enter 8 bit message: """) UpperCamelCase_ = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase_ = [2, 4, 3, 1] UpperCamelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase_ = apply_table(key, paa_table) UpperCamelCase_ = temp[:5] UpperCamelCase_ = temp[5:] UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = apply_table(left + right, pa_table) UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = apply_table(left + right, pa_table) # encryption UpperCamelCase_ = apply_table(message, IP) UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = temp[4:] + temp[:4] UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase_ = apply_table(CT, IP) UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = temp[4:] + temp[:4] UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ) ->Tuple: """simple docstring""" A = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } A = Dataset.from_dict(_lowerCAmelCase ) return dataset class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : int ): A = get_dataset() A = make_duplicate_clusters(snake_case_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A (self : str ): A = get_dataset() A , A = deduplicate_dataset(snake_case_ ) self.assertEqual(len(snake_case_ ) , 2 ) print(snake_case_ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , snake_case_ )
258
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[str] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
from math import isqrt, loga def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCamelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowerCamelCase__ ( A__ : Optional[int] = 800800 , A__ : List[str] = 800800 ): '''simple docstring''' __lowerCamelCase = degree * loga(_lowerCAmelCase ) __lowerCamelCase = int(_lowerCAmelCase ) __lowerCamelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase_ (A__ ): '''simple docstring''' __UpperCamelCase: Any = 0 __UpperCamelCase: int = False __UpperCamelCase: Any = 3.0 class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case_ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _A ( self : Dict ): # If no defaults are changed, `to_kwargs` returns an empty dict. _UpperCAmelCase : Optional[int] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _UpperCAmelCase : List[Any] = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _UpperCAmelCase : Dict = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case_ ) @require_multi_gpu def _A ( self : List[str] ): _UpperCAmelCase : int = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __SCREAMING_SNAKE_CASE : int = Accelerator(kwargs_handlers=[ddp_scaler]) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.Linear(100, 200) __SCREAMING_SNAKE_CASE : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs __SCREAMING_SNAKE_CASE : Tuple = """""" __SCREAMING_SNAKE_CASE : Tuple = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
31
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModel.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModel.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForPreTraining.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForPreTraining.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForCausalLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCamelCase , __lowerCamelCase = TFAutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCamelCase , __lowerCamelCase = AutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForMaskedLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCamelCase , __lowerCamelCase = TFAutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForMaskedLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCamelCase , __lowerCamelCase = AutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCamelCase , __lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCamelCase , __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForSequenceClassification.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCamelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = TFAutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCamelCase = AutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) __lowerCamelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) __lowerCamelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 )
67
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def snake_case ( A__ ): return getitem, k def snake_case ( A__ ,A__ ): return setitem, k, v def snake_case ( A__ ): return delitem, k def snake_case ( A__ ,A__ ,*A__ ): try: return fun(_lowerCAmelCase ,*_lowerCAmelCase ), None except Exception as e: return None, e lowerCamelCase_ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCamelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCamelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCamelCase_ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCamelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( "operations" ,( pytest.param(_add_items ,id="add items" ), pytest.param(_overwrite_items ,id="overwrite items" ), pytest.param(_delete_items ,id="delete items" ), pytest.param(_access_absent_items ,id="access absent items" ), pytest.param(_add_with_resize_up ,id="add with resize up" ), pytest.param(_add_with_resize_down ,id="add with resize down" ), ) ,) def snake_case ( A__ ): UpperCAmelCase_ : Tuple = HashMap(initial_block_size=4 ) UpperCAmelCase_ : List[Any] = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ : Any = _run_operation(_lowerCAmelCase ,_lowerCAmelCase ,*_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _run_operation(_lowerCAmelCase ,_lowerCAmelCase ,*_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def snake_case ( ): def is_public(A__ ) -> bool: return not name.startswith("_" ) UpperCAmelCase_ : Dict = {name for name in dir({} ) if is_public(_lowerCAmelCase )} UpperCAmelCase_ : Tuple = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: str, a_: List[Any] ): _UpperCAmelCase : Union[str, Any] = [] create_all_state(1, _lowerCAmelCase, _lowerCAmelCase, [], _lowerCAmelCase ) return result def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple, a_: str, a_: Tuple, ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase, total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1, _lowerCAmelCase, level - 1, _lowerCAmelCase, _lowerCAmelCase ) current_list.pop() def __UpperCAmelCase ( a_: Tuple ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": __a = 4 __a = 2 __a = generate_all_combinations(n, k) print_all_state(total_list)
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( A__): '''simple docstring''' snake_case_ =["""image_processor""", """tokenizer"""] snake_case_ ="""BlipImageProcessor""" snake_case_ =("""BertTokenizer""", """BertTokenizerFast""") def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = False super().__init__(snake_case_ ,snake_case_ ) lowerCAmelCase__ : str = self.image_processor def __call__(self ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = 0 ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = False ,__lowerCamelCase = True ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCAmelCase__ : str = self.tokenizer lowerCAmelCase__ : Any = self.tokenizer( text=snake_case_ ,add_special_tokens=snake_case_ ,padding=snake_case_ ,truncation=snake_case_ ,max_length=snake_case_ ,stride=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_attention_mask=snake_case_ ,return_overflowing_tokens=snake_case_ ,return_special_tokens_mask=snake_case_ ,return_offsets_mapping=snake_case_ ,return_token_type_ids=snake_case_ ,return_length=snake_case_ ,verbose=snake_case_ ,return_tensors=snake_case_ ,**snake_case_ ,) return text_encoding # add pixel_values lowerCAmelCase__ : Union[str, Any] = self.image_processor(snake_case_ ,return_tensors=snake_case_ ) if text is not None: lowerCAmelCase__ : List[str] = self.tokenizer( text=snake_case_ ,add_special_tokens=snake_case_ ,padding=snake_case_ ,truncation=snake_case_ ,max_length=snake_case_ ,stride=snake_case_ ,pad_to_multiple_of=snake_case_ ,return_attention_mask=snake_case_ ,return_overflowing_tokens=snake_case_ ,return_special_tokens_mask=snake_case_ ,return_offsets_mapping=snake_case_ ,return_token_type_ids=snake_case_ ,return_length=snake_case_ ,verbose=snake_case_ ,return_tensors=snake_case_ ,**snake_case_ ,) else: lowerCAmelCase__ : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ ,**snake_case_ ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> int: """simple docstring""" return self.tokenizer.decode(*snake_case_ ,**snake_case_ ) @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = self.tokenizer.model_input_names lowerCAmelCase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
129
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: def get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Tuple = [] lowercase : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase : Tuple = int(max(0 , i - limit ) ) lowercase : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_lowerCAmelCase ) lowercase : Optional[Any] = f"{_stra[0:_stra.index(_lowerCAmelCase )]} {_stra[_stra.index(_lowerCAmelCase ) + 1:]}" return "".join(_lowerCAmelCase ) # matching characters lowercase : List[str] = get_matched_characters(_lowerCAmelCase , _lowerCAmelCase ) lowercase : List[Any] = get_matched_characters(_lowerCAmelCase , _lowerCAmelCase ) lowercase : int = len(_lowerCAmelCase ) # transposition lowercase : Optional[int] = ( len([(ca, ca) for ca, ca in zip(_lowerCAmelCase , _lowerCAmelCase ) if ca != ca] ) // 2 ) if not match_count: lowercase : Union[str, Any] = 0.0 else: lowercase : Dict = ( 1 / 3 * ( match_count / len(_lowerCAmelCase ) + match_count / len(_lowerCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowercase_ : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , a=10_00 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = range_bbox def __a ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ = bbox[i, j, 3] UpperCamelCase__ = bbox[i, j, 1] UpperCamelCase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ = bbox[i, j, 2] UpperCamelCase__ = bbox[i, j, 0] UpperCamelCase__ = t UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , a , a , a , a , a , a , a , a ): UpperCamelCase__ = TFLayoutLMModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , a , a , a , a , a , a , a , a ): UpperCamelCase__ = TFLayoutLMForMaskedLM(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , a , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFLayoutLMForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFLayoutLMForTokenClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a , a ): UpperCamelCase__ = TFLayoutLMForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowercase_ ( A__ , A__ , unittest.TestCase ): __UpperCAmelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 10 def __a ( self ): UpperCamelCase__ = TFLayoutLMModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFLayoutLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __a ( self ): pass def _UpperCamelCase ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 UpperCamelCase__ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCamelCase__ = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 UpperCamelCase__ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCamelCase__ = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowercase_ ( unittest.TestCase ): @slow def __a ( self ): UpperCamelCase__ = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase__ = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the sequence output on [0, :3, :3] UpperCamelCase__ = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCamelCase__ = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case_ , atol=1e-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head UpperCamelCase__ = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase__ = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar UpperCamelCase__ = outputs.loss UpperCamelCase__ = (2,) self.assertEqual(loss.shape , snake_case_ ) # test the shape of the logits UpperCamelCase__ = outputs.logits UpperCamelCase__ = (2, 2) self.assertEqual(logits.shape , snake_case_ ) @slow def __a ( self ): # initialize model with randomly initialized token classification head UpperCamelCase__ = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase__ = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) # test the shape of the logits UpperCamelCase__ = outputs.logits UpperCamelCase__ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case_ ) @slow def __a ( self ): # initialize model with randomly initialized token classification head UpperCamelCase__ = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase__ = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the shape of the logits UpperCamelCase__ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case_ ) self.assertEqual(outputs.end_logits.shape , snake_case_ )
80
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class a_ (A__ ): def __UpperCamelCase ( self , snake_case_ ): with open(snake_case_ , encoding="""utf-8""" ) as input_file: _lowerCAmelCase : Optional[Any] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) _lowerCAmelCase : Dict = input_file.read() _lowerCAmelCase : Union[str, Any] = regexp.search(snake_case_ ) return match def __UpperCamelCase ( self , snake_case_ ): with open(snake_case_ , encoding="""utf-8""" ) as input_file: _lowerCAmelCase : int = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) _lowerCAmelCase : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCAmelCase : Dict = regexp.finditer(snake_case_ ) _lowerCAmelCase : List[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = Path("""./datasets""" ) _lowerCAmelCase : str = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case_ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = Path("""./datasets""" ) _lowerCAmelCase : str = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case_ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
309
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '▁' _lowerCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCamelCase : Dict = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } _lowerCamelCase : Optional[int] = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off _lowerCamelCase : List[Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = [] __lowerCAmelCase = [] def __init__(self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : Optional[int]="</s>" , _lowerCAmelCase : Tuple="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : str="<mask>" , _lowerCAmelCase : List[Any] = None , **_lowerCAmelCase : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs A = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) A = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } A = {v: k for k, v in self.lang_code_to_id.items()} A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A = src_lang if src_lang is not None else """en_XX""" A = self.lang_code_to_id[self._src_lang] A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A (self : Optional[int] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A (self : Dict ): return self._src_lang @src_lang.setter def A (self : Optional[Any] , _lowerCAmelCase : Dict ): A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : Any ): A = self.__dict__.copy() A = None return state def __setstate__(self : Any , _lowerCAmelCase : List[Any] ): A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A (self : Union[str, Any] ): A = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A (self : List[Any] , _lowerCAmelCase : Any ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def A (self : List[Any] , _lowerCAmelCase : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A (self : Any , _lowerCAmelCase : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A (self : Union[str, Any] , _lowerCAmelCase : int ): A = [] A = """""" A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token A = True A = [] else: current_sub_tokens.append(snake_case_ ) A = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] = None ): if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: A = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def A (self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) A = [1] * len(self.prefix_tokens ) A = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def A (self : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A (self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A = src_lang A = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) A = self.convert_tokens_to_ids(snake_case_ ) A = tgt_lang_id return inputs def A (self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] = "en_XX" , _lowerCAmelCase : Any = None , _lowerCAmelCase : Tuple = "ro_RO" , **_lowerCAmelCase : str , ): A = src_lang A = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def A (self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def A (self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A (self : Optional[int] , _lowerCAmelCase : Dict ): A = self.lang_code_to_id[src_lang] A = [self.cur_lang_code_id] A = [self.eos_token_id] def A (self : Dict , _lowerCAmelCase : int ): A = self.lang_code_to_id[tgt_lang] A = [self.cur_lang_code_id] A = [self.eos_token_id]
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Any = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __UpperCamelCase : str = {"""mobilebert-uncased""": 512} __UpperCamelCase : Dict = {} class __SCREAMING_SNAKE_CASE( A__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = MobileBertTokenizer def __init__( self: str , UpperCamelCase: Any=None , UpperCamelCase: Optional[int]=None , UpperCamelCase: str=True , UpperCamelCase: Optional[int]="[UNK]" , UpperCamelCase: Any="[SEP]" , UpperCamelCase: List[str]="[PAD]" , UpperCamelCase: str="[CLS]" , UpperCamelCase: List[Any]="[MASK]" , UpperCamelCase: List[Any]=True , UpperCamelCase: List[str]=None , **UpperCamelCase: Tuple , ) -> Any: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): snake_case__ = getattr(snake_case_ , normalizer_state.pop('type' ) ) snake_case__ = do_lower_case snake_case__ = strip_accents snake_case__ = tokenize_chinese_chars snake_case__ = normalizer_class(**snake_case_ ) snake_case__ = do_lower_case def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Dict , UpperCamelCase: Tuple=None ) -> List[Any]: snake_case__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self: Any , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] = None ) -> List[int]: snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple = None ) -> Tuple[str]: snake_case__ = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
