code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' snake_case_ = "gpt_neox" def __init__( self : int ,A : List[str]=5_04_32 ,A : int=61_44 ,A : str=44 ,A : Union[str, Any]=64 ,A : Optional[Any]=2_45_76 ,A : int="gelu" ,A : List[Any]=0.25 ,A : Dict=1_00_00 ,A : str=0.0 ,A : Dict=0.0 ,A : Optional[int]=0.1 ,A : str=20_48 ,A : Union[str, Any]=0.02 ,A : str=1E-5 ,A : Optional[Any]=True ,A : str=0 ,A : int=2 ,A : List[Any]=False ,A : Optional[int]=True ,A : List[Any]=None ,**A : Optional[int] ,): super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = max_position_embeddings __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = rotary_pct __A = rotary_emb_base __A = attention_dropout __A = hidden_dropout __A = classifier_dropout __A = initializer_range __A = layer_norm_eps __A = use_cache __A = tie_word_embeddings __A = use_parallel_residual __A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def UpperCamelCase_ ( self : Dict ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) __A = self.rope_scaling.get("type" ,A ) __A = self.rope_scaling.get("factor" ,A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(A ,A ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") lowercase__ = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowercase__ = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE ): for patt, repl in iter(_lowerCAmelCase ): lowercase__ = name.replace(_lowerCAmelCase , _lowerCAmelCase ) return f'bert/{name}' def create_tf_var(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=_lowerCAmelCase , shape=tensor.shape , name=_lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(_lowerCAmelCase ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=_lowerCAmelCase , name=_lowerCAmelCase , session=_lowerCAmelCase ) tf.keras.backend.set_value(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ = session.run(_lowerCAmelCase ) print(f'Successfully created {tf_name}: {np.allclose(_lowerCAmelCase , _lowerCAmelCase )}' ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _a ( SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(_lowerCAmelCase ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
110
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCAmelCase__ : List[str] = False try: UpperCAmelCase__ : List[Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = [] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : int = choices SCREAMING_SNAKE_CASE__ : Dict = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ : Optional[int] = "*" else: SCREAMING_SNAKE_CASE__ : Tuple = "➔ " def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "" ) -> Union[str, Any]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , SCREAMING_SNAKE_CASE__ ) else: forceWrite(self.choices[index] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(SCREAMING_SNAKE_CASE__ ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(SCREAMING_SNAKE_CASE__ ) move_cursor(SCREAMING_SNAKE_CASE__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(SCREAMING_SNAKE_CASE__ )] for number in range(10 )] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , SCREAMING_SNAKE_CASE__ ) else: return else: return def __magic_name__ (self , SCREAMING_SNAKE_CASE__ = 0 ) -> List[str]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(SCREAMING_SNAKE_CASE__ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ : str = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ : Dict = default_choice else: SCREAMING_SNAKE_CASE__ : Tuple = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(SCREAMING_SNAKE_CASE__ , """\n""" ) return choice
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __snake_case ( lowerCamelCase__ ): def __init__( self , lowercase) -> Optional[Any]: '''simple docstring''' a__: str = data def __iter__( self) -> Optional[Any]: '''simple docstring''' for element in self.data: yield element def __a ( _SCREAMING_SNAKE_CASE=True ) ->Optional[Any]: a__: Union[str, Any] = Accelerator(even_batches=_lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->Optional[int]: if iterable: a__: Tuple = DummyIterableDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) else: a__: List[str] = TensorDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) a__: Optional[int] = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase ) a__: List[Any] = accelerator.prepare(_lowerCAmelCase ) return dl def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->Optional[Any]: a__: int = create_dataloader(accelerator=_lowerCAmelCase , dataset_size=_lowerCAmelCase , batch_size=_lowerCAmelCase ) a__: str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __a ( ) ->Tuple: a__: int = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __a ( ) ->Optional[int]: a__: Optional[Any] = create_accelerator(even_batches=_lowerCAmelCase ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __a ( ) ->Optional[Any]: a__: Union[str, Any] = create_accelerator(even_batches=_lowerCAmelCase ) a__: Optional[Any] = torch.nn.Linear(1 , 1 ) a__: int = accelerator.prepare(_lowerCAmelCase ) a__: Tuple = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) a__: List[str] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCAmelCase ): a__: Optional[Any] = ddp_model(batch[0].float() ) a__: Any = output.sum() loss.backward() batch_idxs.append(_lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __a ( _SCREAMING_SNAKE_CASE ) ->Any: with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def __a ( ) ->List[Any]: a__: Any = True a__: List[str] = False a__: Optional[int] = create_accelerator(even_batches=_lowerCAmelCase ) a__: List[Any] = torch.nn.Linear(1 , 1 ) a__: Any = accelerator.prepare(_lowerCAmelCase ) a__: Optional[Any] = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) a__: Dict = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): a__: int = train_dl.batch_sampler.even_batches a__: Any = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __a ( ) ->str: a__: List[Any] = True a__: Dict = False a__: Union[str, Any] = create_accelerator(even_batches=_lowerCAmelCase ) a__: str = torch.nn.Linear(1 , 1 ) a__: List[str] = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) a__: Union[str, Any] = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): a__: Tuple = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __a ( ) ->Union[str, Any]: a__: Union[str, Any] = create_accelerator() a__: List[Any] = torch.nn.Linear(1 , 1 ) a__: Dict = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def __a ( ) ->Tuple: a__: Dict = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) a__: Any = accelerator.state.distributed_type a__: Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCAmelCase ) a__: Dict = original_state if __name__ == "__main__": main()
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = """visual_bert""" def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=512 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = visual_embedding_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = bypass_transformer SCREAMING_SNAKE_CASE = special_visual_initialize
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _a ( ) -> Dict: """simple docstring""" __lowerCAmelCase: Union[str, Any] = torch.nn.Linear(2 , 4 ) __lowerCAmelCase: int = torch.optim.AdamW(model.parameters() , lr=1.0 ) __lowerCAmelCase: Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_lowerCAmelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) __lowerCAmelCase: Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __lowerCAmelCase: Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _a ( SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCAmelCase ) class A_ ( lowerCamelCase__ ): @require_cuda def UpperCAmelCase ( self : str ) -> int: __lowerCAmelCase: Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = Accelerator(cpu=UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: __lowerCAmelCase: Optional[Any] = Accelerator() __lowerCAmelCase: Optional[Any] = GradientState() assert state.num_steps == 1 __lowerCAmelCase: Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True __lowerCAmelCase: Any = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Any = Accelerator() __lowerCAmelCase: Union[str, Any] = create_components() ( __lowerCAmelCase ): Tuple = accelerator.prepare(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: __lowerCAmelCase: List[str] = Accelerator() __lowerCAmelCase: Optional[int] = create_components() accelerator.prepare(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): pass with patch('torch.cuda.set_device' , UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): __lowerCAmelCase: Union[str, Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: Any = Accelerator() __lowerCAmelCase: Dict = create_components() accelerator.prepare(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Dict = get_signature(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase ) # make sure random weights don't match load_random_weights(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) < 1E-3 ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase: Dict = Accelerator() __lowerCAmelCase: Optional[int] = create_components() accelerator.prepare(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = get_signature(UpperCAmelCase ) # saving hook def save_config(UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any ): __lowerCAmelCase: Dict = {"class_name": models[0].__class__.__name__} with open(os.path.join(UpperCAmelCase , 'data.json' ) , 'w' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) # loading hook def load_config(UpperCAmelCase : str , UpperCAmelCase : List[Any] ): with open(os.path.join(UpperCAmelCase , 'data.json' ) , 'r' ) as f: __lowerCAmelCase: Optional[int] = json.load(UpperCAmelCase ) __lowerCAmelCase: Dict = config["class_name"] __lowerCAmelCase: List[Any] = accelerator.register_save_state_pre_hook(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = accelerator.register_load_state_pre_hook(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCAmelCase: List[Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCAmelCase: List[Any] = "random" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase ( self : int ) -> str: __lowerCAmelCase: Optional[Any] = Accelerator() __lowerCAmelCase: List[str] = create_components() __lowerCAmelCase: Union[str, Any] = None # This should work __lowerCAmelCase: int = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = Accelerator() __lowerCAmelCase: Optional[int] = create_components() __lowerCAmelCase: str = [1, 2, 3] # This should work __lowerCAmelCase: Dict = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase , '_is_accelerate_prepared' , UpperCAmelCase ) , UpperCAmelCase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def UpperCAmelCase ( self : Any ) -> List[Any]: from transformers import AutoModelForCausalLM __lowerCAmelCase: Any = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase , device_map={'': 0} , ) __lowerCAmelCase: Dict = Accelerator() # This should work __lowerCAmelCase: Optional[Any] = accelerator.prepare(UpperCAmelCase ) @slow @require_bnb def UpperCAmelCase ( self : str ) -> Any: from transformers import AutoModelForCausalLM __lowerCAmelCase: Optional[int] = Accelerator() with init_empty_weights(): __lowerCAmelCase: Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __lowerCAmelCase: Any = infer_auto_device_map(UpperCAmelCase ) __lowerCAmelCase: Dict = "cpu" __lowerCAmelCase: Any = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=UpperCAmelCase , load_in_abit=UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=UpperCAmelCase ) # This should not work and get value error with self.assertRaises(UpperCAmelCase ): __lowerCAmelCase: Tuple = accelerator.prepare(UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase ( self : Dict ) -> Any: from transformers import AutoModelForCausalLM __lowerCAmelCase: Tuple = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): __lowerCAmelCase: Dict = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __lowerCAmelCase: int = infer_auto_device_map(UpperCAmelCase ) __lowerCAmelCase: Tuple = 1 __lowerCAmelCase: int = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase , device_map=UpperCAmelCase , ) __lowerCAmelCase: Dict = Accelerator() # This should not work and get value error with self.assertRaises(UpperCAmelCase ): __lowerCAmelCase: Any = accelerator.prepare(UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase ( self : List[str] ) -> List[Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): __lowerCAmelCase: str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) __lowerCAmelCase: Optional[Any] = infer_auto_device_map(UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = 1 __lowerCAmelCase: Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase , device_map=UpperCAmelCase , ) __lowerCAmelCase: int = Accelerator() # This should work __lowerCAmelCase: List[Any] = accelerator.prepare(UpperCAmelCase ) @require_cuda def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: int = torch.nn.Linear(1_0 , 1_0 ) __lowerCAmelCase: Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) __lowerCAmelCase: Optional[Any] = Accelerator(cpu=UpperCAmelCase ) __lowerCAmelCase: str = accelerator.prepare(UpperCAmelCase )
322
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
'''simple docstring''' from itertools import count def lowercase_ ( lowerCAmelCase__ : int = 50 ): """simple docstring""" __UpperCAmelCase : Optional[int] = [1] * min_block_length for n in count(_lowerCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_lowerCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F'{solution() = }')
254
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
def UpperCamelCase (lowercase_: int ) -> list: A__ : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: A__ : Dict = ValueError("""a should be a positive number""" ) raise my_error A__ : Union[str, Any] = [1] A__ : str = (0, 0, 0) A__ : Dict = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": A_ : List[str] = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') A_ : List[Any] = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
192
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : List[Any] = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Tuple = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
'''simple docstring''' from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = point_y / 4 / point_x lowerCAmelCase__ : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : Tuple = outgoing_gradient**2 + 4 lowerCAmelCase__ : int = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : int = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : str = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : Tuple = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus lowerCAmelCase__ : List[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1.4 , UpperCamelCase = -9.6 ): """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ : Optional[Any] = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from __future__ import annotations import os from typing import Any import requests a__ : Optional[int] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user a__ : int = BASE_URL + '''/user''' # https://github.com/settings/tokens a__ : str = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = { "Authorization": F"""token {auth_token}""", "Accept": "application/vnd.github.v3+json", } return requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
313
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
SCREAMING_SNAKE_CASE :Optional[Any] = 6_5521 def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 1 __A = 0 for plain_chr in plain_text: __A = (a + ord(_lowerCAmelCase )) % MOD_ADLER __A = (b + a) % MOD_ADLER return (b << 1_6) | a
15