307
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase_ = { 'ctrl': 256, } UpperCAmelCase_ = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(_lowerCAmelCase ) return pairs class lowerCamelCase__( A__): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = CONTROL_CODES def __init__( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]="<unk>" , **UpperCamelCase_: Optional[int] ): super().__init__(unk_token=snake_case_ , **snake_case_ ) with open(snake_case_ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase = json.load(snake_case_ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(snake_case_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowerCamelCase = {} @property def lowerCAmelCase__ ( self: Tuple ): return len(self.encoder ) def lowerCAmelCase__ ( self: str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int ): if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(snake_case_ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCamelCase = get_pairs(snake_case_ ) if not pairs: return token while True: __lowerCamelCase = min(snake_case_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(snake_case_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase, __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(snake_case_ ): try: __lowerCamelCase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(snake_case_ ) __lowerCamelCase = new_word if len(snake_case_ ) == 1: break else: __lowerCamelCase = get_pairs(snake_case_ ) __lowerCamelCase = """@@ """.join(snake_case_ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word return word def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] __lowerCamelCase = re.findall(r"""\S+\n?""" , snake_case_ ) for token in words: split_tokens.extend(list(self.bpe(snake_case_ ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Tuple ): return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] ): return self.decoder.get(snake_case_ , self.unk_token ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = """ """.join(snake_case_ ).replace("""@@ """ , """""" ).strip() return out_string def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] = None ): if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + """\n""" ) __lowerCamelCase = 0 with open(snake_case_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase = token_index writer.write(""" """.join(snake_case_ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase_ (A__ ): '''simple docstring''' def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int] , A : str = None , A : Dict = None , A : Any = False , **A : List[str] , ): super().__init__(features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , **snake_case_ ) _UpperCAmelCase : Optional[Any] = Sql( cache_dir=snake_case_ , features=snake_case_ , sql=snake_case_ , con=snake_case_ , **snake_case_ , ) def _A ( self : List[Any] ): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = None _UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , ) # Build dataset for splits _UpperCAmelCase : Dict = self.builder.as_dataset( split="train" , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , A : Tuple , A : int , A : Tuple , A : Optional[int] = None , A : Optional[int] = None , **A : Optional[int] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _UpperCAmelCase : str = dataset _UpperCAmelCase : Optional[Any] = name _UpperCAmelCase : Any = con _UpperCAmelCase : Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCAmelCase : Union[str, Any] = num_proc _UpperCAmelCase : Tuple = to_sql_kwargs def _A ( self : str ): _UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("sql" , snake_case_ ) _UpperCAmelCase : int = self.to_sql_kwargs.pop("con" , snake_case_ ) _UpperCAmelCase : List[str] = self.to_sql_kwargs.pop("index" , snake_case_ ) _UpperCAmelCase : List[Any] = self._write(index=snake_case_ , **self.to_sql_kwargs ) return written def _A ( self : Union[str, Any] , A : Dict ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = args _UpperCAmelCase : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs _UpperCAmelCase : List[str] = query_table( table=self.dataset.data , key=slice(snake_case_ , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCAmelCase : int = batch.to_pandas() _UpperCAmelCase : str = df.to_sql(self.name , self.con , index=snake_case_ , **snake_case_ ) return num_rows or len(snake_case_ ) def _A ( self : Tuple , A : List[Any] , **A : List[Any] ): _UpperCAmelCase : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _UpperCAmelCase , _UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , snake_case_ , snake_case_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: if len(_lowerCAmelCase ) <= 1: return lst __lowerCamelCase = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __lowerCamelCase , __lowerCamelCase = lst[i], lst[i - 1] i -= 1 if i == 0: __lowerCamelCase = 1 return lst if __name__ == "__main__": __UpperCAmelCase =input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase =[int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCamelCase_ : def __init__( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Optional[Any]=14 , lowerCAmelCase_ : Union[str, Any]=10 , lowerCAmelCase_ : Union[str, Any]=19 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=[1, 2, 3, 4, 5] , lowerCAmelCase_ : Optional[Any]=25 , lowerCAmelCase_ : Optional[int]=5 , ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : Any = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[Any] = prediction_length UpperCAmelCase_ : List[Any] = context_length UpperCAmelCase_ : Union[str, Any] = cardinality UpperCAmelCase_ : List[str] = num_time_features UpperCAmelCase_ : Any = lags_sequence UpperCAmelCase_ : int = embedding_dimension UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = context_length UpperCAmelCase_ : Union[str, Any] = prediction_length + label_length UpperCAmelCase_ : Any = label_length UpperCAmelCase_ : int = moving_average UpperCAmelCase_ : int = autocorrelation_factor def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : List[Any] = config.context_length + max(config.lags_sequence ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) UpperCAmelCase_ : int = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCAmelCase_ : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, config.prediction_length] ) UpperCAmelCase_ : str = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.get_config() UpperCAmelCase_ : List[Any] = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> int: UpperCAmelCase_ : Union[str, Any] = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() UpperCAmelCase_ : Tuple = model(**snake_case_ ) UpperCAmelCase_ : Dict = outputs.encoder_last_hidden_state UpperCAmelCase_ : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Union[str, Any] = model.get_encoder() encoder.save_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[int] = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = model.create_network_inputs(**snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCAmelCase_ : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCAmelCase_ : Tuple = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) UpperCAmelCase_ : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCAmelCase_ : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCAmelCase_ : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCAmelCase_ : Union[str, Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[str] = model.get_decoder() decoder.save_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[int] = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ : Optional[Any] = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCamelCase_ (A__ , A__ , unittest.TestCase ): __magic_name__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __magic_name__ = (AutoformerForPrediction,) if is_torch_available() else () __magic_name__ = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = AutoformerModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["missing_keys"] , [] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> str: UpperCAmelCase_ : Any = inspect.signature(getattr(snake_case_ , "forward" ) ) # The main input is the name of the argument after `self` UpperCAmelCase_ : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(snake_case_ ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[Any] = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True UpperCAmelCase_ : Dict = getattr(self.model_tester , "seq_length" , snake_case_ ) UpperCAmelCase_ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , snake_case_ ) UpperCAmelCase_ : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , snake_case_ ) UpperCAmelCase_ : Tuple = getattr(self.model_tester , "d_model" , snake_case_ ) UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester , "num_attention_heads" , snake_case_ ) UpperCAmelCase_ : Tuple = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCAmelCase_ : int = True UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : str = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Union[str, Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCAmelCase_ : Dict = len(snake_case_ ) UpperCAmelCase_ : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions UpperCAmelCase_ : Tuple = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCAmelCase_ : List[str] = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : int = True UpperCAmelCase_ : str = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) UpperCAmelCase_ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: super().test_retain_grad_hidden_states_attentions() def snake_case ( A__="train-batch.pt" ): UpperCAmelCase_ : Any = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" ,filename=_lowerCAmelCase ,repo_type="dataset" ) UpperCAmelCase_ : Any = torch.load(_lowerCAmelCase ,map_location=_lowerCAmelCase ) return batch @require_torch @slow class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Optional[int] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) UpperCAmelCase_ : Dict = prepare_batch() with torch.no_grad(): UpperCAmelCase_ : int = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) UpperCAmelCase_ : str = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : Optional[int] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) UpperCAmelCase_ : int = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state UpperCAmelCase_ : int = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: UpperCAmelCase_ : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) UpperCAmelCase_ : Dict = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ : str = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) UpperCAmelCase_ : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) UpperCAmelCase_ : Tuple = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) UpperCAmelCase_ : Optional[int] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
268
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ ( A__ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , "embed_dim" ) ) self.parent.assertTrue(hasattr(snake_case_ , "num_heads" ) ) class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=1_3 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=[1_6, 4_8, 9_6] , lowerCAmelCase__ : List[str]=[1, 3, 6] , lowerCAmelCase__ : Any=[1, 2, 1_0] , lowerCAmelCase__ : Tuple=[7, 3, 3] , lowerCAmelCase__ : List[str]=[4, 2, 2] , lowerCAmelCase__ : Any=[2, 1, 1] , lowerCAmelCase__ : List[Any]=[2, 2, 2] , lowerCAmelCase__ : List[str]=[False, False, True] , lowerCAmelCase__ : str=[0.0, 0.0, 0.0] , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Dict=2 , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : Optional[Any] = patch_sizes _UpperCAmelCase : Optional[Any] = patch_stride _UpperCAmelCase : str = patch_padding _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Any = embed_dim _UpperCAmelCase : Any = num_heads _UpperCAmelCase : Dict = stride_kv _UpperCAmelCase : Union[str, Any] = depth _UpperCAmelCase : int = cls_token _UpperCAmelCase : Union[str, Any] = attention_drop_rate _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = None if self.use_labels: # create a random int32 tensor of given shape _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = TFCvtModel(config=snake_case_ ) _UpperCAmelCase : Any = model(snake_case_ , training=snake_case_ ) _UpperCAmelCase : List[str] = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase : List[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase : int = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Optional[Any] = TFCvtForImageClassification(snake_case_ ) _UpperCAmelCase : Tuple = model(snake_case_ , labels=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase_ : Any = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = TFCvtModelTester(self ) _UpperCAmelCase : Tuple = TFCvtConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(snake_case_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(snake_case_ ) _UpperCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Dict = [*signature.parameters.keys()] _UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ): _UpperCAmelCase : Tuple = model_class(snake_case_ ) _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase : Tuple = outputs.hidden_states _UpperCAmelCase : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Any = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = TFCvtModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Dict = image_processor(images=snake_case_ , return_tensors="tf" ) # forward pass _UpperCAmelCase : Tuple = model(**snake_case_ ) # verify the logits _UpperCAmelCase : Tuple = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase : str = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1e-4 ) )
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : int ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_lowerCAmelCase)]) lowerCAmelCase__ : Any = np.array(_lowerCAmelCase) lowerCAmelCase__ : Tuple = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() ,_lowerCAmelCase)) ,x.transpose()) ,_lowerCAmelCase) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : int = (1, 2, 1) lowerCAmelCase__ : Optional[int] = (1, 1, 0, 7) lowerCAmelCase__ : Tuple = SARIMAX( _lowerCAmelCase ,exog=_lowerCAmelCase ,order=_lowerCAmelCase ,seasonal_order=_lowerCAmelCase) lowerCAmelCase__ : Optional[Any] = model.fit(disp=_lowerCAmelCase ,maxiter=600 ,method='''nm''') lowerCAmelCase__ : List[str] = model_fit.predict(1 ,len(_lowerCAmelCase) ,exog=[test_match]) return result[0] def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : List[Any] = SVR(kernel='''rbf''' ,C=1 ,gamma=0.1 ,epsilon=0.1) regressor.fit(_lowerCAmelCase ,_lowerCAmelCase) lowerCAmelCase__ : Union[str, Any] = regressor.predict(_lowerCAmelCase) return y_pred[0] def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' train_user.sort() lowerCAmelCase__ : List[Any] = np.percentile(_lowerCAmelCase ,25) lowerCAmelCase__ : str = np.percentile(_lowerCAmelCase ,75) lowerCAmelCase__ : Dict = qa - qa lowerCAmelCase__ : Optional[Any] = qa - (iqr * 0.1) return low_lim def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Any = 0 for i in list_vote: if i > actual_result: lowerCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(_lowerCAmelCase) - abs(_lowerCAmelCase)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case : Optional[Any] =[[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] __snake_case : str =pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) __snake_case : Union[str, Any] =Normalizer().fit_transform(data_input_df.values) # split data __snake_case : Any =normalize_df[:, 2].tolist() __snake_case : List[str] =normalize_df[:, 0].tolist() __snake_case : Tuple =normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case : Tuple =normalize_df[:, [1, 2]].tolist() __snake_case : Optional[int] =x[: len(x) - 1] __snake_case : Tuple =x[len(x) - 1 :] # for linear regression & sarimax __snake_case : List[str] =total_date[: len(total_date) - 1] __snake_case : Dict =total_user[: len(total_user) - 1] __snake_case : Any =total_match[: len(total_match) - 1] __snake_case : int =total_date[len(total_date) - 1 :] __snake_case : Optional[int] =total_user[len(total_user) - 1 :] __snake_case : Optional[Any] =total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case : Optional[Any] =[ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case : Any ='' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
129