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _a ( unittest.TestCase ): def __init__( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=13 , UpperCamelCase_: int=7 , UpperCamelCase_: int=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=37 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Tuple=16 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: List[Any]=4 , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _a ( lowerCamelCase__ , unittest.TestCase ): _lowercase : str = True _lowercase : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCamelCase_ ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } UpperCAmelCase__ : str = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } UpperCAmelCase__ : List[Any] = { '''ctrl''': 2_5_6, } UpperCAmelCase__ : Optional[Any] = { '''Pregnancy''': 1_6_8_6_2_9, '''Christianity''': 7_6_7_5, '''Explain''': 1_0_6_4_2_3, '''Fitness''': 6_3_4_4_0, '''Saving''': 6_3_1_6_3, '''Ask''': 2_7_1_7_1, '''Ass''': 9_5_9_8_5, '''Joke''': 1_6_3_5_0_9, '''Questions''': 4_5_6_2_2, '''Thoughts''': 4_9_6_0_5, '''Retail''': 5_2_3_4_2, '''Feminism''': 1_6_4_3_3_8, '''Writing''': 1_1_9_9_2, '''Atheism''': 1_9_2_2_6_3, '''Netflix''': 4_8_6_1_6, '''Computing''': 3_9_6_3_9, '''Opinion''': 4_3_2_1_3, '''Alone''': 4_4_9_6_7, '''Funny''': 5_8_9_1_7, '''Gaming''': 4_0_3_5_8, '''Human''': 4_0_8_8, '''India''': 1_3_3_1, '''Joker''': 7_7_1_3_8, '''Diet''': 3_6_2_0_6, '''Legal''': 1_1_8_5_9, '''Norman''': 4_9_3_9, '''Tip''': 7_2_6_8_9, '''Weight''': 5_2_3_4_3, '''Movies''': 4_6_2_7_3, '''Running''': 2_3_4_2_5, '''Science''': 2_0_9_0, '''Horror''': 3_7_7_9_3, '''Confession''': 6_0_5_7_2, '''Finance''': 1_2_2_5_0, '''Politics''': 1_6_3_6_0, '''Scary''': 1_9_1_9_8_5, '''Support''': 1_2_6_5_4, '''Technologies''': 3_2_5_1_6, '''Teenage''': 6_6_1_6_0, '''Event''': 3_2_7_6_9, '''Learned''': 6_7_4_6_0, '''Notion''': 1_8_2_7_7_0, '''Wikipedia''': 3_7_5_8_3, '''Books''': 6_6_6_5, '''Extract''': 7_6_0_5_0, '''Confessions''': 1_0_2_7_0_1, '''Conspiracy''': 7_5_9_3_2, '''Links''': 6_3_6_7_4, '''Narcissus''': 1_5_0_4_2_5, '''Relationship''': 5_4_7_6_6, '''Relationships''': 1_3_4_7_9_6, '''Reviews''': 4_1_6_7_1, '''News''': 4_2_5_6, '''Translation''': 2_6_8_2_0, '''multilingual''': 1_2_8_4_0_6, } def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = set() SCREAMING_SNAKE_CASE__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Tuple = char SCREAMING_SNAKE_CASE__ : List[str] = set(_lowerCAmelCase ) return pairs class lowerCAmelCase_ (lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = CONTROL_CODES def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<unk>" , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Any = json.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as merges_handle: SCREAMING_SNAKE_CASE__ : Tuple = merges_handle.read().split("""\n""" )[1:-1] SCREAMING_SNAKE_CASE__ : Tuple = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ : int = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = {} @property def __magic_name__ (self ) -> int: """simple docstring""" return len(self.encoder ) def __magic_name__ (self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Optional[Any] = tuple(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) SCREAMING_SNAKE_CASE__ : Dict = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ : Tuple = bigram SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : List[str] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = tuple(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any = get_pairs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = "@@ ".join(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = word[:-4] SCREAMING_SNAKE_CASE__ : List[str] = word return word def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Tuple = re.findall(r"""\S+\n?""" , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(""" """ ) ) ) return split_tokens def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = " ".join(SCREAMING_SNAKE_CASE__ ).replace("""@@ """ , """""" ).strip() return out_string def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> int: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + """\n""" ) SCREAMING_SNAKE_CASE__ : List[str] = 0 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
25
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: Dict = [0] * len(_lowerCAmelCase ) a__: str = [] a__: Dict = [1] * len(_lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: a__: Any = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: a__: Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) print(max(_lowerCAmelCase ) ) # Adjacency list of Graph lowercase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple: if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any]="shi-labs/oneformer_demo" ) -> int: """simple docstring""" with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: __lowerCAmelCase: Optional[int] = json.load(_lowerCAmelCase ) __lowerCAmelCase: Union[str, Any] = {} __lowerCAmelCase: Tuple = [] __lowerCAmelCase: Optional[Any] = [] for key, info in class_info.items(): __lowerCAmelCase: Tuple = info["name"] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase: Optional[Any] = thing_ids __lowerCAmelCase: int = class_names return metadata class A_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int=7 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Union[str, Any]=3_0 , UpperCAmelCase : Tuple=4_0_0 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=1_0 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=2_5_5 , UpperCAmelCase : Optional[Any]="shi-labs/oneformer_demo" , UpperCAmelCase : Optional[Any]="ade20k_panoptic.json" , UpperCAmelCase : Optional[int]=1_0 , ) -> Tuple: __lowerCAmelCase: Tuple = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[int] = num_channels __lowerCAmelCase: Tuple = min_resolution __lowerCAmelCase: List[Any] = max_resolution __lowerCAmelCase: Union[str, Any] = do_resize __lowerCAmelCase: Any = {"shortest_edge": 3_2, "longest_edge": 1_3_3_3} if size is None else size __lowerCAmelCase: Tuple = do_normalize __lowerCAmelCase: List[str] = image_mean __lowerCAmelCase: List[Any] = image_std __lowerCAmelCase: Union[str, Any] = class_info_file __lowerCAmelCase: List[Any] = prepare_metadata(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = num_text __lowerCAmelCase: str = repo_path # for the post_process_functions __lowerCAmelCase: Any = 2 __lowerCAmelCase: int = 1_0 __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Tuple = 3 __lowerCAmelCase: Tuple = 4 __lowerCAmelCase: str = num_labels __lowerCAmelCase: int = do_reduce_labels __lowerCAmelCase: List[Any] = ignore_index def UpperCAmelCase ( self : Optional[Any] ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any=False ) -> List[Any]: if not batched: __lowerCAmelCase: List[str] = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): __lowerCAmelCase: Dict = image.size else: __lowerCAmelCase: Tuple = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase: str = int(self.size['shortest_edge'] * h / w ) __lowerCAmelCase: Any = self.size["shortest_edge"] elif w > h: __lowerCAmelCase: Optional[int] = self.size["shortest_edge"] __lowerCAmelCase: List[str] = int(self.size['shortest_edge'] * w / h ) else: __lowerCAmelCase: List[str] = self.size["shortest_edge"] __lowerCAmelCase: Optional[Any] = self.size["shortest_edge"] else: __lowerCAmelCase: Tuple = [] for image in image_inputs: __lowerCAmelCase: Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase: Tuple = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] __lowerCAmelCase: Union[str, Any] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width def UpperCAmelCase ( self : Tuple ) -> List[Any]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class A_ ( lowerCamelCase__ , unittest.TestCase ): _lowercase : Dict = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowercase : List[Any] = image_processing_class def UpperCAmelCase ( self : int ) -> int: __lowerCAmelCase: Union[str, Any] = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase ( self : List[str] ) -> Tuple: return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_reduce_labels' ) ) def UpperCAmelCase ( self : str ) -> List[Any]: pass def UpperCAmelCase ( self : int ) -> List[Any]: __lowerCAmelCase: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase: Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase: str = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCAmelCase: str = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase: Optional[Any] = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) __lowerCAmelCase: List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase: List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase: List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCAmelCase: List[str] = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase: int = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase: List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase: Any = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowerCAmelCase: Tuple = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase: Tuple = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) __lowerCAmelCase: Any = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Dict=False , UpperCAmelCase : str=False , UpperCAmelCase : Dict="np" ) -> str: __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase: Tuple = self.image_processing_tester.num_labels __lowerCAmelCase: str = None __lowerCAmelCase: Tuple = None __lowerCAmelCase: Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) if with_segmentation_maps: __lowerCAmelCase: List[str] = num_labels if is_instance_map: __lowerCAmelCase: List[str] = list(range(UpperCAmelCase ) ) * 2 __lowerCAmelCase: int = dict(enumerate(UpperCAmelCase ) ) __lowerCAmelCase: List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase: int = [Image.fromarray(UpperCAmelCase ) for annotation in annotations] __lowerCAmelCase: List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCAmelCase , pad_and_return_pixel_mask=UpperCAmelCase , ) return inputs def UpperCAmelCase ( self : Any ) -> List[str]: pass def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: def common(UpperCAmelCase : Dict=False , UpperCAmelCase : Optional[int]=None ): __lowerCAmelCase: Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase , is_instance_map=UpperCAmelCase , segmentation_type=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = inputs["mask_labels"] __lowerCAmelCase: List[Any] = inputs["class_labels"] __lowerCAmelCase: Optional[Any] = inputs["pixel_values"] __lowerCAmelCase: int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase: Any = np.zeros((2_0, 5_0) ) __lowerCAmelCase: List[str] = 1 __lowerCAmelCase: int = 1 __lowerCAmelCase: Optional[Any] = 1 __lowerCAmelCase: Any = binary_mask_to_rle(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: __lowerCAmelCase: Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCAmelCase: Any = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase: int = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase: Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase: List[Any] = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase , target_sizes=UpperCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCAmelCase: str = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase: Optional[Any] = image_processor.post_process_instance_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowerCAmelCase: List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase: Optional[Any] = image_processor.post_process_panoptic_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
322
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _UpperCamelCase = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(lowerCamelCase__ ) class _A ( lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : str = "rag" _SCREAMING_SNAKE_CASE : List[Any] = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=" / " , __UpperCAmelCase=" // " , __UpperCAmelCase=5 , __UpperCAmelCase=300 , __UpperCAmelCase=768 , __UpperCAmelCase=8 , __UpperCAmelCase="wiki_dpr" , __UpperCAmelCase="train" , __UpperCAmelCase="compressed" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Any: '''simple docstring''' super().__init__( bos_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , prefix=__UpperCAmelCase , vocab_size=__UpperCAmelCase , **__UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCAmelCase : Union[str, Any] = kwargs.pop("""question_encoder""" ) __UpperCAmelCase : Optional[int] = question_encoder_config.pop("""model_type""" ) __UpperCAmelCase : Tuple = kwargs.pop("""generator""" ) __UpperCAmelCase : Dict = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase : Tuple = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) __UpperCAmelCase : Dict = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) __UpperCAmelCase : List[Any] = reduce_loss __UpperCAmelCase : List[str] = label_smoothing __UpperCAmelCase : List[Any] = exclude_bos_score __UpperCAmelCase : Tuple = do_marginalize __UpperCAmelCase : str = title_sep __UpperCAmelCase : Tuple = doc_sep __UpperCAmelCase : str = n_docs __UpperCAmelCase : int = max_combined_length __UpperCAmelCase : List[str] = dataset __UpperCAmelCase : Any = dataset_split __UpperCAmelCase : List[str] = index_name __UpperCAmelCase : Any = retrieval_vector_size __UpperCAmelCase : Union[str, Any] = retrieval_batch_size __UpperCAmelCase : Dict = passages_path __UpperCAmelCase : Optional[int] = index_path __UpperCAmelCase : Union[str, Any] = use_dummy_dataset __UpperCAmelCase : Union[str, Any] = output_retrieved __UpperCAmelCase : Optional[Any] = do_deduplication __UpperCAmelCase : List[Any] = use_cache if self.forced_eos_token_id is None: __UpperCAmelCase : Any = getattr(self.generator , """forced_eos_token_id""" , __UpperCAmelCase ) @classmethod def __A ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : int = self.question_encoder.to_dict() __UpperCAmelCase : Optional[Any] = self.generator.to_dict() __UpperCAmelCase : str = self.__class__.model_type return output
254
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _a (lowerCamelCase__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = 42 class _a (lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCAmelCase__: List[str] = True @register_to_config def __init__( self , A__ = 3 , A__ = 3 , A__ = ("DownEncoderBlock2D",) , A__ = ("UpDecoderBlock2D",) , A__ = (64,) , A__ = 1 , A__ = "silu" , A__ = 4 , A__ = 32 , A__ = 32 , A__ = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder A__ : str = Encoder( in_channels=A__ , out_channels=A__ , down_block_types=A__ , block_out_channels=A__ , layers_per_block=A__ , act_fn=A__ , norm_num_groups=A__ , double_z=A__ , ) # pass init params to Decoder A__ : Any = Decoder( in_channels=A__ , out_channels=A__ , up_block_types=A__ , block_out_channels=A__ , layers_per_block=A__ , norm_num_groups=A__ , act_fn=A__ , ) A__ : Optional[int] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) A__ : Optional[int] = nn.Convad(A__ , A__ , 1 ) A__ : List[str] = False A__ : List[str] = False # only relevant if vae tiling is enabled A__ : str = self.config.sample_size A__ : str = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) A__ : int = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) A__ : Union[str, Any] = 0.2_5 def __A ( self , A__ , A__=False ): if isinstance(A__ , (Encoder, Decoder) ): A__ : List[str] = value def __A ( self , A__ = True ): A__ : Tuple = use_tiling def __A ( self ): self.enable_tiling(A__ ) def __A ( self ): A__ : List[str] = True def __A ( self ): A__ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __A ( self ): A__ : List[Any] = {} def fn_recursive_add_processors(A__ , A__ , A__ ): if hasattr(A__ , """set_processor""" ): A__ : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , A__ , A__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A__ , A__ , A__ ) return processors def __A ( self , A__ ): A__ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(A__ , A__ ) and len(A__ ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(A__ )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A__ , A__ , A__ ): if hasattr(A__ , """set_processor""" ): if not isinstance(A__ , A__ ): module.set_processor(A__ ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , A__ , A__ ) for name, module in self.named_children(): fn_recursive_attn_processor(A__ , A__ , A__ ) def __A ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __A ( self , A__ , A__ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(A__ , return_dict=A__ ) if self.use_slicing and x.shape[0] > 1: A__ : int = [self.encoder(A__ ) for x_slice in x.split(1 )] A__ : Union[str, Any] = torch.cat(A__ ) else: A__ : Union[str, Any] = self.encoder(A__ ) A__ : List[str] = self.quant_conv(A__ ) A__ : str = DiagonalGaussianDistribution(A__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A__ ) def __A ( self , A__ , A__ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(A__ , return_dict=A__ ) A__ : Optional[Any] = self.post_quant_conv(A__ ) A__ : Dict = self.decoder(A__ ) if not return_dict: return (dec,) return DecoderOutput(sample=A__ ) @apply_forward_hook def __A ( self , A__ , A__ = True ): if self.use_slicing and z.shape[0] > 1: A__ : Optional[int] = [self._decode(A__ ).sample for z_slice in z.split(1 )] A__ : int = torch.cat(A__ ) else: A__ : Optional[Any] = self._decode(A__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=A__ ) def __A ( self , A__ , A__ , A__ ): A__ : Tuple = min(a.shape[2] , b.shape[2] , A__ ) for y in range(A__ ): A__ : Union[str, Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __A ( self , A__ , A__ , A__ ): A__ : List[Any] = min(a.shape[3] , b.shape[3] , A__ ) for x in range(A__ ): A__ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __A ( self , A__ , A__ = True ): A__ : Tuple = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) A__ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) A__ : Union[str, Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. A__ : Optional[Any] = [] for i in range(0 , x.shape[2] , A__ ): A__ : List[Any] = [] for j in range(0 , x.shape[3] , A__ ): A__ : Optional[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] A__ : Optional[Any] = self.encoder(A__ ) A__ : str = self.quant_conv(A__ ) row.append(A__ ) rows.append(A__ ) A__ : Union[str, Any] = [] for i, row in enumerate(A__ ): A__ : Optional[int] = [] for j, tile in enumerate(A__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: A__ : int = self.blend_v(rows[i - 1][j] , A__ , A__ ) if j > 0: A__ : int = self.blend_h(row[j - 1] , A__ , A__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A__ , dim=3 ) ) A__ : str = torch.cat(A__ , dim=2 ) A__ : Optional[Any] = DiagonalGaussianDistribution(A__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A__ ) def __A ( self , A__ , A__ = True ): A__ : List[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) A__ : str = int(self.tile_sample_min_size * self.tile_overlap_factor ) A__ : Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. A__ : Dict = [] for i in range(0 , z.shape[2] , A__ ): A__ : List[Any] = [] for j in range(0 , z.shape[3] , A__ ): A__ : int = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] A__ : Any = self.post_quant_conv(A__ ) A__ : Optional[int] = self.decoder(A__ ) row.append(A__ ) rows.append(A__ ) A__ : Optional[Any] = [] for i, row in enumerate(A__ ): A__ : int = [] for j, tile in enumerate(A__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: A__ : Dict = self.blend_v(rows[i - 1][j] , A__ , A__ ) if j > 0: A__ : int = self.blend_h(row[j - 1] , A__ , A__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A__ , dim=3 ) ) A__ : Union[str, Any] = torch.cat(A__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=A__ ) def __A ( self , A__ , A__ = False , A__ = True , A__ = None , ): A__ : Optional[int] = sample A__ : Union[str, Any] = self.encode(A__ ).latent_dist if sample_posterior: A__ : List[Any] = posterior.sample(generator=A__ ) else: A__ : List[str] = posterior.mode() A__ : Optional[Any] = self.decode(A__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A__ )