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Dict = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __snake_case ( A__ ): _a : Optional[Any]= "mobilenet_v1" def __init__( self ,snake_case=3 ,snake_case=224 ,snake_case=1.0 ,snake_case=8 ,snake_case="relu6" ,snake_case=True ,snake_case=0.999 ,snake_case=0.02 ,snake_case=0.001 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowercase : Optional[int] = num_channels lowercase : Dict = image_size lowercase : int = depth_multiplier lowercase : Optional[int] = min_depth lowercase : Union[str, Any] = hidden_act lowercase : int = tf_padding lowercase : Union[str, Any] = classifier_dropout_prob lowercase : int = initializer_range lowercase : int = layer_norm_eps class __snake_case ( A__ ): _a : Optional[int]= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( A__ , unittest.TestCase ): __UpperCAmelCase = GPTSanJapaneseTokenizer __UpperCAmelCase = False __UpperCAmelCase = {'do_clean_text': False, 'add_prefix_space': False} def __a ( self ): super().setUp() # fmt: off UpperCamelCase__ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __a ( self , a ): UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def __a ( self , a ): UpperCamelCase__ , UpperCamelCase__ = self.get_input_output_texts(snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = "こんにちは、世界。 こんばんは、㔺界。" UpperCamelCase__ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __a ( self ): UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCamelCase__ = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCamelCase__ = tokenizer.encode(snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def __a ( self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = "こんにちは、世界。" UpperCamelCase__ = "こんばんは、㔺界。😀" UpperCamelCase__ = "こんにちは、世界。こんばんは、世界。😀" UpperCamelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def __a ( self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = "こんにちは、世界。" UpperCamelCase__ = "こんばんは、㔺界。😀" UpperCamelCase__ = len(tokenizer.encode(snake_case_ ) ) - 2 UpperCamelCase__ = len(tokenizer.encode(snake_case_ ) ) - 2 UpperCamelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCamelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCamelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCamelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def __a ( self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = tokenizer.encode("あンいワ" ) UpperCamelCase__ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCamelCase__ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __a ( self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCamelCase__ = tokenizer(snake_case_ , padding=snake_case_ ) UpperCamelCase__ = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off UpperCamelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCamelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCamelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def __a ( self ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __a ( self ): # tokenizer has no padding token pass
80
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _lowerCAmelCase : str = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(snake_case_ ) , torch_builtin(snake_case_ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case_ ) , gelu_new(snake_case_ ) ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _lowerCAmelCase : Tuple = get_activation("""gelu""" ) _lowerCAmelCase : List[str] = get_activation("""gelu_10""" ) _lowerCAmelCase : List[str] = torch_builtin(snake_case_ ) _lowerCAmelCase : Dict = geluaa(snake_case_ ) _lowerCAmelCase : Optional[int] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCamelCase ( self ): get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(snake_case_ ): get_activation("""bogus""" ) with self.assertRaises(snake_case_ ): get_activation(snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = get_activation("""gelu""" ) _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Union[str, Any] = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case_ ): _lowerCAmelCase : Union[str, Any] = acta.a
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->Tuple: """simple docstring""" if len(_lowerCAmelCase ) == 0: return array A , A = min(_lowerCAmelCase ), max(_lowerCAmelCase ) # Compute the variables A = _max - _min + 1 A , A = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: A = i - _min A = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. A = 0 for i in range(_lowerCAmelCase ): while holes_repeat[i] > 0: A = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : List[Any] = input('Enter numbers separated by comma:\n') _lowerCamelCase : List[str] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
258
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
from __future__ import annotations __UpperCamelCase : Tuple = """Muhammad Umer Farooq""" __UpperCamelCase : List[Any] = """MIT""" __UpperCamelCase : Any = """1.0.0""" __UpperCamelCase : List[Any] = """Muhammad Umer Farooq""" __UpperCamelCase : Any = """contact@muhammadumerfarooq.me""" __UpperCamelCase : Dict = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class __SCREAMING_SNAKE_CASE( A__ ): def __init__( self: List[Any] , UpperCamelCase: Union[str, Any] ) -> None: super().__init__() snake_case__ = [] snake_case__ = domain def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: List[str] , UpperCamelCase: List[Any] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ = parse.urljoin(self.domain , snake_case_ ) self.urls.append(snake_case_ ) def a_ ( _A ) -> Any: """simple docstring""" return ".".join(get_sub_domain_name(_lowerCAmelCase ).split('.' )[-2:] ) def a_ ( _A ) -> int: """simple docstring""" return parse.urlparse(_lowerCAmelCase ).netloc def a_ ( _A = "https://github.com" ) -> Tuple: """simple docstring""" snake_case__ = get_domain_name(_lowerCAmelCase ) # Initialize the parser snake_case__ = Parser(_lowerCAmelCase ) try: # Open URL snake_case__ = requests.get(_lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ = requests.get(_lowerCAmelCase ) # Get the valid email. snake_case__ = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_lowerCAmelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = emails_from_url("""https://github.com""") print(f'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
class lowerCamelCase__: def __init__( self: Union[str, Any] ): __lowerCamelCase = """""" __lowerCamelCase = """""" __lowerCamelCase = [] def lowerCAmelCase__ ( self: int , UpperCamelCase_: int , UpperCamelCase_: str ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowerCamelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __lowerCamelCase = self.__min_dist_top_down_dp(snake_case_ , n - 1 ) __lowerCamelCase = self.__min_dist_top_down_dp(m - 1 , snake_case_ ) __lowerCamelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __lowerCamelCase = 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: str ): __lowerCamelCase = worda __lowerCamelCase = worda __lowerCamelCase = [[-1 for _ in range(len(snake_case_ ) )] for _ in range(len(snake_case_ ) )] return self.__min_dist_top_down_dp(len(snake_case_ ) - 1 , len(snake_case_ ) - 1 ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: int , UpperCamelCase_: Tuple ): __lowerCamelCase = worda __lowerCamelCase = worda __lowerCamelCase = len(snake_case_ ) __lowerCamelCase = len(snake_case_ ) __lowerCamelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowerCamelCase = j elif j == 0: # second string is empty __lowerCamelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowerCamelCase = self.dp[i - 1][j - 1] else: __lowerCamelCase = self.dp[i][j - 1] __lowerCamelCase = self.dp[i - 1][j] __lowerCamelCase = self.dp[i - 1][j - 1] __lowerCamelCase = 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] if __name__ == "__main__": UpperCAmelCase_ = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() UpperCAmelCase_ = input('Enter the first string: ').strip() UpperCAmelCase_ = input('Enter the second string: ').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : str = 50 ) -> int: """simple docstring""" _UpperCAmelCase : str = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
31
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 10_00 ) -> Union[str, Any]: __lowerCamelCase = -1 __lowerCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCamelCase = n - a - b if c * c == (a * a + b * b): __lowerCamelCase = a * b * c if candidate >= product: __lowerCamelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
67
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ (A__ , unittest.TestCase ): __magic_name__ = KandinskyInpaintPipeline __magic_name__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __magic_name__ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __magic_name__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __magic_name__ = False @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return 100 @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_ : Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase_ : List[str] = MultilingualCLIP(snake_case_ ) UpperCAmelCase_ : str = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ : Any = UNetaDConditionModel(**snake_case_ ) return model @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.dummy_text_encoder UpperCAmelCase_ : int = self.dummy_tokenizer UpperCAmelCase_ : Dict = self.dummy_unet UpperCAmelCase_ : str = self.dummy_movq UpperCAmelCase_ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type="epsilon" , thresholding=snake_case_ , ) UpperCAmelCase_ : Optional[int] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=0 ) -> Tuple: UpperCAmelCase_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCAmelCase_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ ) # create init_image UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : int = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCAmelCase_ : List[Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ : Union[str, Any] = 0 if str(snake_case_ ).startswith("mps" ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(snake_case_ ) else: UpperCAmelCase_ : Any = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCAmelCase_ : List[str] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : str = "cpu" UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**snake_case_ ) UpperCAmelCase_ : Optional[int] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : List[str] = pipe(**self.get_dummy_inputs(snake_case_ ) ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : int = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ : int = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[int] = "a hat" UpperCAmelCase_ : Any = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) UpperCAmelCase_ : str = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase_ : Optional[Any] = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase_ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : Any = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ : int = pipeline( snake_case_ , image=snake_case_ , mask_image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCAmelCase_ : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __a = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __a = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __a = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]="auto" , lowerCAmelCase__ : Tuple=-1 , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : str=5_0_0 , lowerCAmelCase__ : Any="gpt2-large" , lowerCAmelCase__ : int=-1 , lowerCAmelCase__ : Tuple=1_0_2_4 , lowerCAmelCase__ : Optional[int]=2_5 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]=2_5 , ) -> str: """simple docstring""" _UpperCAmelCase : Any = compute_mauve( p_text=snake_case_ , q_text=snake_case_ , p_features=snake_case_ , q_features=snake_case_ , p_tokens=snake_case_ , q_tokens=snake_case_ , num_buckets=snake_case_ , pca_max_data=snake_case_ , kmeans_explained_var=snake_case_ , kmeans_num_redo=snake_case_ , kmeans_max_iter=snake_case_ , featurize_model_name=snake_case_ , device_id=snake_case_ , max_text_length=snake_case_ , divergence_curve_discretization_size=snake_case_ , mauve_scaling_factor=snake_case_ , verbose=snake_case_ , seed=snake_case_ , ) return out
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
import os def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : str = len(grid[0]) lowerCAmelCase__ : Tuple = len(_lowerCAmelCase) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCAmelCase): for j in range(n_rows - 3): lowerCAmelCase__ : List[str] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase__ : str = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase__ : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase__ : Dict = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase__ : str = max( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase) if max_product > largest: lowerCAmelCase__ : Dict = max_product return largest def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : int = [] with open(os.path.dirname(_lowerCAmelCase) + '''/grid.txt''') as file: for line in file: grid.append(line.strip('''\n''').split(''' ''')) lowerCAmelCase__ : int = [[int(_lowerCAmelCase) for i in grid[j]] for j in range(len(_lowerCAmelCase))] return largest_product(_lowerCAmelCase) if __name__ == "__main__": print(solution())
129
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if len(_lowerCAmelCase ) < 2: return collection def circle_sort_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: lowercase : Dict = False if low == high: return swapped lowercase : str = low lowercase : Union[str, Any] = high while left < right: if collection[left] > collection[right]: lowercase , lowercase : Optional[Any] = ( collection[right], collection[left], ) lowercase : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase , lowercase : int = ( collection[right + 1], collection[left], ) lowercase : Optional[int] = True lowercase : str = low + int((high - low) / 2 ) lowercase : List[str] = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase : Tuple = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) return swapped or left_swap or right_swap lowercase : int = True while is_not_sorted is True: lowercase : Union[str, Any] = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": lowercase : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : Dict = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , _lowerCAmelCase , ) if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase__ = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCamelCase__ = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 UpperCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ = 2.0 * image - 1.0 UpperCamelCase__ = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase__ = torch.cat(_lowerCAmelCase , dim=0 ) return image def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' if isinstance(_lowerCAmelCase , torch.Tensor ): return mask elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCamelCase__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = mask[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] UpperCamelCase__ = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCamelCase__ = mask.astype(np.floataa ) / 255.0 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = torch.from_numpy(_lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase__ = torch.cat(_lowerCAmelCase , dim=0 ) return mask class lowercase_ ( A__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 def __init__( self , a , a ): super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , a , a , a = 2_50 , a = 0.0 , a = 10 , a = 10 , a = None , a = "pil" , a = True , ): UpperCamelCase__ = image UpperCamelCase__ = _preprocess_image(snake_case_ ) UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = _preprocess_mask(snake_case_ ) UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(snake_case_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase__ = original_image.shape UpperCamelCase__ = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case_ , snake_case_ , snake_case_ , self.device ) UpperCamelCase__ = eta UpperCamelCase__ = self.scheduler.timesteps[0] + 1 UpperCamelCase__ = generator[0] if isinstance(snake_case_ , snake_case_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase__ = self.unet(snake_case_ , snake_case_ ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase__ = self.scheduler.undo_step(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = t UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
80
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a_ (A__ , unittest.TestCase ): __lowerCAmelCase : int = DebertaVaTokenizer __lowerCAmelCase : List[Any] = DebertaVaTokenizerFast __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Tuple = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[str] = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = """this is a test""" _lowerCAmelCase : Tuple = """this is a test""" return input_text, output_text def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = """<pad>""" _lowerCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 3_0_0_0_1 ) def __UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : Dict = """ \tHeLLo!how \n Are yoU? """ _lowerCAmelCase : List[str] = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on _lowerCAmelCase : Tuple = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) _lowerCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : List[str] = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : Optional[int] = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : str = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : List[str] = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : str = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[str] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _lowerCAmelCase : Tuple = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : int = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : int = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[str] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _lowerCAmelCase : Any = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : List[str] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : str = """ \tHeLLo!how \n Are yoU? """ _lowerCAmelCase : Dict = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on _lowerCAmelCase : Dict = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) _lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Tuple = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Union[str, Any] = tokenizer.encode(snake_case_ ) _lowerCAmelCase : Any = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """This is a test""" _lowerCAmelCase : Dict = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] _lowerCAmelCase : str = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] _lowerCAmelCase : Tuple = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] _lowerCAmelCase : List[Any] = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) _lowerCAmelCase : Optional[Any] = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : str = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off _lowerCAmelCase : Optional[int] = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[str] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] _lowerCAmelCase : str = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] _lowerCAmelCase : str = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _lowerCAmelCase : List[str] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : str = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : str = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : List[str] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = DebertaVaTokenizer(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.encode("""sequence builders""" ) _lowerCAmelCase : Optional[int] = tokenizer.encode("""multi-sequence build""" ) _lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def __UpperCamelCase ( self ): # fmt: off _lowerCAmelCase : Dict = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