192
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None ): # Recurse if needed if "." in tensor_name: A__ = tensor_name.split(""".""" ) for split in splits[:-1]: A__ = getattr(_lowerCAmelCase , _lowerCAmelCase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) A__ = new_module A__ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) A__ = tensor_name in module._buffers A__ = getattr(_lowerCAmelCase , _lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) A__ = False A__ = False if is_buffer or not is_bitsandbytes_available(): A__ = False A__ = False else: A__ = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) A__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: A__ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A__ = old_value.to(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.Tensor ): A__ = value.to("""cpu""" ) if value.dtype == torch.inta: A__ = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: A__ = torch.tensor(_lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCAmelCase ) and fpaa_statistics is None: A__ = new_value.T A__ = old_value.__dict__ if is_abit: A__ = bnb.nn.IntaParams(_lowerCAmelCase , requires_grad=_lowerCAmelCase , **_lowerCAmelCase ).to(_lowerCAmelCase ) elif is_abit: A__ = bnb.nn.Paramsabit(_lowerCAmelCase , requires_grad=_lowerCAmelCase , **_lowerCAmelCase ).to(_lowerCAmelCase ) A__ = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(_lowerCAmelCase ) ) else: if value is None: A__ = old_value.to(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.Tensor ): A__ = value.to(_lowerCAmelCase ) else: A__ = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase ) if is_buffer: A__ = new_value else: A__ = nn.Parameter(_lowerCAmelCase , requires_grad=old_value.requires_grad ) A__ = new_value def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=False ): for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(_lowerCAmelCase ) if (isinstance(_lowerCAmelCase , nn.Linear ) or isinstance(_lowerCAmelCase , _lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(_lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ = module.weight.shape else: A__ = module.in_features A__ = module.out_features if quantization_config.quantization_method() == "llm_int8": A__ = bnb.nn.LinearabitLt( _lowerCAmelCase , _lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A__ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A__ = bnb.nn.Linearabit( _lowerCAmelCase , _lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A__ = True # Store the module class in case we need to transpose the weight later A__ = type(_lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCAmelCase ) if len(list(module.children() ) ) > 0: A__ = _replace_with_bnb_linear( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , has_been_replaced=_lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None ): A__ = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert A__ = _replace_with_bnb_linear( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _snake_case ( *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ): warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , _lowerCAmelCase , ) return replace_with_bnb_linear(*_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , _lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( UpperCAmelCase_ : Dict ): A__ = deepcopy(_lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A__ = find_tied_parameters(_lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(_lowerCAmelCase , [] ) A__ = len(_lowerCAmelCase ) > 0 # Check if it is a base model A__ = not hasattr(_lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) A__ = list(set(_lowerCAmelCase ) ) + list(_lowerCAmelCase ) # remove ".weight" from the keys A__ = [".weight", ".bias"] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(_lowerCAmelCase , """""" ) filtered_module_names.append(_lowerCAmelCase ) return filtered_module_names
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] lowerCAmelCase__ : Tuple = [] def generate(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) lowerCAmelCase__ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: lowerCAmelCase__ : str = arr[i], arr[0] else: lowerCAmelCase__ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 lowerCAmelCase__ : Tuple = 0 else: lowerCAmelCase__ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
37
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
a__ : Optional[Any] = 8.3_14_45_98 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a__ : List[str] = 300 a__ : Optional[Any] = 28 a__ : Tuple = rms_speed_of_molecule(temperature, molar_mass) print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
from __future__ import annotations def UpperCAmelCase ( a_ ) -> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: if resistor <= 0: __A = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowerCAmelCase ) first_sum += 1 / float(_lowerCAmelCase ) index += 1 return 1 / first_sum def UpperCAmelCase ( a_ ) -> float: """simple docstring""" __A = 0.00 __A = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __A = F'''Resistor at index {index} has a negative value!''' raise ValueError(_lowerCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _lowerCAmelCase , ) if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): lowercase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ = image[0].size lowercase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowercase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowercase__ = np.concatenate(_lowerCAmelCase , axis=0 ) lowercase__ = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_55.0 lowercase__ = image.transpose(0 , 3 , 1 , 2 ) lowercase__ = 2.0 * image - 1.0 lowercase__ = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(_lowerCAmelCase , dim=0 ) return image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_lowerCAmelCase , torch.Tensor ): return mask elif isinstance(_lowerCAmelCase , PIL.Image.Image ): lowercase__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowercase__ = mask[0].size lowercase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowercase__ = np.concatenate(_lowerCAmelCase , axis=0 ) lowercase__ = mask.astype(np.floataa ) / 2_55.0 lowercase__ = 0 lowercase__ = 1 lowercase__ = torch.from_numpy(_lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): lowercase__ = torch.cat(_lowerCAmelCase , dim=0 ) return mask class _a ( lowerCamelCase__ ): _lowercase : Any = 42 _lowercase : Union[str, Any] = 42 def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self: str , UpperCamelCase_: Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_: Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_: int = 250 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 10 , UpperCamelCase_: int = 10 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Dict: """simple docstring""" lowercase__ = image lowercase__ = _preprocess_image(UpperCamelCase_ ) lowercase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) lowercase__ = _preprocess_mask(UpperCamelCase_ ) lowercase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowercase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase__ = original_image.shape lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowercase__ = eta lowercase__ = self.scheduler.timesteps[0] + 1 lowercase__ = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowercase__ = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowercase__ = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowercase__ = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = t lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
110
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
"""simple docstring""" import os import sys import unittest UpperCAmelCase__ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCAmelCase__ : Union[str, Any] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') UpperCAmelCase__ : Any = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = {"BertModelTest": "BertModelTester"} SCREAMING_SNAKE_CASE__ : Dict = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" from math import factorial def __a ( _SCREAMING_SNAKE_CASE = 100 ) ->int: return sum(int(_lowerCAmelCase ) for x in str(factorial(_lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase = [ '''good first issue''', '''feature request''', '''wip''', ] def lowercase () -> int: SCREAMING_SNAKE_CASE = Github(os.environ['GITHUB_TOKEN'] ) SCREAMING_SNAKE_CASE = g.get_repo('huggingface/accelerate' ) SCREAMING_SNAKE_CASE = repo.get_issues(state='open' ) for issue in open_issues: SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE_ : i.created_at , reverse=_lowerCAmelCase ) SCREAMING_SNAKE_CASE = comments[0] if len(_lowerCAmelCase ) > 0 else None SCREAMING_SNAKE_CASE = dt.utcnow() SCREAMING_SNAKE_CASE = (current_time - issue.updated_at).days SCREAMING_SNAKE_CASE = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( lowerCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = KandinskyVaaControlnetPipeline _lowercase : Optional[int] = ['image_embeds', 'negative_image_embeds', 'hint'] _lowercase : List[str] = ['image_embeds', 'negative_image_embeds', 'hint'] _lowercase : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowercase : Any = False @property def UpperCAmelCase ( self : List[str] ) -> Tuple: return 3_2 @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return 3_2 @property def UpperCAmelCase ( self : int ) -> str: return self.time_input_dim @property def UpperCAmelCase ( self : Dict ) -> List[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return 1_0_0 @property def UpperCAmelCase ( self : List[str] ) -> str: torch.manual_seed(0 ) __lowerCAmelCase: Union[str, Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase: List[Any] = UNetaDConditionModel(**UpperCAmelCase ) return model @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self : Any ) -> Tuple: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: List[Any] = self.dummy_unet __lowerCAmelCase: Union[str, Any] = self.dummy_movq __lowerCAmelCase: List[str] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase , ) __lowerCAmelCase: Union[str, Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: __lowerCAmelCase: int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __lowerCAmelCase: List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create hint __lowerCAmelCase: Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith('mps' ): __lowerCAmelCase: str = torch.manual_seed(UpperCAmelCase ) else: __lowerCAmelCase: Optional[int] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCAmelCase: int = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase ( self : str ) -> Tuple: __lowerCAmelCase: Union[str, Any] = "cpu" __lowerCAmelCase: List[str] = self.get_dummy_components() __lowerCAmelCase: Union[str, Any] = self.pipeline_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Any = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) __lowerCAmelCase: Dict = output.images __lowerCAmelCase: Union[str, Any] = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] __lowerCAmelCase: Union[str, Any] = image[0, -3:, -3:, -1] __lowerCAmelCase: Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: int = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Tuple ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __lowerCAmelCase: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __lowerCAmelCase: Optional[int] = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 255.0 __lowerCAmelCase: List[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCAmelCase: List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __lowerCAmelCase: Dict = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: int = "A robot, 4k photo" __lowerCAmelCase: Tuple = torch.Generator(device='cuda' ).manual_seed(0 ) __lowerCAmelCase: List[str] = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCAmelCase: List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) __lowerCAmelCase: Tuple = pipeline( image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=1_0_0 , output_type='np' , ) __lowerCAmelCase: List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
322
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _A ( lowerCamelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1_000 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = p_stop __UpperCAmelCase : int = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = False while not stop and count < self.max_length: yield count count += 1 __UpperCAmelCase : List[str] = random.random() < self.p_stop class _A ( unittest.TestCase ): def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __UpperCAmelCase : str = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __UpperCAmelCase : str = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __UpperCAmelCase : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __UpperCAmelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : int = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __UpperCAmelCase : Optional[int] = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' random.seed(__UpperCAmelCase ) __UpperCAmelCase : Any = list(__UpperCAmelCase ) __UpperCAmelCase : str = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __UpperCAmelCase : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __UpperCAmelCase : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCAmelCase : List[str] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __UpperCAmelCase : Optional[Any] = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 42 __UpperCAmelCase : Dict = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __UpperCAmelCase : Tuple = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __UpperCAmelCase : int = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 ) __UpperCAmelCase : Tuple = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ) -> List[str]: '''simple docstring''' Accelerator() __UpperCAmelCase : str = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
254
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = {'''tokenizer_file''': '''tokenizer.json'''} A_ : Optional[int] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class _a (lowerCamelCase__ ): '''simple docstring''' UpperCAmelCase__: str = VOCAB_FILES_NAMES UpperCAmelCase__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: Tuple = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[str] = None def __init__( self , A__=None , A__=None , A__=None , A__="<unk>" , A__="<s>" , A__="</s>" , A__="<pad>" , A__=False , A__=False , **A__ , ): super().__init__( A__ , A__ , tokenizer_file=A__ , unk_token=A__ , bos_token=A__ , eos_token=A__ , pad_token=A__ , add_prefix_space=A__ , clean_up_tokenization_spaces=A__ , **A__ , ) A__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A__ ) != add_prefix_space: A__ : Any = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : Dict = add_prefix_space A__ : List[Any] = pre_tok_class(**A__ ) A__ : str = add_prefix_space def __A ( self , *A__ , **A__ ): A__ : Optional[int] = kwargs.get("""is_split_into_words""" , A__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): A__ : Union[str, Any] = kwargs.get("""is_split_into_words""" , A__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" """ pretokenized inputs.""" ) return super()._encode_plus(*A__ , **A__ ) def __A ( self , A__ , A__ = None ): A__ : List[str] = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ ): A__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A__ , add_special_tokens=A__ ) + [self.eos_token_id] ) if len(A__ ) > self.model_max_length: A__ : List[Any] = input_ids[-self.model_max_length :] return input_ids
192
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) A__ = str(bin(_lowerCAmelCase ) )[2:] # remove the leading "0b" A__ = str(bin(_lowerCAmelCase ) )[2:] A__ = max(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCAmelCase ) , b_binary.zfill(_lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) lowerCAmelCase__ : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase__ : List[str] = 1 if upper_limit > 0: lowerCAmelCase__ : Union[str, Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: _lowerCAmelCase = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 100 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ) ->Union[str, Any]: if audio_length_in_s is None: SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size / self.unet.config.sample_rate SCREAMING_SNAKE_CASE : Tuple = audio_length_in_s * self.unet.config.sample_rate SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) SCREAMING_SNAKE_CASE : int = int(_lowerCamelCase ) if sample_size % down_scale_factor != 0: SCREAMING_SNAKE_CASE : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ''' process.''' ) SCREAMING_SNAKE_CASE : List[str] = int(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = next(iter(self.unet.parameters() ) ).dtype SCREAMING_SNAKE_CASE : List[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE : List[Any] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) # set step values self.scheduler.set_timesteps(_lowerCamelCase , device=audio.device ) SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE : Tuple = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE : Any = audio.clamp(-1 , 1 ).float().cpu().numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowerCamelCase )
313
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor SCREAMING_SNAKE_CASE :Optional[Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE :List[Any] = 50 # max width of layer names SCREAMING_SNAKE_CASE :Optional[int] = 70 # max width of quantizer names def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=_lowerCAmelCase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=_lowerCAmelCase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=_lowerCAmelCase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=_lowerCAmelCase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=_lowerCAmelCase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCAmelCase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if args.calibrator == "max": __A = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) __A = "histogram" elif args.calibrator == "mse": __A = "histogram" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) __A = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase ) __A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase ) def UpperCAmelCase ( a_ , a_ , a_=False , a_=False ) -> List[Any]: """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCAmelCase , ["embeddings"] , which="weight" , _disabled=_lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCAmelCase , [""] , _disabled=_lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(_lowerCAmelCase , _lowerCAmelCase ) if args.clip_gelu: clip_gelu(_lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCAmelCase ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCAmelCase ) def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" def fusea(a_ , a_ , a_ ): for mod in [qq, qk, qv]: if not hasattr(_lowerCAmelCase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return __A = qq._amax.detach().item() __A = qk._amax.detach().item() __A = qv._amax.detach().item() __A = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) qq._amax.fill_(_lowerCAmelCase ) qk._amax.fill_(_lowerCAmelCase ) qv._amax.fill_(_lowerCAmelCase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): __A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase ) __A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: __A = mod.weight.shape[0] __A = mod._weight_quantizer._amax.detach() __A = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __A = set(range(len(mod.weight.size() ) ) ) - axis_set __A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __A = amax def UpperCAmelCase ( a_ , a_=2_5 , a_=1_8_0 , a_=None ) -> Optional[Any]: """simple docstring""" if ignore is None: __A = [] elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __A = [ignore] __A = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCAmelCase , "weight" ): continue __A = max(_lowerCAmelCase , len(_lowerCAmelCase ) ) for name, mod in model.named_modules(): __A = getattr(_lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase ) __A = getattr(_lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , "weight" ): continue if type(_lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(_lowerCAmelCase ) is str and s in name]: continue __A = F'''Act:{input_q.extra_repr()}''' __A = F'''Wgt:{weight_q.extra_repr()}''' __A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_lowerCAmelCase ) <= line_width: logger.info(_lowerCAmelCase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = 0 for name, mod in model.named_modules(): if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Any: """simple docstring""" __A = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(_lowerCAmelCase , _lowerCAmelCase ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def UpperCAmelCase ( a_ , a_ , a_="both" , **a_ ) -> str: """simple docstring""" __A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_input_quantizer" , _lowerCAmelCase , _lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , "_weight_quantizer" , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase ) def UpperCAmelCase ( a_ , a_ , **a_ ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , "_input_quantizer" ) or hasattr(_lowerCAmelCase , "_weight_quantizer" ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) elif name.endswith("_quantizer" ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): __A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase )
15
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
from sklearn.metrics import matthews_corrcoef import datasets lowerCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any]=None ) -> List[Any]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ , sample_weight=UpperCamelCase_ ) ), }
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( _snake_case=None ,_snake_case=None ): return field(default_factory=lambda: default ,metadata=_lowerCAmelCase ) @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : Any = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __UpperCamelCase : str = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __UpperCamelCase : int = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __UpperCamelCase : List[Any] = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __UpperCamelCase : Optional[int] = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __UpperCamelCase : Union[str, Any] = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __UpperCamelCase : Optional[Any] = field(default=lowerCamelCase__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __UpperCamelCase : str = field(default=lowerCamelCase__ , metadata={'''help''': '''Benchmark training of model'''} ) __UpperCamelCase : Any = field(default=lowerCamelCase__ , metadata={'''help''': '''Verbose memory tracing'''} ) __UpperCamelCase : Tuple = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __UpperCamelCase : str = field( default=lowerCamelCase__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __UpperCamelCase : int = field(default=lowerCamelCase__ , metadata={'''help''': '''Trace memory line by line'''} ) __UpperCamelCase : Any = field(default=lowerCamelCase__ , metadata={'''help''': '''Save result to a CSV file'''} ) __UpperCamelCase : List[Any] = field(default=lowerCamelCase__ , metadata={'''help''': '''Save all print statements in a log file'''} ) __UpperCamelCase : Optional[int] = field(default=lowerCamelCase__ , metadata={'''help''': '''Whether to print environment information'''} ) __UpperCamelCase : List[Any] = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __UpperCamelCase : Any = field( default=F"inference_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __UpperCamelCase : Dict = field( default=F"inference_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __UpperCamelCase : int = field( default=F"train_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __UpperCamelCase : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __UpperCamelCase : List[Any] = field( default=F"env_info_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __UpperCamelCase : str = field( default=F"log_{round(time() )}.csv" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __UpperCamelCase : Optional[int] = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __UpperCamelCase : Optional[Any] = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE__ , ) def __magic_name__ (self ) -> int: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __magic_name__ (self ) -> List[Any]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
25
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) ->Any: return sorted(_lowerCAmelCase , key=lambda _SCREAMING_SNAKE_CASE : x[column] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=float('inf' ) ) ->int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): a__: Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: a__: Union[str, Any] = current_dis return min_dis def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=float('inf' ) ) ->Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): a__: List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: a__: Union[str, Any] = current_dis return min_dis def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion a__: Optional[int] = points_counts // 2 a__: List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) a__: List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) a__: Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) a__: Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) a__: Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: a__: Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) a__: Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": lowercase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class A_ ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "geglu" , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : str = "layer_norm" , UpperCAmelCase : bool = False , ) -> Optional[Any]: super().__init__() __lowerCAmelCase: Any = only_cross_attention __lowerCAmelCase: List[str] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" __lowerCAmelCase: str = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase: int = AdaLayerNorm(UpperCAmelCase , UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase: List[str] = AdaLayerNormZero(UpperCAmelCase , UpperCAmelCase ) else: __lowerCAmelCase: Union[str, Any] = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase ) __lowerCAmelCase: Any = Attention( query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , dropout=UpperCAmelCase , bias=UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase: Union[str, Any] = ( AdaLayerNorm(UpperCAmelCase , UpperCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase ) ) __lowerCAmelCase: str = Attention( query_dim=UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCAmelCase , dim_head=UpperCAmelCase , dropout=UpperCAmelCase , bias=UpperCAmelCase , upcast_attention=UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase: List[str] = None __lowerCAmelCase: Optional[int] = None # 3. Feed-forward __lowerCAmelCase: List[str] = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase ) __lowerCAmelCase: str = FeedForward(UpperCAmelCase , dropout=UpperCAmelCase , activation_fn=UpperCAmelCase , final_dropout=UpperCAmelCase ) # let chunk size default to None __lowerCAmelCase: Tuple = None __lowerCAmelCase: Any = 0 def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Dict: __lowerCAmelCase: str = chunk_size __lowerCAmelCase: Union[str, Any] = dim def UpperCAmelCase ( self : Tuple , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.LongTensor] = None , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[torch.LongTensor] = None , ) -> List[Any]: if self.use_ada_layer_norm: __lowerCAmelCase: Dict = self.norma(UpperCAmelCase , UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase: int = self.norma( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase: List[Any] = self.norma(UpperCAmelCase ) __lowerCAmelCase: List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase: int = self.attna( UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCAmelCase , **UpperCAmelCase , ) if self.use_ada_layer_norm_zero: __lowerCAmelCase: List[str] = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase: str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase: Any = ( self.norma(UpperCAmelCase , UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(UpperCAmelCase ) ) __lowerCAmelCase: Optional[int] = self.attna( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase: Any = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase: int = self.norma(UpperCAmelCase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase: Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __lowerCAmelCase: str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase: List[str] = torch.cat( [self.ff(UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCAmelCase: Union[str, Any] = self.ff(UpperCAmelCase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase: Tuple = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase: Dict = ff_output + hidden_states return hidden_states class A_ ( nn.Module ): def __init__( self : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 4 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : str = "geglu" , UpperCAmelCase : bool = False , ) -> Optional[Any]: super().__init__() __lowerCAmelCase: Dict = int(dim * mult ) __lowerCAmelCase: Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase: Optional[int] = GELU(UpperCAmelCase , UpperCAmelCase ) if activation_fn == "gelu-approximate": __lowerCAmelCase: Dict = GELU(UpperCAmelCase , UpperCAmelCase , approximate='tanh' ) elif activation_fn == "geglu": __lowerCAmelCase: Dict = GEGLU(UpperCAmelCase , UpperCAmelCase ) elif activation_fn == "geglu-approximate": __lowerCAmelCase: List[str] = ApproximateGELU(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = nn.ModuleList([] ) # project in self.net.append(UpperCAmelCase ) # project dropout self.net.append(nn.Dropout(UpperCAmelCase ) ) # project out self.net.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCAmelCase ) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple ) -> Optional[int]: for module in self.net: __lowerCAmelCase: Optional[Any] = module(UpperCAmelCase ) return hidden_states class A_ ( nn.Module ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str = "none" ) -> Optional[Any]: super().