309
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = (DDPMParallelScheduler,) def A (self : List[Any] , **_lowerCAmelCase : List[Any] ): A = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**snake_case_ ) return config def A (self : str ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def A (self : List[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def A (self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def A (self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def A (self : Tuple ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def A (self : str ): self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , ) def A (self : Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def A (self : List[str] ): for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case_ ) def A (self : List[str] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0 ) A = torch.arange(snake_case_ )[0:3, None].repeat(1 , snake_case_ ) A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A = scheduler.batch_step_no_noise(snake_case_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def A (self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual A = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def A (self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="""v_prediction""" ) A = scheduler_class(**snake_case_ ) A = len(snake_case_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual A = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(snake_case_ ) ) A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def A (self : Dict ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(snake_case_ ) A = prev_t.item() self.assertEqual(snake_case_ , snake_case_ ) def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 51, 0] with self.assertRaises(snake_case_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=snake_case_ ) def A (self : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [100, 87, 50, 1, 0] A = len(snake_case_ ) with self.assertRaises(snake_case_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def A (self : Union[str, Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**snake_case_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=snake_case_ )
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( _A , _A = True , _A = math.inf , _A = -math.inf , _A = math.inf , _A = -math.inf , _A = False , _A = 100 , _A = 0.01 , _A = 1 , ) -> List[Any]: """simple docstring""" snake_case__ = False snake_case__ = search_prob snake_case__ = start_temperate snake_case__ = [] snake_case__ = 0 snake_case__ = None while not search_end: snake_case__ = current_state.score() if best_state is None or current_score > best_state.score(): snake_case__ = current_state scores.append(_lowerCAmelCase ) iterations += 1 snake_case__ = None snake_case__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to snake_case__ = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor snake_case__ = neighbors.pop(_lowerCAmelCase ) snake_case__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: snake_case__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution snake_case__ = picked_neighbor else: snake_case__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability snake_case__ = picked_neighbor snake_case__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor snake_case__ = True else: snake_case__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __UpperCamelCase : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCamelCase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __UpperCamelCase : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCamelCase : Tuple = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a_ ( _A , _A ) -> Optional[int]: """simple docstring""" return (3 * x**2) - (6 * y) __UpperCamelCase : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCamelCase : List[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'''{local_min.score()}''' ) __UpperCamelCase : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCamelCase : Tuple = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'''{local_min.score()}''' )
307
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( A__ , unittest.TestCase): UpperCAmelCase__ : Any = XGLMTokenizer UpperCAmelCase__ : Optional[Any] = XGLMTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Any = True def lowerCAmelCase__ ( self: Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(snake_case_ ) , 10_08 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self: List[Any] ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase__ ( self: Tuple ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case_ , f.name ) __lowerCamelCase = XGLMTokenizer(f.name , keep_accents=snake_case_ ) __lowerCamelCase = pickle.dumps(snake_case_ ) pickle.loads(snake_case_ ) def lowerCAmelCase__ ( self: Tuple ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(snake_case_ ) __lowerCamelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCamelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCamelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(snake_case_ ) __lowerCamelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """Hello World!""" __lowerCamelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __lowerCamelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def lowerCAmelCase__ ( self: Optional[Any] ): # fmt: off __lowerCamelCase = { """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""facebook/xglm-564M""" , padding=snake_case_ , )
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ (A__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Any = KandinskyImgaImgPipeline __UpperCamelCase: Any = ["prompt", "image_embeds", "negative_image_embeds", "image"] __UpperCamelCase: Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] __UpperCamelCase: Optional[int] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCamelCase: Optional[Any] = False @property def _A ( self : Tuple ): return 32 @property def _A ( self : List[str] ): return 32 @property def _A ( self : Union[str, Any] ): return self.time_input_dim @property def _A ( self : Dict ): return self.time_input_dim * 4 @property def _A ( self : Dict ): return 100 @property def _A ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _A ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _UpperCAmelCase : str = MultilingualCLIP(snake_case_ ) _UpperCAmelCase : Optional[int] = text_encoder.eval() return text_encoder @property def _A ( self : Any ): torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _UpperCAmelCase : Optional[Any] = UNetaDConditionModel(**snake_case_ ) return model @property def _A ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = self.dummy_tokenizer _UpperCAmelCase : Dict = self.dummy_unet _UpperCAmelCase : Optional[int] = self.dummy_movq _UpperCAmelCase : List[Any] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _UpperCAmelCase : List[str] = DDIMScheduler(**snake_case_ ) _UpperCAmelCase : Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : Tuple , A : Union[str, Any] , A : Tuple=0 ): _UpperCAmelCase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _UpperCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ ) # create init_image _UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Any = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((256, 256) ) if str(snake_case_ ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(snake_case_ ) else: _UpperCAmelCase : Dict = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _UpperCAmelCase : Any = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _A ( self : List[str] ): _UpperCAmelCase : Optional[Any] = "cpu" _UpperCAmelCase : Optional[int] = self.get_dummy_components() _UpperCAmelCase : List[Any] = self.pipeline_class(**snake_case_ ) _UpperCAmelCase : Any = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase : str = pipe(**self.get_dummy_inputs(snake_case_ ) ) _UpperCAmelCase : Tuple = output.images _UpperCAmelCase : Optional[Any] = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[Any] = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : List[Any] ): _UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _UpperCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _UpperCAmelCase : Dict = "A red cartoon frog, 4k" _UpperCAmelCase : List[str] = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) _UpperCAmelCase : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _UpperCAmelCase : Dict = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase : int = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : Dict = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _UpperCAmelCase : Dict = pipeline( snake_case_ , image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) _UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' from __future__ import annotations class a__ : def __init__( self : List[Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = order # a_{0} ... a_{k} __lowerCamelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowerCamelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowerCamelCase = [0.0] * self.order # y[n-1] ... y[n-k] __lowerCamelCase = [0.0] * self.order def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Dict , a : Optional[int] ): """simple docstring""" if len(snake_case_ ) < self.order: __lowerCamelCase = [1.0, *a_coeffs] if len(snake_case_ ) != self.order + 1: __lowerCamelCase = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) if len(snake_case_ ) != self.order + 1: __lowerCamelCase = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) __lowerCamelCase = a_coeffs __lowerCamelCase = b_coeffs def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int ): """simple docstring""" __lowerCamelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowerCamelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowerCamelCase = self.input_history[:-1] __lowerCamelCase = self.output_history[:-1] __lowerCamelCase = sample __lowerCamelCase = result return result
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def snake_case ( A__ ,A__ ,A__=None ,A__=None ): if attention_mask is None: UpperCAmelCase_ : Any = tf.cast(tf.math.not_equal(_lowerCAmelCase ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCamelCase_ : __magic_name__ = OPTConfig __magic_name__ = {} __magic_name__ = '''gelu''' def __init__( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=99 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Any=20 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : int=16 , lowerCAmelCase_ : Optional[Any]=16 , ) -> Dict: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = eos_token_id UpperCAmelCase_ : Optional[Any] = pad_token_id UpperCAmelCase_ : Dict = bos_token_id UpperCAmelCase_ : Optional[Any] = embed_dim UpperCAmelCase_ : Optional[Any] = word_embed_proj_dim UpperCAmelCase_ : Any = False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : int = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case_ , **self.config_updates , ) UpperCAmelCase_ : List[Any] = prepare_opt_inputs_dict(snake_case_ , snake_case_ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = TFOPTModel(config=snake_case_ ) UpperCAmelCase_ : Optional[int] = inputs_dict["input_ids"] UpperCAmelCase_ : Tuple = input_ids[:1, :] UpperCAmelCase_ : int = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ : Union[str, Any] = 1 # first forward pass UpperCAmelCase_ : Tuple = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ )[0] UpperCAmelCase_ : str = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) @require_tf class UpperCamelCase_ (A__ , A__ , unittest.TestCase ): __magic_name__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __magic_name__ = (TFOPTForCausalLM,) if is_tf_available() else () __magic_name__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 10 def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_ : Any = TFOPTModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ): if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCAmelCase_ : Tuple = model_class(config=snake_case_ ) UpperCAmelCase_ : List[Any] = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) UpperCAmelCase_ : Dict = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case_ ) UpperCAmelCase_ : Optional[Any] = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) UpperCAmelCase_ : str = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCAmelCase_ : int = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case_ ) # check that weights remain the same after resizing UpperCAmelCase_ : Dict = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCAmelCase_ : Optional[Any] = False self.assertTrue(snake_case_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case_ ) UpperCAmelCase_ : List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCAmelCase_ : List[str] = False self.assertTrue(snake_case_ ) def snake_case ( A__ ): return tf.constant(_lowerCAmelCase ,dtype=tf.intaa ) @require_tf class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = 99 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: UpperCAmelCase_ : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCAmelCase_ : Any = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCAmelCase_ : List[str] = input_ids.shape[0] UpperCAmelCase_ : Union[str, Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: UpperCAmelCase_ : List[Any] = TFOPTModel.from_pretrained("facebook/opt-350m" ) UpperCAmelCase_ : Optional[Any] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCAmelCase_ : Tuple = tf.not_equal(snake_case_ , model.config.pad_token_id ) with tf.GradientTape(): UpperCAmelCase_ : Tuple = model(input_ids=snake_case_ , attention_mask=snake_case_ ).last_hidden_state UpperCAmelCase_ : List[str] = (1, 11, 512) self.assertEqual(output.shape , snake_case_ ) UpperCAmelCase_ : Optional[Any] = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-3 ) ) UpperCAmelCase_ : Optional[int] = tf.function(snake_case_ , jit_compile=snake_case_ ) UpperCAmelCase_ : Any = xla_generate(snake_case_ , snake_case_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-2 ) ) @require_tf @slow class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: super().setUp() UpperCAmelCase_ : Any = "facebook/opt-350m" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : str = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCAmelCase_ : Any = GPTaTokenizer.from_pretrained(self.path_model ) UpperCAmelCase_ : Optional[Any] = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCAmelCase_ : Tuple = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ , add_special_tokens=snake_case_ ) UpperCAmelCase_ : str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCAmelCase_ : Optional[Any] = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) UpperCAmelCase_ : Optional[Any] = tf.function(snake_case_ , jit_compile=snake_case_ ) UpperCAmelCase_ : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) @require_tf @slow class UpperCamelCase_ (unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = "facebook/opt-125m" UpperCAmelCase_ : List[str] = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[Any] = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: UpperCAmelCase_ : Optional[int] = tokenizer(snake_case_ , return_tensors="tf" ).input_ids UpperCAmelCase_ : List[str] = model.generate(snake_case_ , max_length=10 ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: UpperCAmelCase_ : Optional[int] = "facebook/opt-350m" UpperCAmelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : Tuple = TFOPTForCausalLM.from_pretrained(snake_case_ ) UpperCAmelCase_ : int = "left" # use different length sentences to test batching UpperCAmelCase_ : Any = [ "Hello, my dog is a little", "Today, I", ] UpperCAmelCase_ : List[str] = tokenizer(snake_case_ , return_tensors="tf" , padding=snake_case_ ) UpperCAmelCase_ : Tuple = inputs["input_ids"] UpperCAmelCase_ : int = model.generate(input_ids=snake_case_ , attention_mask=inputs["attention_mask"] ) UpperCAmelCase_ : List[Any] = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCAmelCase_ : int = model.generate(input_ids=snake_case_ ) UpperCAmelCase_ : Tuple = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) UpperCAmelCase_ : Any = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCAmelCase_ : Optional[int] = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase_ : Dict = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) UpperCAmelCase_ : Dict = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[str] = "facebook/opt-350m" UpperCAmelCase_ : Optional[Any] = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained(snake_case_ ) UpperCAmelCase_ : List[str] = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: UpperCAmelCase_ : Any = tokenizer(snake_case_ , return_tensors="tf" ).input_ids UpperCAmelCase_ : List[Any] = model.generate(snake_case_ , max_length=10 ) UpperCAmelCase_ : str = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ )
268
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Tuple = torch.load(_lowerCAmelCase, map_location="cpu" ) if "model" in sd.keys(): _UpperCAmelCase : Any = torch.load(_lowerCAmelCase, map_location="cpu" )["model"] # pop unnecessary weights _UpperCAmelCase : str = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _UpperCAmelCase : Dict = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _UpperCAmelCase : Union[str, Any] = sd.pop(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _UpperCAmelCase : List[Any] = sd[key] # We split QKV in separate Q,K,V _UpperCAmelCase : int = key.replace(".qkv_proj.", ".q_proj." ) _UpperCAmelCase : Union[str, Any] = key.replace(".qkv_proj.", ".k_proj." ) _UpperCAmelCase : Optional[Any] = key.replace(".qkv_proj.", ".v_proj." ) _UpperCAmelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = torch.split(_lowerCAmelCase, depth // 3, dim=0 ) _UpperCAmelCase : List[str] = q _UpperCAmelCase : str = k _UpperCAmelCase : List[str] = v del sd[key] return sd @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: List[Any], a_: Union[str, Any]=None ): _UpperCAmelCase : Optional[Any] = load_checkpoint(_lowerCAmelCase ) if config is not None: _UpperCAmelCase : List[Any] = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _UpperCAmelCase : Tuple = OPTConfig() _UpperCAmelCase : List[str] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __a = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase__ ( A__): '''simple docstring''' snake_case_ ="""facebook/bart-large-mnli""" snake_case_ =( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) snake_case_ ="""text_classifier""" snake_case_ =AutoTokenizer snake_case_ =AutoModelForSequenceClassification snake_case_ =["""text""", ["""text"""]] snake_case_ =["""text"""] def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" super().setup() lowerCAmelCase__ : List[Any] = self.model.config lowerCAmelCase__ : Optional[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): lowerCAmelCase__ : Optional[Any] = int(snake_case_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = labels return self.pre_processor( [text] * len(snake_case_ ) ,[f"""This example is {label}""" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = outputs.logits lowerCAmelCase__ : str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
129
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import tensorflow as tf from ...tf_utils import shape_list class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=1 ,snake_case=False ,**snake_case ): '''simple docstring''' super().__init__(**snake_case_ ) lowercase : Union[str, Any] = vocab_size lowercase : List[Any] = d_embed lowercase : List[str] = d_proj lowercase : Any = cutoffs + [vocab_size] lowercase : List[str] = [0] + self.cutoffs lowercase : Optional[int] = div_val lowercase : Optional[Any] = self.cutoffs[0] lowercase : List[str] = len(self.cutoffs ) - 1 lowercase : Optional[int] = self.shortlist_size + self.n_clusters lowercase : Any = keep_order lowercase : List[Any] = [] lowercase : Optional[Any] = [] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.n_clusters > 0: lowercase : str = self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer="""zeros""" ,trainable=snake_case_ ,name="""cluster_weight""" ) lowercase : Dict = self.add_weight( shape=(self.n_clusters,) ,initializer="""zeros""" ,trainable=snake_case_ ,name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowercase : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_projs_._{i}" ,) self.out_projs.append(snake_case_ ) else: self.out_projs.append(snake_case_ ) lowercase : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._weight" ,) lowercase : List[Any] = self.add_weight( shape=(self.vocab_size,) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._bias" ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowercase , lowercase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[int] = self.d_embed // (self.div_val**i) lowercase : int = self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_projs_._{i}" ) self.out_projs.append(snake_case_ ) lowercase : Dict = self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._weight" ,) lowercase : Any = self.add_weight( shape=(r_idx - l_idx,) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._bias" ,) self.out_layers.append((weight, bias) ) super().build(snake_case_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = x if proj is not None: lowercase : Union[str, Any] = tf.einsum("""ibd,ed->ibe""" ,snake_case_ ,snake_case_ ) return tf.einsum("""ibd,nd->ibn""" ,snake_case_ ,snake_case_ ) + b @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = shape_list(snake_case_ ) lowercase : Optional[Any] = tf.range(lp_size[0] ,dtype=target.dtype ) lowercase : Optional[int] = tf.stack([r, target] ,1 ) return tf.gather_nd(snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=True ,snake_case=False ): '''simple docstring''' lowercase : List[str] = 0 if self.n_clusters == 0: lowercase : Tuple = self._logit(snake_case_ ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: lowercase : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_ ,logits=snake_case_ ) lowercase : str = tf.nn.log_softmax(snake_case_ ,axis=-1 ) else: lowercase : Tuple = shape_list(snake_case_ ) lowercase : Optional[int] = [] lowercase : List[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowercase , lowercase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase : Optional[int] = (target >= l_idx) & (target < r_idx) lowercase : str = tf.where(snake_case_ ) lowercase : Union[str, Any] = tf.boolean_mask(snake_case_ ,snake_case_ ) - l_idx if self.div_val == 1: lowercase : Tuple = self.out_layers[0][0][l_idx:r_idx] lowercase : Dict = self.out_layers[0][1][l_idx:r_idx] else: lowercase : int = self.out_layers[i][0] lowercase : Any = self.out_layers[i][1] if i == 0: lowercase : str = tf.concat([cur_W, self.cluster_weight] ,0 ) lowercase : Optional[int] = tf.concat([cur_b, self.cluster_bias] ,0 ) lowercase : int = self._logit(snake_case_ ,snake_case_ ,snake_case_ ,self.out_projs[0] ) lowercase : Optional[int] = tf.nn.log_softmax(snake_case_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowercase : List[Any] = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : Dict = self._gather_logprob(snake_case_ ,snake_case_ ) else: lowercase : Optional[int] = self._logit(snake_case_ ,snake_case_ ,snake_case_ ,self.out_projs[i] ) lowercase : Optional[int] = tf.nn.log_softmax(snake_case_ ) lowercase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase : Union[str, Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case_ ) if target is not None: lowercase : Any = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : Any = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : List[Any] = self._gather_logprob(snake_case_ ,snake_case_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case_ ,-cur_logprob ,shape_list(snake_case_ ) ) lowercase : Union[str, Any] = tf.concat(snake_case_ ,axis=-1 ) if target is not None: if return_mean: lowercase : List[str] = tf.reduce_mean(snake_case_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case_ ,name=self.name ,aggregation="""mean""" if return_mean else """""" ) return out
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( A__ ): def __init__( self , a , a , a , a , a , a , a , a , a , ): super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=snake_case_ , speech_processor=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , scheduler=snake_case_ , feature_extractor=snake_case_ , ) def __a ( self , a = "auto" ): if slice_size == "auto": UpperCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case_ ) def __a ( self ): self.enable_attention_slicing(snake_case_ ) @torch.no_grad() def __call__( self , a , a=1_60_00 , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ): UpperCamelCase__ = self.speech_processor.feature_extractor( snake_case_ , return_tensors="pt" , sampling_rate=snake_case_ ).input_features.to(self.device ) UpperCamelCase__ = self.speech_model.generate(snake_case_ , max_length=48_00_00 ) UpperCamelCase__ = self.speech_processor.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , normalize=snake_case_ )[ 0 ] if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = 1 elif isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = len(snake_case_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case_ , snake_case_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case_ )}.''' ) # get prompt text embeddings UpperCamelCase__ = self.tokenizer( snake_case_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = text_embeddings.shape UpperCamelCase__ = text_embeddings.repeat(1 , snake_case_ , 1 ) UpperCamelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ = 42 if negative_prompt is None: UpperCamelCase__ = [""] * batch_size elif type(snake_case_ ) is not type(snake_case_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case_ )} !=''' f''' {type(snake_case_ )}.''' ) elif isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [negative_prompt] elif batch_size != len(snake_case_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCamelCase__ = negative_prompt UpperCamelCase__ = text_input_ids.shape[-1] UpperCamelCase__ = self.tokenizer( snake_case_ , padding="max_length" , max_length=snake_case_ , truncation=snake_case_ , return_tensors="pt" , ) UpperCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = uncond_embeddings.shape[1] UpperCamelCase__ = uncond_embeddings.repeat(1 , snake_case_ , 1 ) UpperCamelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ = torch.randn(snake_case_ , generator=snake_case_ , device="cpu" , dtype=snake_case_ ).to( self.device ) else: UpperCamelCase__ = torch.randn(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual UpperCamelCase__ = self.unet(snake_case_ , snake_case_ , encoder_hidden_states=snake_case_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = 1 / 0.1_8215 * latents UpperCamelCase__ = self.vae.decode(snake_case_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(snake_case_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case_ , nsfw_content_detected=snake_case_ )
80
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a_ (unittest.TestCase ): __lowerCAmelCase : Optional[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowerCAmelCase : int = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AudioClassificationPipeline(model=snake_case_ , feature_extractor=snake_case_ ) # test with a raw waveform _lowerCAmelCase : Tuple = np.zeros((3_4_0_0_0,) ) _lowerCAmelCase : int = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase , _lowerCAmelCase : str = examples _lowerCAmelCase : int = audio_classifier(snake_case_ ) # by default a model is initialized with num_labels=2 self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) _lowerCAmelCase : List[str] = audio_classifier(snake_case_ , top_k=1 ) self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) self.run_torchaudio(snake_case_ ) @require_torchaudio def __UpperCamelCase ( self , snake_case_ ): import datasets # test with a local file _lowerCAmelCase : Dict = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : str = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : Dict = audio_classifier(snake_case_ ) self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) @require_torch def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=snake_case_ ) _lowerCAmelCase : Dict = np.ones((8_0_0_0,) ) _lowerCAmelCase : List[str] = audio_classifier(snake_case_ , top_k=4 ) _lowerCAmelCase : Tuple = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] _lowerCAmelCase : Any = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : str = audio_classifier(snake_case_ , top_k=4 ) self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCamelCase ( self ): import datasets _lowerCAmelCase : int = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : Any = pipeline("""audio-classification""" , model=snake_case_ ) _lowerCAmelCase : Optional[int] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Tuple = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : Tuple = audio_classifier(snake_case_ , top_k=4 ) self.assertEqual( nested_simplify(snake_case_ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCamelCase ( self ): pass
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : str = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : List[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : List[Any] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Tuple = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : List[Any] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Dict = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[str] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : int = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
258
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a_ ( _A , _A="shi-labs/oneformer_demo" ) -> Optional[Any]: """simple docstring""" with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: snake_case__ = json.load(_lowerCAmelCase ) snake_case__ = {} snake_case__ = [] snake_case__ = [] for key, info in class_info.items(): snake_case__ = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) snake_case__ = thing_ids snake_case__ = class_names return metadata class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any]=7 , UpperCamelCase: Tuple=3 , UpperCamelCase: Optional[int]=30 , UpperCamelCase: Union[str, Any]=4_00 , UpperCamelCase: Optional[Any]=None , UpperCamelCase: str=True , UpperCamelCase: int=True , UpperCamelCase: List[str]=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=False , UpperCamelCase: Tuple=2_55 , UpperCamelCase: Optional[Any]="shi-labs/oneformer_demo" , UpperCamelCase: Optional[int]="ade20k_panoptic.json" , UpperCamelCase: Optional[int]=10 , ) -> Union[str, Any]: snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = class_info_file snake_case__ = prepare_metadata(snake_case_ , snake_case_ ) snake_case__ = num_text snake_case__ = repo_path # for the post_process_functions snake_case__ = 2 snake_case__ = 10 snake_case__ = 10 snake_case__ = 3 snake_case__ = 4 snake_case__ = num_labels snake_case__ = do_reduce_labels snake_case__ = ignore_index def lowerCAmelCase_ ( self: List[Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: int=False ) -> Dict: if not batched: snake_case__ = image_inputs[0] if isinstance(snake_case_ , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size['shortest_edge'] elif w > h: snake_case__ = self.size['shortest_edge'] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size['shortest_edge'] snake_case__ = self.size['shortest_edge'] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(snake_case_ , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(snake_case_ , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def lowerCAmelCase_ ( self: Tuple ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): _UpperCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _UpperCAmelCase = image_processing_class def lowerCAmelCase_ ( self: List[Any] ) -> str: snake_case__ = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase_ ( self: Dict ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) self.assertTrue(hasattr(snake_case_ , 'ignore_index' ) ) self.assertTrue(hasattr(snake_case_ , 'class_info_file' ) ) self.assertTrue(hasattr(snake_case_ , 'num_text' ) ) self.assertTrue(hasattr(snake_case_ , 'repo_path' ) ) self.assertTrue(hasattr(snake_case_ , 'metadata' ) ) self.assertTrue(hasattr(snake_case_ , 'do_reduce_labels' ) ) def lowerCAmelCase_ ( self: Dict ) -> List[str]: pass def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> List[str]: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: # Initialize image_processor snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: str=False , UpperCamelCase: int=False , UpperCamelCase: Union[str, Any]="np" ) -> Optional[Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target snake_case__ = self.image_processing_tester.num_labels snake_case__ = None snake_case__ = None snake_case__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: snake_case__ = num_labels if is_instance_map: snake_case__ = list(range(snake_case_ ) ) * 2 snake_case__ = dict(enumerate(snake_case_ ) ) snake_case__ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": snake_case__ = [Image.fromarray(snake_case_ ) for annotation in annotations] snake_case__ = image_processor( snake_case_ , ['semantic'] * len(snake_case_ ) , snake_case_ , return_tensors='pt' , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]: pass def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: def common(UpperCamelCase: Dict=False , UpperCamelCase: Optional[Any]=None ): snake_case__ = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) snake_case__ = inputs['mask_labels'] snake_case__ = inputs['class_labels'] snake_case__ = inputs['pixel_values'] snake_case__ = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type='pil' ) common(is_instance_map=snake_case_ , segmentation_type='pil' ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: snake_case__ = np.zeros((20, 50) ) snake_case__ = 1 snake_case__ = 1 snake_case__ = 1 snake_case__ = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) snake_case__ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] snake_case__ = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase_ ( self: int ) -> Union[str, Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) snake_case__ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' import math from collections.abc import Callable def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = xa _UpperCAmelCase : Dict = xa while True: if x_n == x_na or function(_lowerCAmelCase ) == function(_lowerCAmelCase ): raise ZeroDivisionError("float division by zero, could not find root" ) _UpperCAmelCase : Optional[int] = x_na - ( function(_lowerCAmelCase ) / ((function(_lowerCAmelCase ) - function(_lowerCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _UpperCAmelCase : List[Any] = x_na _UpperCAmelCase : List[Any] = x_na def UpperCamelCase_ ( _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return math.pow(_lowerCAmelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
31
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCAmelCase ={ "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
0