__init__() __lowerCAmelCase: int = nn.Linear(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: int = approximate def UpperCAmelCase ( self : Dict , UpperCAmelCase : int ) -> Tuple: if gate.device.type != "mps": return F.gelu(UpperCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] ) -> int: __lowerCAmelCase: Tuple = self.proj(UpperCAmelCase ) __lowerCAmelCase: int = self.gelu(UpperCAmelCase ) return hidden_states class A_ ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Tuple = nn.Linear(UpperCAmelCase , dim_out * 2 ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[str] ) -> Tuple: if gate.device.type != "mps": return F.gelu(UpperCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str ) -> List[str]: __lowerCAmelCase: List[Any] = self.proj(UpperCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCAmelCase ) class A_ ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : int ) -> Dict: super().__init__() __lowerCAmelCase: Tuple = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : List[Any] ) -> Dict: __lowerCAmelCase: Tuple = self.proj(UpperCAmelCase ) return x * torch.sigmoid(1.702 * x ) class A_ ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Any = nn.Embedding(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: str = nn.SiLU() __lowerCAmelCase: str = nn.Linear(UpperCAmelCase , embedding_dim * 2 ) __lowerCAmelCase: Optional[Any] = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.linear(self.silu(self.emb(UpperCAmelCase ) ) ) __lowerCAmelCase: Any = torch.chunk(UpperCAmelCase , 2 ) __lowerCAmelCase: Optional[int] = self.norm(UpperCAmelCase ) * (1 + scale) + shift return x class A_ ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Dict ) -> Optional[int]: super().__init__() __lowerCAmelCase: Any = CombinedTimestepLabelEmbeddings(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = nn.SiLU() __lowerCAmelCase: Dict = nn.Linear(UpperCAmelCase , 6 * embedding_dim , bias=UpperCAmelCase ) __lowerCAmelCase: List[str] = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase , eps=1E-6 ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=None ) -> Optional[int]: __lowerCAmelCase: Optional[Any] = self.linear(self.silu(self.emb(UpperCAmelCase , UpperCAmelCase , hidden_dtype=UpperCAmelCase ) ) ) __lowerCAmelCase: Optional[Any] = emb.chunk(6 , dim=1 ) __lowerCAmelCase: List[str] = self.norm(UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class A_ ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : float = 1E-5 ) -> Optional[int]: super().__init__() __lowerCAmelCase: Optional[int] = num_groups __lowerCAmelCase: str = eps if act_fn is None: __lowerCAmelCase: List[str] = None else: __lowerCAmelCase: Optional[int] = get_activation(UpperCAmelCase ) __lowerCAmelCase: Any = nn.Linear(UpperCAmelCase , out_dim * 2 ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] ) -> Dict: if self.act: __lowerCAmelCase: int = self.act(UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.linear(UpperCAmelCase ) __lowerCAmelCase: Any = emb[:, :, None, None] __lowerCAmelCase: List[str] = emb.chunk(2 , dim=1 ) __lowerCAmelCase: List[str] = F.group_norm(UpperCAmelCase , self.num_groups , eps=self.eps ) __lowerCAmelCase: List[str] = x * (1 + scale) + shift return x
322
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE_ = CLIPImageProcessor() SCREAMING_SNAKE_CASE_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') SCREAMING_SNAKE_CASE_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
301
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase , _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) __lowerCAmelCase = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
301
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = tf.data.AUTOTUNE def lowercase (): __lowerCAmelCase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=_lowerCAmelCase , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=_lowerCAmelCase , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=_lowerCAmelCase , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=_lowerCAmelCase , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=_lowerCAmelCase , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=_lowerCAmelCase , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=_lowerCAmelCase , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=_lowerCAmelCase , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=_lowerCAmelCase , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=_lowerCAmelCase , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=_lowerCAmelCase , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=_lowerCAmelCase , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=_lowerCAmelCase , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=_lowerCAmelCase , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=_lowerCAmelCase , help="""Model ID to upload to on the Hugging Face Hub.""" ) __lowerCAmelCase = parser.parse_args() return args def lowercase (_lowerCAmelCase ): try: if args.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(_lowerCAmelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCAmelCase ) return tpu def lowercase (_lowerCAmelCase ): __lowerCAmelCase = 0 for file in file_list: __lowerCAmelCase = file.split("""/""" )[-1] __lowerCAmelCase = re.search(r"""-\d+-(\d+)\.tfrecord""" , _lowerCAmelCase ).group(1 ) __lowerCAmelCase = int(_lowerCAmelCase ) num_samples += sample_count return num_samples def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): __lowerCAmelCase = count_samples(_lowerCAmelCase ) __lowerCAmelCase = tf.data.Dataset.from_tensor_slices(_lowerCAmelCase ) if shuffle: __lowerCAmelCase = dataset.shuffle(len(_lowerCAmelCase ) ) __lowerCAmelCase = tf.data.TFRecordDataset(_lowerCAmelCase , num_parallel_reads=_lowerCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowerCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(_lowerCAmelCase ) ) __lowerCAmelCase = dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) if shuffle: assert shuffle_buffer_size is not None __lowerCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) __lowerCAmelCase = dataset.batch(_lowerCAmelCase , drop_remainder=_lowerCAmelCase ) __lowerCAmelCase = dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) __lowerCAmelCase = dataset.prefetch(_lowerCAmelCase ) return dataset def lowercase (_lowerCAmelCase ): if not args.no_tpu: __lowerCAmelCase = initialize_tpu(_lowerCAmelCase ) __lowerCAmelCase = tf.distribute.TPUStrategy(_lowerCAmelCase ) else: __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) __lowerCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) __lowerCAmelCase = count_samples(_lowerCAmelCase ) __lowerCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowerCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): __lowerCAmelCase = TFAutoModelForMaskedLM.from_config(_lowerCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowerCAmelCase , __lowerCAmelCase = create_optimizer( num_train_steps=_lowerCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCAmelCase , metrics=["""accuracy"""] ) def decode_fn(_lowerCAmelCase ): __lowerCAmelCase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCAmelCase , _lowerCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowerCAmelCase = DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm_probability=args.mlm_probability , mlm=_lowerCAmelCase , return_tensors="""tf""" ) def mask_with_collator(_lowerCAmelCase ): # TF really needs an isin() function __lowerCAmelCase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) __lowerCAmelCase , __lowerCAmelCase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(_lowerCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCAmelCase , ) return batch __lowerCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync __lowerCAmelCase = prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowerCAmelCase = prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , ) __lowerCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCAmelCase ) ) model.fit( _lowerCAmelCase , validation_data=_lowerCAmelCase , epochs=args.num_epochs , callbacks=_lowerCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = parse_args() main(args)
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = StableDiffusionXLImgaImgPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> Any: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=snake_case_ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) __lowerCAmelCase = CLIPTextModel(snake_case_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=snake_case_ ) __lowerCAmelCase = CLIPTextModelWithProjection(snake_case_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=snake_case_ ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def A__ ( self , snake_case_ , snake_case_=0 ) -> Optional[Any]: __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __lowerCAmelCase = image / 2 + 0.5 if str(snake_case_ ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(snake_case_ ) else: __lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def A__ ( self ) -> Dict: __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**snake_case_ ) __lowerCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) __lowerCAmelCase = sd_pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def A__ ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> str: pass def A__ ( self ) -> int: __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**snake_case_ ) __lowerCAmelCase = sd_pipe.to(snake_case_ ) __lowerCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) __lowerCAmelCase = 3 * ["""this is a negative prompt"""] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs["""prompt"""]] __lowerCAmelCase = sd_pipe(**snake_case_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) __lowerCAmelCase = 3 * ["""this is a negative prompt"""] __lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(snake_case_ , negative_prompt=snake_case_ ) __lowerCAmelCase = sd_pipe( **snake_case_ , prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , pooled_prompt_embeds=snake_case_ , negative_pooled_prompt_embeds=snake_case_ , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , snake_case_ , snake_case_="cpu" , snake_case_=torch.floataa , snake_case_=0 ) -> List[Any]: __lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowerCAmelCase = np.random.RandomState(snake_case_ ).standard_normal((1, 4, 64, 64) ) __lowerCAmelCase = torch.from_numpy(snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ) __lowerCAmelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_inputs(snake_case_ ) __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
301
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = x __lowerCAmelCase = y for step in range(_lowerCAmelCase ): # noqa: B007 __lowerCAmelCase = a * a - b * b + x __lowerCAmelCase = 2 * a * b + y __lowerCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowercase (_lowerCAmelCase ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowercase (_lowerCAmelCase ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCAmelCase , 1 , 1 ) ) def lowercase (_lowerCAmelCase = 800 , _lowerCAmelCase = 600 , _lowerCAmelCase = -0.6 , _lowerCAmelCase = 0 , _lowerCAmelCase = 3.2 , _lowerCAmelCase = 50 , _lowerCAmelCase = True , ): __lowerCAmelCase = Image.new("""RGB""" , (image_width, image_height) ) __lowerCAmelCase = img.load() # loop through the image-coordinates for image_x in range(_lowerCAmelCase ): for image_y in range(_lowerCAmelCase ): # determine the figure-coordinates based on the image-coordinates __lowerCAmelCase = figure_width / image_width * image_height __lowerCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCAmelCase = get_distance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCAmelCase = get_color_coded_rgb(_lowerCAmelCase ) else: __lowerCAmelCase = get_black_and_white_rgb(_lowerCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE_ = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off SCREAMING_SNAKE_CASE_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = MBartTokenizer _snake_case = [] _snake_case = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True __lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" __lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ ( self ) -> str: return self._src_lang @src_lang.setter def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = self.convert_tokens_to_ids(snake_case_ ) __lowerCAmelCase = tgt_lang_id return inputs def A__ ( self , snake_case_ , snake_case_ = "en_XX" , snake_case_ = None , snake_case_ = "ro_RO" , **snake_case_ , ) -> BatchEncoding: __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = self.convert_tokens_to_ids(snake_case_ ) __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] __lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = self.convert_tokens_to_ids(snake_case_ ) __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] __lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __lowerCAmelCase = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
301
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/test_sentencepiece.model''') SCREAMING_SNAKE_CASE_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} SCREAMING_SNAKE_CASE_ = '''>>zh<<''' SCREAMING_SNAKE_CASE_ = '''Helsinki-NLP/''' if is_torch_available(): SCREAMING_SNAKE_CASE_ = '''pt''' elif is_tf_available(): SCREAMING_SNAKE_CASE_ = '''tf''' else: SCREAMING_SNAKE_CASE_ = '''jax''' @require_sentencepiece class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = MarianTokenizer _snake_case = False _snake_case = True def A__ ( self ) -> Optional[int]: super().setUp() __lowerCAmelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowerCAmelCase = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , **snake_case_ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , snake_case_ ) -> List[Any]: return ( "This is a test", "This is a test", ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """</s>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(snake_case_ ) , 9 ) def A__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def A__ ( self ) -> int: __lowerCAmelCase = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) __lowerCAmelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(snake_case_ , batch.input_ids[0] ) __lowerCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case_ ) __lowerCAmelCase = [x.name for x in Path(snake_case_ ).glob("""*""" )] self.assertIn("""source.spm""" , snake_case_ ) MarianTokenizer.from_pretrained(snake_case_ ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def A__ ( self ) -> Union[str, Any]: # fmt: off __lowerCAmelCase = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def A__ ( self ) -> str: __lowerCAmelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCAmelCase = """Tämä on testi""" __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [76, 7, 2_047, 2] __lowerCAmelCase = [69, 12, 11, 940, 2] __lowerCAmelCase = tokenizer(snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer(text_target=snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
301
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase_ : '''simple docstring''' _snake_case = LEDConfig _snake_case = {} _snake_case = '''gelu''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=4 , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A__ ( self ) -> int: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCAmelCase = prepare_led_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = tf.concat( [tf.zeros_like(snake_case_ )[:, :-1], tf.ones_like(snake_case_ )[:, -1:]] , axis=-1 , ) __lowerCAmelCase = global_attention_mask return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = TFLEDModel(config=snake_case_ ).get_decoder() __lowerCAmelCase = inputs_dict["""input_ids"""] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _snake_case = (TFLEDForConditionalGeneration,) if is_tf_available() else () _snake_case = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _snake_case = True _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Any: __lowerCAmelCase = TFLEDModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ ) def A__ ( self ) -> str: self.config_tester.run_common_tests() def A__ ( self ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) __lowerCAmelCase = 2 __lowerCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) __lowerCAmelCase = True __lowerCAmelCase = self.model_tester.seq_length __lowerCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(snake_case_ ): __lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(snake_case_ ): __lowerCAmelCase = [t.numpy() for t in outputs.encoder_attentions] __lowerCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def A__ ( self ) -> int: pass def A__ ( self ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase (_lowerCAmelCase ): return tf.constant(_lowerCAmelCase , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_ = 1E-4 @slow @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> str: __lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here __lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __lowerCAmelCase = model(**snake_case_ )[0] __lowerCAmelCase = (1, 1_024, 768) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __lowerCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-3 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here __lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __lowerCAmelCase = model(**snake_case_ )[0] __lowerCAmelCase = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __lowerCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-3 , rtol=1e-3 )