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase_ (A__ ): __magic_name__ = '''microsoft/speecht5_tts''' __magic_name__ = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) __magic_name__ = '''text_reader''' __magic_name__ = SpeechTaProcessor __magic_name__ = SpeechTaForTextToSpeech __magic_name__ = SpeechTaHifiGan __magic_name__ = ['''text'''] __magic_name__ = ['''audio'''] def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: if self.post_processor is None: UpperCAmelCase_ : List[Any] = "microsoft/speecht5_hifigan" super().setup() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None ) -> Union[str, Any]: UpperCAmelCase_ : str = self.pre_processor(text=snake_case_ , return_tensors="pt" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ : List[Any] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ : Dict = torch.tensor(embeddings_dataset[7_305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[Any] ) -> Optional[int]: with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int ) -> str: with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( a_: Optional[Any] = "base_exp.txt" ): _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_lowerCAmelCase ), _lowerCAmelCase ) ) ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = list(map(_lowerCAmelCase, line.split("," ) ) ) if x * logaa(_lowerCAmelCase ) > largest: _UpperCAmelCase : Union[str, Any] = x * logaa(_lowerCAmelCase ) _UpperCAmelCase : Any = i + 1 return result if __name__ == "__main__": print(solution())
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
class lowerCamelCase__ : # Public class to implement a graph '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : List[str] = row lowerCAmelCase__ : Dict = col lowerCAmelCase__ : Tuple = graph def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCAmelCase__ : Optional[int] = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCAmelCase__ : Optional[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,snake_case_ ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,snake_case_ ) def lowerCAmelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" lowerCAmelCase__ : Optional[int] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCAmelCase__ : Union[str, Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(snake_case_ ,snake_case_ ,snake_case_ ) count += 1 return count
129
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowercase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: for attribute in key.split(""".""" ): lowercase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowercase : int = value elif weight_type == "weight_g": lowercase : List[str] = value elif weight_type == "weight_v": lowercase : int = value elif weight_type == "bias": lowercase : Union[str, Any] = value elif weight_type == "running_mean": lowercase : Tuple = value elif weight_type == "running_var": lowercase : Union[str, Any] = value elif weight_type == "num_batches_tracked": lowercase : int = value elif weight_type == "inv_freq": lowercase : str = value else: lowercase : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : int = [] lowercase : Dict = fairseq_model.state_dict() lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowercase : Tuple = True else: for key, mapped_key in MAPPING.items(): lowercase : Optional[Any] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase : int = True if "*" in mapped_key: lowercase : Any = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] lowercase : Dict = mapped_key.replace("""*""" , _lowerCAmelCase ) if "pos_bias_u" in name: lowercase : List[str] = None elif "pos_bias_v" in name: lowercase : Tuple = None elif "weight_g" in name: lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: lowercase : Dict = """weight_v""" elif "bias" in name: lowercase : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : List[str] = """weight""" elif "running_mean" in name: lowercase : List[Any] = """running_mean""" elif "inv_freq" in name: lowercase : List[str] = """inv_freq""" elif "running_var" in name: lowercase : str = """running_var""" elif "num_batches_tracked" in name: lowercase : Tuple = """num_batches_tracked""" else: lowercase : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Optional[int] = full_name.split("""conv_layers.""" )[-1] lowercase : int = name.split(""".""" ) lowercase : str = int(items[0] ) lowercase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowercase : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowercase : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) lowercase : Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) lowercase : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True ) -> Any: if config_path is not None: lowercase : Optional[int] = WavaVecaConformerConfig.from_pretrained(_lowerCAmelCase , hidden_act="""swish""" ) else: lowercase : Any = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase : List[str] = """rotary""" if is_finetuned: if dict_path: lowercase : Any = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase : Union[str, Any] = target_dict.pad_index lowercase : List[str] = target_dict.bos_index lowercase : Optional[int] = target_dict.eos_index lowercase : Optional[Any] = len(target_dict.symbols ) lowercase : Union[str, Any] = os.path.join(_lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowercase : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase : Any = 0 lowercase : Optional[int] = 1 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) lowercase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCAmelCase , ) lowercase : Tuple = True if config.feat_extract_norm == """layer""" else False lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) lowercase : Dict = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) lowercase : Any = WavaVecaConformerForCTC(_lowerCAmelCase ) else: lowercase : int = WavaVecaConformerForPreTraining(_lowerCAmelCase ) if is_finetuned: lowercase , lowercase , lowercase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) lowercase : str = fairseq.tasks.setup_task(_lowerCAmelCase ) lowercase , lowercase , lowercase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) lowercase : Dict = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a__ : List[str] = random.Random() def _UpperCamelCase ( __A , __A=1.0 , __A=None , __A=None ) -> Any: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self , a , a=7 , a=4_00 , a=20_00 , a=1 , a=0.0 , a=1_60_00 , a=True , a=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def __a ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __a ( self , a=False , a=False ): def _flatten(a ): return list(itertools.chain(*snake_case_ ) ) if equal_length: UpperCamelCase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs class lowercase_ ( A__ , unittest.TestCase ): __UpperCAmelCase = WavaVecaFeatureExtractor def __a ( self ): UpperCamelCase__ = WavaVecaFeatureExtractionTester(self ) def __a ( self , a ): self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1e-3 ) ) def __a ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCamelCase__ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test batched UpperCamelCase__ = feat_extract(snake_case_ , return_tensors="np" ).input_values UpperCamelCase__ = feat_extract(snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] UpperCamelCase__ = np.asarray(snake_case_ ) UpperCamelCase__ = feat_extract(snake_case_ , return_tensors="np" ).input_values UpperCamelCase__ = feat_extract(snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def __a ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16_00, None] for max_length, padding in zip(snake_case_ , snake_case_ ): UpperCamelCase__ = feat_extract(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors="np" ) UpperCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __a ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = range(8_00 , 14_00 , 2_00 ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16_00, None] for max_length, padding in zip(snake_case_ , snake_case_ ): UpperCamelCase__ = feat_extract(snake_case_ , max_length=snake_case_ , padding=snake_case_ ) UpperCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __a ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ = feat_extract( snake_case_ , truncation=snake_case_ , max_length=10_00 , padding="max_length" , return_tensors="np" ) UpperCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ = feat_extract( snake_case_ , truncation=snake_case_ , max_length=10_00 , padding="longest" , return_tensors="np" ) UpperCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCamelCase__ = feat_extract( snake_case_ , truncation=snake_case_ , max_length=20_00 , padding="longest" , return_tensors="np" ) UpperCamelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def __a ( self ): import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(1_00 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __a ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase__ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained(snake_case_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
80
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a_ (A__ ): __lowerCAmelCase : str = """wavlm""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=3_2_0 , snake_case_=8_0_0 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=8_0 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , **snake_case_ , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = feat_extract_norm _lowerCAmelCase : str = feat_extract_activation _lowerCAmelCase : Dict = list(snake_case_ ) _lowerCAmelCase : Tuple = list(snake_case_ ) _lowerCAmelCase : Optional[int] = list(snake_case_ ) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[int] = num_buckets _lowerCAmelCase : Optional[int] = max_bucket_distance _lowerCAmelCase : List[Any] = num_conv_pos_embeddings _lowerCAmelCase : Any = num_conv_pos_embedding_groups _lowerCAmelCase : Optional[int] = len(self.conv_dim ) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : str = activation_dropout _lowerCAmelCase : Tuple = feat_proj_dropout _lowerCAmelCase : List[Any] = final_dropout _lowerCAmelCase : str = layerdrop _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Tuple = num_ctc_classes _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : int = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum _lowerCAmelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Union[str, Any] = apply_spec_augment _lowerCAmelCase : Optional[int] = mask_time_prob _lowerCAmelCase : Tuple = mask_time_length _lowerCAmelCase : Any = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : int = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : Tuple = num_codevector_groups _lowerCAmelCase : Optional[Any] = contrastive_logits_temperature _lowerCAmelCase : int = num_negatives _lowerCAmelCase : str = codevector_dim _lowerCAmelCase : List[Any] = proj_codevector_dim _lowerCAmelCase : int = diversity_loss_weight # ctc loss _lowerCAmelCase : List[str] = ctc_loss_reduction _lowerCAmelCase : Union[str, Any] = ctc_zero_infinity # adapter _lowerCAmelCase : int = add_adapter _lowerCAmelCase : Dict = adapter_kernel_size _lowerCAmelCase : Union[str, Any] = adapter_stride _lowerCAmelCase : str = num_adapter_layers _lowerCAmelCase : Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : Union[str, Any] = list(snake_case_ ) _lowerCAmelCase : str = list(snake_case_ ) _lowerCAmelCase : Dict = list(snake_case_ ) _lowerCAmelCase : Union[str, Any] = xvector_output_dim @property def __UpperCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
309
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Dict = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['LayoutLMv3FeatureExtractor'] _lowerCamelCase : List[str] = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
def a_ ( _A = 200 ) -> List[Any]: """simple docstring""" snake_case__ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case__ = [0] * (pence + 1) snake_case__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
307
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
from __future__ import annotations def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = len(_lowerCAmelCase ) # We need to create solution object to save path. __lowerCamelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] __lowerCamelCase = run_maze(_lowerCAmelCase , 0 , 0 , _lowerCAmelCase ) if solved: print("""\n""".join(str(_lowerCAmelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def lowerCamelCase__ ( A__ : Any , A__ : Union[str, Any] , A__ : List[Any] , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = len(_lowerCAmelCase ) # Final check point. if i == j == (size - 1): __lowerCamelCase = 1 return True __lowerCamelCase = (not i < 0) and (not j < 0) # Check lower bounds __lowerCamelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCamelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCamelCase = 1 # check for directions if ( run_maze(_lowerCAmelCase , i + 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j + 1 , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , i - 1 , _lowerCAmelCase , _lowerCAmelCase ) or run_maze(_lowerCAmelCase , _lowerCAmelCase , j - 1 , _lowerCAmelCase ) ): return True __lowerCamelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : str = 1 _UpperCAmelCase : int = 1 while repunit: _UpperCAmelCase : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase_ ( _UpperCAmelCase : Tuple = 1_000_000 ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
31
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
'''simple docstring''' import sys def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = len(_lowerCAmelCase ) __lowerCamelCase = [[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] __lowerCamelCase = [[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] for chain_length in range(2 , _lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): __lowerCamelCase = a + chain_length - 1 __lowerCamelCase = sys.maxsize for c in range(_lowerCAmelCase , _lowerCAmelCase ): __lowerCamelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCamelCase = cost __lowerCamelCase = c return matrix, sol def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: if i == j: print('''A''' + str(_lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(_lowerCAmelCase , _lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_lowerCAmelCase , optimal_solution[i][j] + 1 , _lowerCAmelCase ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __lowerCamelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCamelCase = len(_lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCamelCase , __lowerCamelCase = matrix_chain_order(_lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" def snake_case ( A__ ): UpperCAmelCase_ : List[str] = current_set.copy() for row_index, row in enumerate(_lowerCAmelCase ): UpperCAmelCase_ : Dict = row[0] for column_index, column in enumerate(_lowerCAmelCase ): if magnitude == 0: UpperCAmelCase_ : List[str] = column continue UpperCAmelCase_ : Any = column / magnitude # Subtract to cancel term UpperCAmelCase_ : Optional[Any] = current_set[0] UpperCAmelCase_ : List[Any] = [first_row] UpperCAmelCase_ : Optional[Any] = current_set[1::] for row in current_set: UpperCAmelCase_ : Any = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCAmelCase ) continue for column_index in range(len(_lowerCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase_ : Any = final_set[0] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase_ : Union[str, Any] = simplify(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = resultant return final_set def snake_case ( A__ ): if len(_lowerCAmelCase ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) UpperCAmelCase_ : Dict = len(_lowerCAmelCase ) + 1 if any(len(_lowerCAmelCase ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(_lowerCAmelCase ,(int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(_lowerCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase_ : Tuple = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase_ : Any = data_set.copy() UpperCAmelCase_ : Union[str, Any] = [] for row_index, row in enumerate(_lowerCAmelCase ): if 0 not in row: UpperCAmelCase_ : Optional[int] = data_set.pop(_lowerCAmelCase ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 ,_lowerCAmelCase ) UpperCAmelCase_ : Tuple = data_set.copy() UpperCAmelCase_ : Union[str, Any] = simplify(_lowerCAmelCase ) UpperCAmelCase_ : Dict = simplified[::-1] UpperCAmelCase_ : Dict = [] for row in simplified: UpperCAmelCase_ : List[str] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase_ : str = row.copy()[: len(_lowerCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCAmelCase ) == 0: solutions.append(0 ) continue UpperCAmelCase_ : Tuple = temp_row[1::] UpperCAmelCase_ : Optional[int] = temp_row[::-1] for column_index, column in enumerate(_lowerCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCAmelCase ) UpperCAmelCase_ : str = [] for item in solutions: final.append(float(round(_lowerCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
268
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __a = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def __UpperCAmelCase ( a_: List[str] ): for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(_lowerCAmelCase, _lowerCAmelCase ) return k def __UpperCAmelCase ( a_: Dict, a_: List[Any] ): _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(_lowerCAmelCase ) _UpperCAmelCase : Dict = PegasusConfig(**_lowerCAmelCase ) _UpperCAmelCase : Any = PegasusForConditionalGeneration(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = torch_model.model.state_dict() _UpperCAmelCase : List[Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : int = rename_state_dict_key(_lowerCAmelCase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : Any = torch.tensor(_lowerCAmelCase, dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _UpperCAmelCase : str = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Optional[Any] = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Tuple = {k: torch.zeros_like(_lowerCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : int = torch_model.model.load_state_dict(_lowerCAmelCase, strict=_lowerCAmelCase ) _UpperCAmelCase : Any = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def __UpperCAmelCase ( a_: List[str]="./ckpt/aeslc/model.ckpt-32000" ): _UpperCAmelCase : List[str] = tf.train.list_variables(_lowerCAmelCase ) _UpperCAmelCase : int = {} _UpperCAmelCase : Any = ["Adafactor", "global_step"] for name, shape in tqdm(_lowerCAmelCase, desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : Tuple = tf.train.load_variable(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Any = array return tf_weights def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): # save tokenizer first _UpperCAmelCase : Optional[Any] = Path(_lowerCAmelCase ).parent.name _UpperCAmelCase : Optional[Any] = task_specific_params[f"""summarization_{dataset}"""]["max_position_embeddings"] _UpperCAmelCase : Optional[Any] = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=_lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_lowerCAmelCase ) # convert model _UpperCAmelCase : List[str] = get_tf_weights_as_numpy(_lowerCAmelCase ) _UpperCAmelCase : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": _UpperCAmelCase : Union[str, Any] = task_specific_params _UpperCAmelCase : Tuple = convert_pegasus(_lowerCAmelCase, _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(_lowerCAmelCase, Path(_lowerCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') __a = parser.parse_args() if args.save_dir is None: __a = Path(args.tf_ckpt_path).parent.name __a = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=A__) class lowerCamelCase__ ( A__): '''simple docstring''' snake_case_ =field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True}) snake_case_ =Features({"""audio""": Audio()}) snake_case_ =Features({"""labels""": ClassLabel}) snake_case_ ="""audio""" snake_case_ ="""labels""" def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,snake_case_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : Dict = copy.deepcopy(self ) lowerCAmelCase__ : Any = self.label_schema.copy() lowerCAmelCase__ : List[str] = features[self.label_column] lowerCAmelCase__ : Tuple = label_schema return task_template @property def lowerCAmelCase__ (self ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
129
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( A__ , unittest.TestCase ): _a : int= LEDTokenizer _a : int= LEDTokenizerFast _a : Any= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : List[str] = dict(zip(snake_case_ ,range(len(snake_case_ ) ) ) ) lowercase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : int = {"""unk_token""": """<unk>"""} lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : int = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[Any] = tokenizer(snake_case_ ,max_length=len(snake_case_ ) ,padding=snake_case_ ,return_tensors="""pt""" ) self.assertIsInstance(snake_case_ ,snake_case_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) lowercase : Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ ,snake_case_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(snake_case_ ,padding=snake_case_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,snake_case_ ) self.assertIn("""attention_mask""" ,snake_case_ ) self.assertNotIn("""labels""" ,snake_case_ ) self.assertNotIn("""decoder_attention_mask""" ,snake_case_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(text_target=snake_case_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] ,padding=snake_case_ ,truncation=snake_case_ ,return_tensors="""pt""" ) self.assertIsInstance(snake_case_ ,snake_case_ ) self.assertEqual(batch.input_ids.shape ,(2, 5122) ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = ["""A long paragraph for summarization."""] lowercase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(snake_case_ ,return_tensors="""pt""" ) lowercase : Optional[Any] = tokenizer(text_target=snake_case_ ,return_tensors="""pt""" ) lowercase : Optional[Any] = inputs["""input_ids"""] lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[Any] = ["""Summary of the text.""", """Another summary."""] lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase : Optional[Any] = tokenizer(snake_case_ ,padding=snake_case_ ) lowercase : Any = [[0] * len(snake_case_ ) for x in encoded_output["""input_ids"""]] lowercase : Optional[Any] = tokenizer.pad(snake_case_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Any = self.rust_tokenizer_class.from_pretrained(snake_case_ ,**snake_case_ ) lowercase : str = self.tokenizer_class.from_pretrained(snake_case_ ,**snake_case_ ) lowercase : int = """A, <mask> AllenNLP sentence.""" lowercase : Optional[Any] = tokenizer_r.encode_plus(snake_case_ ,add_special_tokens=snake_case_ ,return_token_type_ids=snake_case_ ) lowercase : Dict = tokenizer_p.encode_plus(snake_case_ ,add_special_tokens=snake_case_ ,return_token_type_ids=snake_case_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) lowercase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f"Building PyTorch model from configuration: {config}" ) __a = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
302
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase__ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
302
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : int , *__lowercase : Dict , **__lowercase : List[Any] ): '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
302
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = {} __a = tokenizer(example["""content"""] , truncation=_SCREAMING_SNAKE_CASE )["""input_ids"""] __a = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCamelCase__ = HfArgumentParser(PretokenizationArguments) lowerCamelCase__ = parser.parse_args() if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase__ = time.time() lowerCamelCase__ = load_dataset(args.dataset_name, split="""train""") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCamelCase__ = time.time() lowerCamelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCamelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
302
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""YolosFeatureExtractor"""] lowerCamelCase__ = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __a , __a = emb.weight.shape __a = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __a = emb.weight.data return lin_layer def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict=None ): """simple docstring""" __a = {} for old_key in state_dict.keys(): __a = old_key if "moe_layer.experts." in key: if expert_idx is not None: __a = key.replace("""moe_layer.experts.0""" , f"ffn.experts.expert_{expert_idx}" ) else: __a = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __a = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __a = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __a = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __a = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __a = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __a = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __a = state_dict[old_key] return new_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str = WEIGHTS_NAME ): """simple docstring""" __a = [] __a = 0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) for expert in range(_SCREAMING_SNAKE_CASE ): __a = switch_checkpoint_path + f"-rank-{expert}.pt" if os.path.isfile(_SCREAMING_SNAKE_CASE ): __a = torch.load(_SCREAMING_SNAKE_CASE )["""model"""] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) __a = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin" ) ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block __a = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin" ) ) __a = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) __a = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_SCREAMING_SNAKE_CASE ) == 1: __a = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index __a = {} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): __a = weights_name.replace(""".bin""" , f"-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin" ) __a = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for key in shard: __a = shard_file # Add the metadata __a = {"""total_size""": total_size} __a = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" , encoding="""utf-8""" ) as f: __a = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + """\n""" f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ , lowerCamelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase__ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
302
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {} class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] ='llama' __lowerCamelCase : int =['past_key_values'] def __init__( self : Dict , __lowercase : Tuple=32000 , __lowercase : int=4096 , __lowercase : Optional[int]=11008 , __lowercase : Tuple=32 , __lowercase : Tuple=32 , __lowercase : Tuple=None , __lowercase : int="silu" , __lowercase : Union[str, Any]=2048 , __lowercase : int=0.02 , __lowercase : int=1E-6 , __lowercase : List[str]=True , __lowercase : Optional[int]=0 , __lowercase : str=1 , __lowercase : int=2 , __lowercase : Union[str, Any]=1 , __lowercase : Union[str, Any]=False , __lowercase : Dict=None , **__lowercase : Any , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a = num_attention_heads __a = num_key_value_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = pretraining_tp __a = use_cache __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase , ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"got {self.rope_scaling}" ) __a = self.rope_scaling.get("""type""" , __lowercase ) __a = self.rope_scaling.get("""factor""" , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
302
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
import math import sys import cva import numpy as np def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __a = math.sqrt(_SCREAMING_SNAKE_CASE ) __a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _SCREAMING_SNAKE_CASE ): for j in range(0 , _SCREAMING_SNAKE_CASE ): __a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int , ): """simple docstring""" __a = np.zeros(img.shape ) __a = get_gauss_kernel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __a = get_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = img_s - img_s[kernel_size // 2, kernel_size // 2] __a = vec_gaussian(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.multiply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.multiply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = np.sum(_SCREAMING_SNAKE_CASE ) / np.sum(_SCREAMING_SNAKE_CASE ) __a = val return imga def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" __a = args[1] if args[1:] else """../image_data/lena.jpg""" __a = float(args[2] ) if args[2:] else 1.0 __a = float(args[3] ) if args[3:] else 1.0 if args[4:]: __a = int(args[4] ) __a = kernel_size + abs(kernel_size % 2 - 1 ) else: __a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parse_args(sys.argv) lowerCamelCase__ = cva.imread(filename, 0) cva.imshow("""input image""", img) lowerCamelCase__ = img / 255 lowerCamelCase__ = out.astype("""float32""") lowerCamelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase__ = out * 255 lowerCamelCase__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
302
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCamelCase__ = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ lowerCamelCase__ = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ lowerCamelCase__ = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def UpperCamelCase_ ( self : int ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Any , __lowercase : Any , __lowercase : int = CHRF.CHAR_ORDER , __lowercase : int = CHRF.WORD_ORDER , __lowercase : int = CHRF.BETA , __lowercase : bool = False , __lowercase : bool = False , __lowercase : bool = False , ): '''simple docstring''' __a = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __a = [[refs[i] for refs in references] for i in range(__lowercase )] __a = CHRF(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __a = sb_chrf.corpus_score(__lowercase , __lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
302
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Tuple ='focalnet' def __init__( self : Any , __lowercase : Optional[Any]=224 , __lowercase : Any=4 , __lowercase : List[Any]=3 , __lowercase : Tuple=96 , __lowercase : List[Any]=False , __lowercase : Dict=[192, 384, 768, 768] , __lowercase : Union[str, Any]=[2, 2, 6, 2] , __lowercase : List[Any]=[2, 2, 2, 2] , __lowercase : Optional[int]=[3, 3, 3, 3] , __lowercase : List[str]="gelu" , __lowercase : str=4.0 , __lowercase : Any=0.0 , __lowercase : str=0.1 , __lowercase : str=False , __lowercase : Any=1E-4 , __lowercase : Dict=False , __lowercase : Union[str, Any]=False , __lowercase : Dict=False , __lowercase : List[Any]=0.02 , __lowercase : Dict=1E-5 , __lowercase : List[str]=32 , __lowercase : Tuple=None , __lowercase : str=None , **__lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**__lowercase ) __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = use_conv_embed __a = hidden_sizes __a = depths __a = focal_levels __a = focal_windows __a = hidden_act __a = mlp_ratio __a = hidden_dropout_prob __a = drop_path_rate __a = use_layerscale __a = layerscale_value __a = use_post_layernorm __a = use_post_layernorm_in_modulation __a = normalize_modulator __a = initializer_range __a = layer_norm_eps __a = encoder_stride __a = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
302
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if length <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
302
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = VideoMAEConfig() set_architecture_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "finetuned" not in model_name: __a = False if "finetuned" in model_name: __a = """huggingface/label-files""" if "kinetics" in model_name: __a = 400 __a = """kinetics400-id2label.json""" elif "ssv2" in model_name: __a = 174 __a = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "small" in model_name: __a = 384 __a = 1536 __a = 12 __a = 16 __a = 12 __a = 3 __a = 192 __a = 768 elif "large" in model_name: __a = 1024 __a = 4096 __a = 24 __a = 16 __a = 12 __a = 8 __a = 512 __a = 2048 elif "huge" in model_name: __a = 1280 __a = 5120 __a = 32 __a = 16 __a = 12 __a = 8 __a = 640 __a = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if "encoder." in name: __a = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __a = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __a = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __a = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __a = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __a = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __a = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __a = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __a = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __a = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __a = name.replace("""head""" , """classifier""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("""encoder.""" ): __a = key.replace("""encoder.""" , """""" ) if "qkv" in key: __a = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __a = config.decoder_hidden_size __a = int(key_split[2] ) __a = """decoder.decoder_layers.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = config.hidden_size __a = int(key_split[1] ) __a = """videomae.encoder.layer.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val return orig_state_dict def lowerCAmelCase__ ( ): """simple docstring""" __a = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __a = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = get_videomae_config(_SCREAMING_SNAKE_CASE ) if "finetuned" in model_name: __a = VideoMAEForVideoClassification(_SCREAMING_SNAKE_CASE ) else: __a = VideoMAEForPreTraining(_SCREAMING_SNAKE_CASE ) # download original checkpoint, hosted on Google Drive __a = """pytorch_model.bin""" gdown.cached_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE ) __a = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) if "model" in files: __a = files["""model"""] else: __a = files["""module"""] __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify model on basic input __a = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __a = prepare_video() __a = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) if "finetuned" not in model_name: __a = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __a = torch.load(_SCREAMING_SNAKE_CASE ) __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits __a = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one __a = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": __a = torch.Size([1, 1408, 1536] ) __a = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __a = outputs.loss assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
302