301
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
1
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ ) -> None: __lowerCAmelCase = set_counts __lowerCAmelCase = max(snake_case_ ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = [1] * num_sets __lowerCAmelCase = list(range(snake_case_ ) ) def A__ ( self , snake_case_ , snake_case_ ) -> bool: __lowerCAmelCase = self.get_parent(snake_case_ ) __lowerCAmelCase = self.get_parent(snake_case_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __lowerCAmelCase = 0 __lowerCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __lowerCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __lowerCAmelCase = 0 __lowerCAmelCase = src_parent __lowerCAmelCase = self.set_counts[src_parent] __lowerCAmelCase = max(self.max_set , snake_case_ ) return True def A__ ( self , snake_case_ ) -> int: if self.parents[disj_set] == disj_set: return disj_set __lowerCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
301
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
1
"""simple docstring""" from statistics import mean, stdev def lowercase (_lowerCAmelCase , _lowerCAmelCase = 3 ): __lowerCAmelCase = min(_lowerCAmelCase ) __lowerCAmelCase = max(_lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCAmelCase ) for x in data] def lowercase (_lowerCAmelCase , _lowerCAmelCase = 3 ): __lowerCAmelCase = mean(_lowerCAmelCase ) __lowerCAmelCase = stdev(_lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCAmelCase ) for x in data]
301
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
1
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
301
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
1
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # Checks if the entire collection has been sorted if len(_lowerCAmelCase ) <= 1 or n <= 1: return insert_next(_lowerCAmelCase , n - 1 ) rec_insertion_sort(_lowerCAmelCase , n - 1 ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # Checks order between adjacent elements if index >= len(_lowerCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCAmelCase , __lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(_lowerCAmelCase , index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter integers separated by spaces: ''') SCREAMING_SNAKE_CASE_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '''▁''' SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } SCREAMING_SNAKE_CASE_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off SCREAMING_SNAKE_CASE_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = [] _snake_case = [] def __init__( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_ = None , **snake_case_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) __lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } __lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" __lowerCAmelCase = self.lang_code_to_id[self._src_lang] __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ ( self ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ ( self ) -> str: return self._src_lang @src_lang.setter def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , snake_case_ ) -> None: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self ) -> Dict: __lowerCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , snake_case_ ) -> List[str]: return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def A__ ( self , snake_case_ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , snake_case_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = [] __lowerCAmelCase = """""" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(snake_case_ ) __lowerCAmelCase = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def A__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = self.convert_tokens_to_ids(snake_case_ ) __lowerCAmelCase = tgt_lang_id return inputs def A__ ( self , snake_case_ , snake_case_ = "en_XX" , snake_case_ = None , snake_case_ = "ro_RO" , **snake_case_ , ) -> BatchEncoding: __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = self.lang_code_to_id[src_lang] __lowerCAmelCase = [self.cur_lang_code_id] __lowerCAmelCase = [self.eos_token_id] def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = self.lang_code_to_id[tgt_lang] __lowerCAmelCase = [self.cur_lang_code_id] __lowerCAmelCase = [self.eos_token_id]
301
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
1
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
1
"""simple docstring""" import math def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = len(_lowerCAmelCase ) __lowerCAmelCase = int(math.floor(math.sqrt(_lowerCAmelCase ) ) ) __lowerCAmelCase = 0 while arr[min(_lowerCAmelCase , _lowerCAmelCase ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(_lowerCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(_lowerCAmelCase , _lowerCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(''',''')] SCREAMING_SNAKE_CASE_ = int(input('''Enter the number to be searched:\n''')) SCREAMING_SNAKE_CASE_ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(F"Number {x} is at index {res}")
301
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE_ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
1
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=32 , snake_case_=2 , snake_case_=3 , snake_case_=16 , snake_case_=[1, 2, 1] , snake_case_=[2, 2, 4] , snake_case_=2 , snake_case_=2.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=True , snake_case_=0.02 , snake_case_=1e-5 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=10 , snake_case_=8 , ) -> Dict: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> int: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: __lowerCAmelCase = SwinvaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: __lowerCAmelCase = SwinvaForMaskedImageModeling(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = SwinvaForMaskedImageModeling(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = SwinvaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _snake_case = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> List[str]: __lowerCAmelCase = SwinvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , embed_dim=37 ) def A__ ( self ) -> str: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self ) -> Optional[int]: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self ) -> str: pass def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = config.window_size**2 __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __lowerCAmelCase = len(snake_case_ ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(snake_case_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # Swinv2 has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(snake_case_ ) , snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reshaped_hidden_states[0].shape __lowerCAmelCase = ( reshaped_hidden_states[0].view(snake_case_ , snake_case_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ , (padded_height, padded_width) ) def A__ ( self ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case_ ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def A__ ( self ) -> Any: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwinvaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ) -> int: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self ) -> Optional[int]: __lowerCAmelCase = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( snake_case_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**snake_case_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
301
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase ): if len(_lowerCAmelCase ) <= 1: return lst __lowerCAmelCase = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __lowerCAmelCase , __lowerCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: __lowerCAmelCase = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
301
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=3 , snake_case_=32 , snake_case_=3 , snake_case_=10 , snake_case_=[10, 20, 30, 40] , snake_case_=[1, 1, 2, 1] , snake_case_=True , snake_case_=True , snake_case_="relu" , snake_case_=3 , snake_case_=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(snake_case_ ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def A__ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = FlaxRegNetModel(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , snake_case_ , snake_case_ ) -> str: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Any: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> List[str]: return def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def A__ ( self ) -> List[str]: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def A__ ( self ) -> str: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def A__ ( self ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) __lowerCAmelCase = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase = model_jitted(**snake_case_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (): __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ) -> int: return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""np""" ) __lowerCAmelCase = model(**snake_case_ ) # verify the logits __lowerCAmelCase = (1, 1_000) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowerCAmelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
301
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): '''simple docstring''' _snake_case = None def lowercase (_lowerCAmelCase , _lowerCAmelCase , ): import pyspark def generate_fn(): __lowerCAmelCase = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , ) -> Any: __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> str: yield from self.generate_examples_fn() def A__ ( self , snake_case_ ) -> "SparkExamplesIterable": __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) def A__ ( self , snake_case_ , snake_case_ ) -> "SparkExamplesIterable": __lowerCAmelCase = self.split_shard_indices_by_worker(snake_case_ , snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) @property def A__ ( self ) -> int: return len(self.partition_order ) class lowerCAmelCase_ ( datasets.DatasetBuilder ): '''simple docstring''' _snake_case = SparkConfig def __init__( self , snake_case_ , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> Optional[int]: import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=snake_case_ , config_name=str(self.df.semanticHash() ) , **snake_case_ , ) def A__ ( self ) -> List[str]: # Returns the path of the created file. def create_cache_and_write_probe(snake_case_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case_ ) __lowerCAmelCase = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case_ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def A__ ( self ) -> Dict: return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , snake_case_ ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def A__ ( self , snake_case_ ) -> List[str]: import pyspark def get_arrow_batch_size(snake_case_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(snake_case_ ) .repartition(1 ) .mapInArrow(snake_case_ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(snake_case_ , int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(snake_case_ ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark __lowerCAmelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(snake_case_ ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(snake_case_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(snake_case_ , snake_case_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=snake_case_ , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(snake_case_ ) if writer._num_bytes > 0: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case_ ) ): __lowerCAmelCase = os.path.join(os.path.dirname(snake_case_ ) , os.path.basename(snake_case_ ) ) shutil.move(snake_case_ , snake_case_ ) __lowerCAmelCase = ( self.df.mapInArrow(snake_case_ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def A__ ( self , snake_case_ , snake_case_ = "arrow" , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> List[Any]: self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case_ ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = """-TTTTT-SSSSS-of-NNNNN""" __lowerCAmelCase = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowerCAmelCase = path_join(self._output_dir , snake_case_ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(snake_case_ , snake_case_ , snake_case_ ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case_ ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case_ , snake_case_ , snake_case_ , ): rename( snake_case_ , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(snake_case_ ) ): __lowerCAmelCase , __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(snake_case_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case_ , len(snake_case_ ) ).map(lambda snake_case_ : _rename_shard(*snake_case_ ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(snake_case_ , """""" ) , ) def A__ ( self , snake_case_ , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase (_lowerCAmelCase , _lowerCAmelCase=0.999 , _lowerCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCAmelCase = [] for i in range(_lowerCAmelCase ): __lowerCAmelCase = i / num_diffusion_timesteps __lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class lowerCAmelCase_ ( A__ , A__ ): '''simple docstring''' _snake_case = [e.name for e in KarrasDiffusionSchedulers] _snake_case = 2 @register_to_config def __init__( self , snake_case_ = 1_000 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = False , snake_case_ = False , snake_case_ = 1.0 , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: __lowerCAmelCase = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCAmelCase = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase = betas_for_alpha_bar(snake_case_ , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __lowerCAmelCase = betas_for_alpha_bar(snake_case_ , alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCAmelCase = 1.0 - self.betas __lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = use_karras_sigmas def A__ ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: __lowerCAmelCase = self.timesteps __lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCAmelCase = 1 if len(snake_case_ ) > 1 else 0 else: __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep __lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def A__ ( self ) -> int: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A__ ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: __lowerCAmelCase = self.index_for_timestep(snake_case_ ) __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def A__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Optional[int]: __lowerCAmelCase = num_inference_steps __lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCAmelCase = np.log(snake_case_ ) __lowerCAmelCase = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) if self.config.use_karras_sigmas: __lowerCAmelCase = self._convert_to_karras(in_sigmas=snake_case_ , num_inference_steps=self.num_inference_steps ) __lowerCAmelCase = np.array([self._sigma_to_t(snake_case_ , snake_case_ ) for sigma in sigmas] ) __lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCAmelCase = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) __lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCAmelCase = torch.from_numpy(snake_case_ ) __lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case_ ).startswith("""mps""" ): # mps does not support float64 __lowerCAmelCase = timesteps.to(snake_case_ , dtype=torch.floataa ) else: __lowerCAmelCase = timesteps.to(device=snake_case_ ) # empty dt and derivative __lowerCAmelCase = None __lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCAmelCase = defaultdict(snake_case_ ) def A__ ( self , snake_case_ , snake_case_ ) -> Dict: # get log sigma __lowerCAmelCase = np.log(snake_case_ ) # get distribution __lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCAmelCase = low_idx + 1 __lowerCAmelCase = log_sigmas[low_idx] __lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCAmelCase = (low - log_sigma) / (low - high) __lowerCAmelCase = np.clip(snake_case_ , 0 , 1 ) # transform interpolation to time range __lowerCAmelCase = (1 - w) * low_idx + w * high_idx __lowerCAmelCase = t.reshape(sigma.shape ) return t def A__ ( self , snake_case_ , snake_case_ ) -> torch.FloatTensor: __lowerCAmelCase = in_sigmas[-1].item() __lowerCAmelCase = in_sigmas[0].item() __lowerCAmelCase = 7.0 # 7.0 is the value used in the paper __lowerCAmelCase = np.linspace(0 , 1 , snake_case_ ) __lowerCAmelCase = sigma_min ** (1 / rho) __lowerCAmelCase = sigma_max ** (1 / rho) __lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def A__ ( self ) -> Optional[int]: return self.dt is None def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: __lowerCAmelCase = self.index_for_timestep(snake_case_ ) # advance index counter by 1 __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCAmelCase = self.sigmas[step_index - 1] __lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCAmelCase = 0 __lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCAmelCase = derivative __lowerCAmelCase = dt __lowerCAmelCase = sample else: # 2. 2nd order / Heun's method __lowerCAmelCase = (sample - pred_original_sample) / sigma_next __lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCAmelCase = self.dt __lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 __lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCAmelCase = self.timesteps.to(original_samples.device ) __lowerCAmelCase = timesteps.to(original_samples.device ) __lowerCAmelCase = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] __lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCAmelCase = sigma.unsqueeze(-1 ) __lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Dict: return self.config.num_train_timesteps
301
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
1
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self ) -> Optional[Any]: __lowerCAmelCase = [] def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: self.events.append("""on_init_end""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Any: self.events.append("""on_train_begin""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: self.events.append("""on_train_end""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Dict: self.events.append("""on_epoch_begin""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Tuple: self.events.append("""on_epoch_end""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Tuple: self.events.append("""on_step_begin""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> int: self.events.append("""on_step_end""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Tuple: self.events.append("""on_evaluate""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> str: self.events.append("""on_predict""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Any: self.events.append("""on_save""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: self.events.append("""on_log""" ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> str: self.events.append("""on_prediction_step""" ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Optional[int]: __lowerCAmelCase = tempfile.mkdtemp() def A__ ( self ) -> str: shutil.rmtree(self.output_dir ) def A__ ( self , snake_case_=0 , snake_case_=0 , snake_case_=64 , snake_case_=64 , snake_case_=None , snake_case_=False , **snake_case_ ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowerCAmelCase = RegressionDataset(length=snake_case_ ) __lowerCAmelCase = RegressionDataset(length=snake_case_ ) __lowerCAmelCase = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) __lowerCAmelCase = RegressionPreTrainedModel(snake_case_ ) __lowerCAmelCase = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def A__ ( self , snake_case_ , snake_case_ ) -> Union[str, Any]: self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter __lowerCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) __lowerCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = ["""on_init_end""", """on_train_begin"""] __lowerCAmelCase = 0 __lowerCAmelCase = len(trainer.get_eval_dataloader() ) __lowerCAmelCase = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def A__ ( self ) -> Dict: __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowerCAmelCase = self.get_trainer(disable_tqdm=snake_case_ ) __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def A__ ( self ) -> Dict: __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowerCAmelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.callback_handler.callbacks[0] __lowerCAmelCase = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def A__ ( self ) -> List[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case_ ) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything __lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: __lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ) -> List[str]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModel.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModel.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForPreTraining.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> Union[str, Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 14_410 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 14_410 ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 14_410 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 14_410 )
301
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
1
"""simple docstring""" import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE_ = '''examples/''' SCREAMING_SNAKE_CASE_ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } SCREAMING_SNAKE_CASE_ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } SCREAMING_SNAKE_CASE_ = '''README.md''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("""VERSION""" , _lowerCAmelCase ) __lowerCAmelCase = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) def lowercase (_lowerCAmelCase ): for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern="""examples""" ) def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = """🤗 Transformers currently provides the following architectures""" __lowerCAmelCase = """1. Want to contribute a new model?""" with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __lowerCAmelCase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCAmelCase ) def lowercase (): with open(REPLACE_FILES["""init"""] , """r""" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def lowercase (_lowerCAmelCase=False ): __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowerCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: __lowerCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowercase (): __lowerCAmelCase = get_version() __lowerCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: __lowerCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') SCREAMING_SNAKE_CASE_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
301
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ ( A__ ): '''simple docstring''' def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(snake_case_ , """num_heads""" ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=64 , snake_case_=3 , snake_case_=[16, 48, 96] , snake_case_=[1, 3, 6] , snake_case_=[1, 2, 10] , snake_case_=[7, 3, 3] , snake_case_=[4, 2, 2] , snake_case_=[2, 1, 1] , snake_case_=[2, 2, 2] , snake_case_=[False, False, True] , snake_case_=[0.0, 0.0, 0.0] , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=True , snake_case_=True , snake_case_=2 , ) -> Dict: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_sizes __lowerCAmelCase = patch_stride __lowerCAmelCase = patch_padding __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = num_labels __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = num_heads __lowerCAmelCase = stride_kv __lowerCAmelCase = depth __lowerCAmelCase = cls_token __lowerCAmelCase = attention_drop_rate __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps def A__ ( self ) -> str: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: __lowerCAmelCase = TFCvtModel(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , training=snake_case_ ) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFCvtForImageClassification(snake_case_ ) __lowerCAmelCase = model(snake_case_ , labels=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Tuple: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _snake_case = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Tuple: __lowerCAmelCase = TFCvtModelTester(self ) __lowerCAmelCase = TFCvtConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def A__ ( self ) -> Union[str, Any]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def A__ ( self ) -> List[Any]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def A__ ( self ) -> str: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def A__ ( self ) -> Optional[int]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def A__ ( self ) -> List[str]: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def A__ ( self ) -> Optional[Any]: super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def A__ ( self ) -> List[str]: __lowerCAmelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(snake_case_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def A__ ( self ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def A__ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def A__ ( self ) -> Union[str, Any]: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFCvtModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase (): __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self ) -> int: __lowerCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass __lowerCAmelCase = model(**snake_case_ ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowerCAmelCase = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1e-4 ) )
301
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase_ : '''simple docstring''' _snake_case = 42 _snake_case = None _snake_case = None SCREAMING_SNAKE_CASE_ = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowercase (_lowerCAmelCase ): if root is None: return 0 # Validation def count_nodes(_lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_lowerCAmelCase ) != count_coins(_lowerCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(_lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.left ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.right ) __lowerCAmelCase = 1 - left_distrib_excess __lowerCAmelCase = 1 - right_distrib_excess __lowerCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_lowerCAmelCase ) + abs(_lowerCAmelCase ) ) __lowerCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowerCAmelCase , _lowerCAmelCase ) return get_distrib(_lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
301
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
1
"""simple docstring""" from timeit import timeit def lowercase (_lowerCAmelCase ): if number < 0: raise ValueError("""the value of input must not be negative""" ) __lowerCAmelCase = 0 while number: number &= number - 1 result += 1 return result def lowercase (_lowerCAmelCase ): if number < 0: raise ValueError("""the value of input must not be negative""" ) __lowerCAmelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase (): def do_benchmark(_lowerCAmelCase ) -> None: __lowerCAmelCase = """import __main__ as z""" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(_lowerCAmelCase ) = }""" ) __lowerCAmelCase = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=_lowerCAmelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(_lowerCAmelCase ) = }""" ) __lowerCAmelCase = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=_lowerCAmelCase , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(_lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
301
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ : '''simple docstring''' _snake_case = 42 _snake_case = None @staticmethod def A__ ( ) -> str: raise NotImplementedError def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Union[str, Any]: raise NotImplementedError def A__ ( self , snake_case_ ) -> Dict: raise NotImplementedError def A__ ( self ) -> Optional[Any]: if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def A__ ( cls ) -> Tuple: return f"""`pip install {cls.pip_package or cls.name}`""" class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''optuna''' @staticmethod def A__ ( ) -> List[str]: return is_optuna_available() def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[Any]: return run_hp_search_optuna(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ ) -> List[str]: return default_hp_space_optuna(snake_case_ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''ray''' _snake_case = '''\'ray[tune]\'''' @staticmethod def A__ ( ) -> Optional[int]: return is_ray_available() def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Union[str, Any]: return run_hp_search_ray(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ ) -> Optional[Any]: return default_hp_space_ray(snake_case_ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''sigopt''' @staticmethod def A__ ( ) -> Optional[Any]: return is_sigopt_available() def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[Any]: return run_hp_search_sigopt(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ ) -> List[Any]: return default_hp_space_sigopt(snake_case_ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''wandb''' @staticmethod def A__ ( ) -> Any: return is_wandb_available() def A__ ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Tuple: return run_hp_search_wandb(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ ) -> str: return default_hp_space_wandb(snake_case_ ) SCREAMING_SNAKE_CASE_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase (): __lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = available_backends[0].name if len(_lowerCAmelCase ) > 1: logger.info( f"""{len(_lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=1_000 , ) -> Optional[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = range_bbox def A__ ( self ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase = bbox[i, j, 3] __lowerCAmelCase = bbox[i, j, 1] __lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase = bbox[i, j, 2] __lowerCAmelCase = bbox[i, j, 0] __lowerCAmelCase = t __lowerCAmelCase = tf.convert_to_tensor(snake_case_ ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: __lowerCAmelCase = TFLayoutLMModel(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , token_type_ids=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = TFLayoutLMForMaskedLM(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMForSequenceClassification(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMForTokenClassification(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: __lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=snake_case_ ) __lowerCAmelCase = model(snake_case_ , snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _snake_case = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = True _snake_case = 1_0 def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = TFLayoutLMModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def A__ ( self ) -> Tuple: self.config_tester.run_common_tests() def A__ ( self ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def A__ ( self ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def A__ ( self ) -> Union[str, Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFLayoutLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def A__ ( self ) -> Any: pass def lowercase (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ) -> List[Any]: __lowerCAmelCase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the sequence output on [0, :3, :3] __lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1e-3 ) ) # test the pooled output on [1, :3] __lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case_ , atol=1e-3 ) ) @slow def A__ ( self ) -> Optional[Any]: # initialize model with randomly initialized sequence classification head __lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowerCAmelCase = outputs.loss __lowerCAmelCase = (2,) self.assertEqual(loss.shape , snake_case_ ) # test the shape of the logits __lowerCAmelCase = outputs.logits __lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , snake_case_ ) @slow def A__ ( self ) -> Any: # initialize model with randomly initialized token classification head __lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model( input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) # test the shape of the logits __lowerCAmelCase = outputs.logits __lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case_ ) @slow def A__ ( self ) -> Tuple: # initialize model with randomly initialized token classification head __lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model(input_ids=snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) # test the shape of the logits __lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case_ ) self.assertEqual(outputs.end_logits.shape , snake_case_ )