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase__ = float("""nan""") class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = sys.stdout __a = open(__lowercase , """a""" ) def __getattr__( self : str , __lowercase : Union[str, Any] ): '''simple docstring''' return getattr(self.stdout , __lowercase ) def UpperCamelCase_ ( self : int , __lowercase : str ): '''simple docstring''' self.stdout.write(__lowercase ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , __lowercase , 0 , re.M ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str]=80 , _SCREAMING_SNAKE_CASE : Any=False ): """simple docstring""" __a = [] # deal with critical env vars __a = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: __a = os.environ.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) __a = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __a = [] __a = """""" while len(_SCREAMING_SNAKE_CASE ) > 0: current_line += f"{cmd.pop(0 )} " if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_SCREAMING_SNAKE_CASE ) __a = """""" return "\\\n".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own __a = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir __a = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __a = subprocess.run(_SCREAMING_SNAKE_CASE , capture_output=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams __a = variation.replace(""" """ , """-""" ) with open(Path(_SCREAMING_SNAKE_CASE ) / f"log.{prefix}.stdout.txt" , """w""" ) as f: f.write(result.stdout ) with open(Path(_SCREAMING_SNAKE_CASE ) / f"log.{prefix}.stderr.txt" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , """r""" , encoding="""utf-8""" ) as f: __a = json.load(_SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , ): """simple docstring""" __a = [] __a = [] __a = f"{id}: {variation:<{longest_variation_len}}" __a = f"{preamble}: " __a = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_SCREAMING_SNAKE_CASE ) , desc=_SCREAMING_SNAKE_CASE , leave=_SCREAMING_SNAKE_CASE ): __a = process_run_single( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = single_run_metrics[target_metric_key] if not math.isnan(_SCREAMING_SNAKE_CASE ): metrics.append(_SCREAMING_SNAKE_CASE ) results.append(_SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" __a = f"\33[2K\r{outcome}" if len(_SCREAMING_SNAKE_CASE ) > 0: __a = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __a = round(mean_metrics[target_metric_key] , 2 ) __a = f"{outcome} {mean_target}" if len(_SCREAMING_SNAKE_CASE ) > 1: results_str += f" {tuple(round(_SCREAMING_SNAKE_CASE , 2 ) for x in results )}" print(_SCREAMING_SNAKE_CASE ) __a = variation return mean_metrics else: print(_SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase__ ( ): """simple docstring""" __a = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = pd.DataFrame(_SCREAMING_SNAKE_CASE ) __a = """variation""" __a = """diff_%""" __a = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __a = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel __a = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_SCREAMING_SNAKE_CASE ): __a = df.apply( lambda _SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns __a = [variation_key, target_metric_key, diff_key, *report_metric_keys] __a = df.reindex(_SCREAMING_SNAKE_CASE , axis="""columns""" ) # reorder cols # capitalize __a = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible __a = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) __a = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """\n""" ) , axis="""columns""" ) __a = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] print("""\n\n""".join(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( ): """simple docstring""" __a = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , nargs="""+""" , required=_SCREAMING_SNAKE_CASE , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=_SCREAMING_SNAKE_CASE , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=_SCREAMING_SNAKE_CASE , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=_SCREAMING_SNAKE_CASE , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) __a = parser.parse_args() __a = args.output_dir Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) __a = get_base_command(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations __a = [list(map(str.strip , re.split(r"""\|""" , _SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __a = list(map(str.strip , map(""" """.join , itertools.product(*_SCREAMING_SNAKE_CASE ) ) ) ) __a = max(len(_SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys __a = args.report_metric_keys.split() # capture prints into a log file for convenience __a = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) __a = Tee(_SCREAMING_SNAKE_CASE ) print(f"\n*** Running {len(_SCREAMING_SNAKE_CASE )} benchmarks:" ) print(f"Base command: {' '.join(_SCREAMING_SNAKE_CASE )}" ) __a = """variation""" __a = [] for id, variation in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc="""Total completion: """ , leave=_SCREAMING_SNAKE_CASE ) ): __a = base_cmd + variation.split() results.append( process_run( id + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.repeat_times , _SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(_SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.base_variation , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
302
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Tuple=13 , __lowercase : int=7 , __lowercase : Any=True , __lowercase : Any=True , __lowercase : List[Any]=False , __lowercase : Tuple=True , __lowercase : List[str]=99 , __lowercase : Optional[int]=32 , __lowercase : List[str]=5 , __lowercase : Optional[int]=4 , __lowercase : List[str]=37 , __lowercase : str="gelu" , __lowercase : Any=0.1 , __lowercase : int=0.1 , __lowercase : Any=512 , __lowercase : Optional[int]=16 , __lowercase : Optional[int]=2 , __lowercase : Dict=0.02 , __lowercase : Tuple=3 , __lowercase : Optional[Any]=4 , __lowercase : Dict=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , use_stable_embedding=__lowercase , ) def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[str] , __lowercase : Dict , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Any ): '''simple docstring''' __a = OpenLlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase ) __a = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Dict , __lowercase : Tuple , __lowercase : int , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Optional[int] , ): '''simple docstring''' __a = True __a = OpenLlamaModel(__lowercase ) model.to(__lowercase ) model.eval() __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) __a = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[Any] , ): '''simple docstring''' __a = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : int , __lowercase : Dict , __lowercase : Dict , ): '''simple docstring''' __a = True __a = True __a = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] __a = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : List[str] =(OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : Tuple =( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Tuple =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = OpenLlamaModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """single_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """multi_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__lowercase ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size ) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = OpenLlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() __a = original_model(__lowercase ).last_hidden_state __a = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = {"""type""": scaling_type, """factor""": 10.0} __a = OpenLlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() __a = scaled_model(__lowercase ).last_hidden_state __a = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) )
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase__ ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase__ ( ): """simple docstring""" __a = """mock-s3-bucket""" __a = f"s3://{mock_bucket}" __a = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path.startswith("""s3://""" ) is False __a = """./local/path""" __a = extract_path_from_uri(_SCREAMING_SNAKE_CASE ) assert dataset_path == new_dataset_path def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is True __a = fsspec.filesystem("""file""" ) __a = is_remote_filesystem(_SCREAMING_SNAKE_CASE ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __a = input_paths[compression_fs_class.protocol] if input_path is None: __a = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_SCREAMING_SNAKE_CASE ) __a = fsspec.filesystem(compression_fs_class.protocol , fo=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = os.path.basename(_SCREAMING_SNAKE_CASE ) __a = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f, open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" __a = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __a = compressed_file_paths[protocol] __a = """dataset.jsonl""" __a = f"{protocol}://{member_file_path}::{compressed_file_path}" __a , *__a = fsspec.get_fs_token_paths(_SCREAMING_SNAKE_CASE ) assert fs.isfile(_SCREAMING_SNAKE_CASE ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = hf_api.dataset_info(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) __a = HfFileSystem(repo_info=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_SCREAMING_SNAKE_CASE ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase__ ( ): """simple docstring""" __a = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , clobber=_SCREAMING_SNAKE_CASE ) with pytest.warns(_SCREAMING_SNAKE_CASE ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_SCREAMING_SNAKE_CASE ) == 1 assert ( str(warning_info[0].message ) == f"A filesystem protocol was already set for {protocol} and will be overwritten." )
302
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCamelCase__ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[str] ='sequence-classification' def __init__( self : int , __lowercase : List[str] ): '''simple docstring''' if type(__lowercase ) == dict: __a = Namespace(**__lowercase ) __a = glue_output_modes[hparams.task] __a = glue_tasks_num_labels[hparams.task] super().__init__(__lowercase , __lowercase , self.mode ) def UpperCamelCase_ ( self : int , **__lowercase : str ): '''simple docstring''' return self.model(**__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict ): '''simple docstring''' __a = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __a = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __a = self(**__lowercase ) __a = outputs[0] __a = self.trainer.lr_schedulers[0]["""scheduler"""] __a = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = self.hparams __a = processors[args.task]() __a = processor.get_labels() for mode in ["train", "dev"]: __a = self._feature_file(__lowercase ) if os.path.exists(__lowercase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowercase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __a = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) __a = convert_examples_to_features( __lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __lowercase ) torch.save(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str , __lowercase : int , __lowercase : bool = False ): '''simple docstring''' __a = """dev""" if mode == """test""" else mode __a = self._feature_file(__lowercase ) logger.info("""Loading features from cached file %s""" , __lowercase ) __a = torch.load(__lowercase ) __a = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __a = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __a = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase ) , batch_size=__lowercase , shuffle=__lowercase , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Any , __lowercase : Dict ): '''simple docstring''' __a = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __a = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __a = self(**__lowercase ) __a , __a = outputs[:2] __a = logits.detach().cpu().numpy() __a = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase_ ( self : List[Any] , __lowercase : int ): '''simple docstring''' __a = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() __a = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __a = np.argmax(__lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": __a = np.squeeze(__lowercase ) __a = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __a = [[] for _ in range(out_label_ids.shape[0] )] __a = [[] for _ in range(out_label_ids.shape[0] )] __a = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __lowercase , __lowercase )} __a = dict(results.items() ) __a = results return ret, preds_list, out_label_list def UpperCamelCase_ ( self : int , __lowercase : list ): '''simple docstring''' __a , __a , __a = self._eval_end(__lowercase ) __a = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase_ ( self : Any , __lowercase : List[str] ): '''simple docstring''' __a , __a , __a = self._eval_end(__lowercase ) __a = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase_ ( __lowercase : List[str] , __lowercase : Dict ): '''simple docstring''' BaseTransformer.add_model_specific_args(__lowercase , __lowercase ) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__lowercase , required=__lowercase , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowercase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def lowerCAmelCase__ ( ): """simple docstring""" __a = argparse.ArgumentParser() add_generic_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) __a = GLUETransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) __a = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __a = os.path.join( """./results""" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) __a = GLUETransformer(_SCREAMING_SNAKE_CASE ) __a = generic_train(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __a = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_SCREAMING_SNAKE_CASE ) ) __a = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
302
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE : __lowerCamelCase : Union[str, Any] =XGLMConfig __lowerCamelCase : str ={} __lowerCamelCase : Any ='gelu' def __init__( self : List[str] , __lowercase : List[Any] , __lowercase : Optional[Any]=14 , __lowercase : Tuple=7 , __lowercase : Union[str, Any]=True , __lowercase : Tuple=True , __lowercase : Union[str, Any]=True , __lowercase : List[str]=99 , __lowercase : int=32 , __lowercase : Union[str, Any]=2 , __lowercase : List[Any]=4 , __lowercase : Optional[Any]=37 , __lowercase : List[Any]="gelu" , __lowercase : Any=0.1 , __lowercase : List[Any]=0.1 , __lowercase : str=512 , __lowercase : str=0.02 , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_labels __a = vocab_size __a = d_model __a = num_hidden_layers __a = num_attention_heads __a = ffn_dim __a = activation_function __a = activation_dropout __a = attention_dropout __a = max_position_embeddings __a = initializer_range __a = None __a = 0 __a = 2 __a = 1 def UpperCamelCase_ ( self : Any ): '''simple docstring''' return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = self.get_config() __a = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__lowercase , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCamelCase : Union[str, Any] =(TFXGLMForCausalLM,) if is_tf_available() else () __lowerCamelCase : Union[str, Any] =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCamelCase : int =False __lowerCamelCase : Any =False __lowerCamelCase : Tuple =False def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = TFXGLMModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , n_embd=37 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFXGLMModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str , __lowercase : int=True ): '''simple docstring''' __a = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __a = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __a = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __a = model.generate(__lowercase , do_sample=__lowercase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __lowercase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __a = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) __a = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) __a = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): __a = model.generate(__lowercase , do_sample=__lowercase , seed=[7, 0] ) __a = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowercase ) __a = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __a = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __a = """left""" # use different length sentences to test batching __a = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] __a = tokenizer(__lowercase , return_tensors="""tf""" , padding=__lowercase ) __a = inputs["""input_ids"""] __a = model.generate(input_ids=__lowercase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) __a = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __a = model.generate(input_ids=__lowercase , max_new_tokens=12 ) __a = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __a = model.generate(input_ids=__lowercase , max_new_tokens=12 ) __a = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) __a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowercase ) __a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowercase ) __a = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , [non_padded_sentence, padded_sentence] )
302
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Union[str, Any] , *__lowercase : Union[str, Any] , **__lowercase : str ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) requires_backends(self , """vision""" ) self.check_model_type(__lowercase ) def __call__( self : Optional[int] , __lowercase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowercase : Union[str, Any] ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , **__lowercase : List[Any] ): '''simple docstring''' return {}, {}, {} def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[int] ): '''simple docstring''' __a = load_image(__lowercase ) __a = image.size __a = self.image_processor(images=__lowercase , return_tensors=self.framework ) return model_inputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.model(**__lowercase ) return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : Optional[int] ): '''simple docstring''' __a = model_outputs.predicted_depth __a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__lowercase ) __a = prediction.squeeze().cpu().numpy() __a = (output * 255 / np.max(__lowercase )).astype("""uint8""" ) __a = Image.fromarray(__lowercase ) __a = {} __a = predicted_depth __a = depth return output_dict
302
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __a = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) __a = """The dog is cute and lives in the garden house""" __a = jnp.array([tokenizer.encode(__lowercase )] ) __a = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __a = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __a = model(__lowercase )["""last_hidden_state"""] self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowercase , atol=1E-3 ) )
302
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
1