301
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_lowerCAmelCase )] ) __lowerCAmelCase = np.array(_lowerCAmelCase ) __lowerCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _lowerCAmelCase ) ) , x.transpose() ) , _lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = (1, 2, 1) __lowerCAmelCase = (1, 1, 0, 7) __lowerCAmelCase = SARIMAX( _lowerCAmelCase , exog=_lowerCAmelCase , order=_lowerCAmelCase , seasonal_order=_lowerCAmelCase ) __lowerCAmelCase = model.fit(disp=_lowerCAmelCase , maxiter=600 , method="""nm""" ) __lowerCAmelCase = model_fit.predict(1 , len(_lowerCAmelCase ) , exog=[test_match] ) return result[0] def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = regressor.predict(_lowerCAmelCase ) return y_pred[0] def lowercase (_lowerCAmelCase ): train_user.sort() __lowerCAmelCase = np.percentile(_lowerCAmelCase , 25 ) __lowerCAmelCase = np.percentile(_lowerCAmelCase , 75 ) __lowerCAmelCase = qa - qa __lowerCAmelCase = qa - (iqr * 0.1) return low_lim def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in list_vote: if i > actual_result: __lowerCAmelCase = not_safe + 1 else: if abs(abs(_lowerCAmelCase ) - abs(_lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE_ = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] SCREAMING_SNAKE_CASE_ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) SCREAMING_SNAKE_CASE_ = Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE_ = normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE_ = normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE_ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE_ = normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE_ = x[: len(x) - 1] SCREAMING_SNAKE_CASE_ = x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE_ = total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE_ = total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE_ = total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE_ = total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE_ = total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE_ = total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE_ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE_ = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
301
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = XGLMTokenizer _snake_case = XGLMTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(snake_case_ ) , 1_008 ) def A__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def A__ ( self ) -> Dict: __lowerCAmelCase = XGLMTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A__ ( self ) -> Optional[int]: return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def A__ ( self ) -> Tuple: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case_ , f.name ) __lowerCAmelCase = XGLMTokenizer(f.name , keep_accents=snake_case_ ) __lowerCAmelCase = pickle.dumps(snake_case_ ) pickle.loads(snake_case_ ) def A__ ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def A__ ( self ) -> List[Any]: __lowerCAmelCase = """Hello World!""" __lowerCAmelCase = [2, 31_227, 4_447, 35] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __lowerCAmelCase = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""facebook/xglm-564M""" , padding=snake_case_ , )
301
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
301
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , **snake_case_ , ) -> Any: super().__init__(features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , **snake_case_ ) __lowerCAmelCase = Sql( cache_dir=snake_case_ , features=snake_case_ , sql=snake_case_ , con=snake_case_ , **snake_case_ , ) def A__ ( self ) -> Tuple: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , ) # Build dataset for splits __lowerCAmelCase = self.builder.as_dataset( split="""train""" , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> int: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __lowerCAmelCase = dataset __lowerCAmelCase = name __lowerCAmelCase = con __lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCAmelCase = num_proc __lowerCAmelCase = to_sql_kwargs def A__ ( self ) -> int: __lowerCAmelCase = self.to_sql_kwargs.pop("""sql""" , snake_case_ ) __lowerCAmelCase = self.to_sql_kwargs.pop("""con""" , snake_case_ ) __lowerCAmelCase = self.to_sql_kwargs.pop("""index""" , snake_case_ ) __lowerCAmelCase = self._write(index=snake_case_ , **self.to_sql_kwargs ) return written def A__ ( self , snake_case_ ) -> int: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = args __lowerCAmelCase = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs __lowerCAmelCase = query_table( table=self.dataset.data , key=slice(snake_case_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCAmelCase = batch.to_pandas() __lowerCAmelCase = df.to_sql(self.name , self.con , index=snake_case_ , **snake_case_ ) return num_rows or len(snake_case_ ) def A__ ( self , snake_case_ , **snake_case_ ) -> int: __lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowerCAmelCase , __lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , snake_case_ , snake_case_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
301
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
1
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowercase (_lowerCAmelCase ): for pegasus_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(_lowerCAmelCase , _lowerCAmelCase ) return k def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = DEFAULTS.copy() cfg_kwargs.update(_lowerCAmelCase ) __lowerCAmelCase = PegasusConfig(**_lowerCAmelCase ) __lowerCAmelCase = PegasusForConditionalGeneration(_lowerCAmelCase ) __lowerCAmelCase = torch_model.model.state_dict() __lowerCAmelCase = {} for k, v in tf_weights.items(): __lowerCAmelCase = rename_state_dict_key(_lowerCAmelCase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCAmelCase = v.T __lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCAmelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) __lowerCAmelCase = mapping["""shared.weight"""] __lowerCAmelCase = mapping["""shared.weight"""] __lowerCAmelCase = {k: torch.zeros_like(_lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = torch_model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) __lowerCAmelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowercase (_lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ): __lowerCAmelCase = tf.train.list_variables(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(_lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): __lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = array return tf_weights def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # save tokenizer first __lowerCAmelCase = Path(_lowerCAmelCase ).parent.name __lowerCAmelCase = task_specific_params[f"""summarization_{dataset}"""]["""max_position_embeddings"""] __lowerCAmelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=_lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_lowerCAmelCase ) # convert model __lowerCAmelCase = get_tf_weights_as_numpy(_lowerCAmelCase ) __lowerCAmelCase = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __lowerCAmelCase = task_specific_params __lowerCAmelCase = convert_pegasus(_lowerCAmelCase , _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) __lowerCAmelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(_lowerCAmelCase , Path(_lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE_ = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE_ = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
301
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''microsoft/speecht5_tts''' _snake_case = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _snake_case = '''text_reader''' _snake_case = SpeechTaProcessor _snake_case = SpeechTaForTextToSpeech _snake_case = SpeechTaHifiGan _snake_case = ['''text'''] _snake_case = ['''audio'''] def A__ ( self ) -> Any: if self.post_processor is None: __lowerCAmelCase = """microsoft/speecht5_hifigan""" super().setup() def A__ ( self , snake_case_ , snake_case_=None ) -> Union[str, Any]: __lowerCAmelCase = self.pre_processor(text=snake_case_ , return_tensors="""pt""" , truncation=snake_case_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __lowerCAmelCase = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __lowerCAmelCase = torch.tensor(embeddings_dataset[7_305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def A__ ( self , snake_case_ ) -> Optional[int]: with torch.no_grad(): return self.model.generate_speech(**snake_case_ ) def A__ ( self , snake_case_ ) -> str: with torch.no_grad(): return self.post_processor(snake_case_ ).cpu().detach()
301
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''facebook/bart-large-mnli''' _snake_case = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) _snake_case = '''text_classifier''' _snake_case = AutoTokenizer _snake_case = AutoModelForSequenceClassification _snake_case = ['''text''', ['''text''']] _snake_case = ['''text'''] def A__ ( self ) -> Optional[int]: super().setup() __lowerCAmelCase = self.model.config __lowerCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): __lowerCAmelCase = int(snake_case_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def A__ ( self , snake_case_ , snake_case_ ) -> Union[str, Any]: __lowerCAmelCase = labels return self.pre_processor( [text] * len(snake_case_ ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def A__ ( self , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = outputs.logits __lowerCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
301
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
301
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RealmTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , **snake_case_ ) -> Tuple: __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("""text_pair""" , snake_case_ ) __lowerCAmelCase = kwargs.pop("""return_tensors""" , snake_case_ ) __lowerCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case_ ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(snake_case_ , snake_case_ , return_tensors=snake_case_ , **snake_case_ ) __lowerCAmelCase = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case_ ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(snake_case_ ) != 0} return BatchEncoding(snake_case_ , tensor_type=snake_case_ ) def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
301
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase_ : '''simple docstring''' _snake_case = OPTConfig _snake_case = {} _snake_case = '''gelu''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=16 , snake_case_=16 , ) -> Dict: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = embed_dim __lowerCAmelCase = word_embed_proj_dim __lowerCAmelCase = False def A__ ( self ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case_ , **self.config_updates , ) __lowerCAmelCase = prepare_opt_inputs_dict(snake_case_ , snake_case_ ) return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> List[Any]: __lowerCAmelCase = TFOPTModel(config=snake_case_ ) __lowerCAmelCase = inputs_dict["""input_ids"""] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) @require_tf class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _snake_case = (TFOPTForCausalLM,) if is_tf_available() else () _snake_case = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = 1_0 def A__ ( self ) -> str: __lowerCAmelCase = TFOPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ ) def A__ ( self ) -> Tuple: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case_ , snake_case_ ): if hasattr(snake_case_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowerCAmelCase = model_class(config=snake_case_ ) __lowerCAmelCase = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case_ ) __lowerCAmelCase = _get_word_embedding_weight(snake_case_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(snake_case_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case_ ) # check that weights remain the same after resizing __lowerCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(snake_case_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case_ ) __lowerCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(snake_case_ ) def lowercase (_lowerCAmelCase ): return tf.constant(_lowerCAmelCase , dtype=tf.intaa ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _snake_case = 9_9 def A__ ( self ) -> Tuple: __lowerCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ) -> List[str]: __lowerCAmelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) __lowerCAmelCase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCAmelCase = tf.not_equal(snake_case_ , model.config.pad_token_id ) with tf.GradientTape(): __lowerCAmelCase = model(input_ids=snake_case_ , attention_mask=snake_case_ ).last_hidden_state __lowerCAmelCase = (1, 11, 512) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-3 ) ) __lowerCAmelCase = tf.function(snake_case_ , jit_compile=snake_case_ ) __lowerCAmelCase = xla_generate(snake_case_ , snake_case_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case_ , atol=4e-2 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> List[str]: super().setUp() __lowerCAmelCase = """facebook/opt-350m""" def A__ ( self ) -> Tuple: __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCAmelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCAmelCase = tokenizer(snake_case_ , return_tensors="""tf""" , padding=snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCAmelCase = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) __lowerCAmelCase = tf.function(snake_case_ , jit_compile=snake_case_ ) __lowerCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-4 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self ) -> Union[str, Any]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A__ ( self ) -> int: __lowerCAmelCase = """facebook/opt-125m""" __lowerCAmelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(snake_case_ , return_tensors="""tf""" ).input_ids __lowerCAmelCase = model.generate(snake_case_ , max_length=10 ) __lowerCAmelCase = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """facebook/opt-350m""" __lowerCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case_ ) __lowerCAmelCase = """left""" # use different length sentences to test batching __lowerCAmelCase = [ """Hello, my dog is a little""", """Today, I""", ] __lowerCAmelCase = tokenizer(snake_case_ , return_tensors="""tf""" , padding=snake_case_ ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = model.generate(input_ids=snake_case_ , attention_mask=inputs["""attention_mask"""] ) __lowerCAmelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowerCAmelCase = model.generate(input_ids=snake_case_ ) __lowerCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) __lowerCAmelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowerCAmelCase = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) __lowerCAmelCase = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) __lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) __lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) __lowerCAmelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) def A__ ( self ) -> Any: __lowerCAmelCase = """facebook/opt-350m""" __lowerCAmelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(snake_case_ , return_tensors="""tf""" ).input_ids __lowerCAmelCase = model.generate(snake_case_ , max_length=10 ) __lowerCAmelCase = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ )
301
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
1
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase (_lowerCAmelCase ): __lowerCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"""^(.*)_\d+\.jpg$""" , _lowerCAmelCase ).groups()[0] class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_=None ) -> int: __lowerCAmelCase = file_names __lowerCAmelCase = image_transform __lowerCAmelCase = label_to_id def __len__( self ) -> int: return len(self.file_names ) def __getitem__( self , snake_case_ ) -> int: __lowerCAmelCase = self.file_names[idx] __lowerCAmelCase = PIL.Image.open(snake_case_ ) __lowerCAmelCase = raw_image.convert("""RGB""" ) if self.image_transform is not None: __lowerCAmelCase = self.image_transform(snake_case_ ) __lowerCAmelCase = extract_label(snake_case_ ) if self.label_to_id is not None: __lowerCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # Initialize accelerator if args.with_tracking: __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = config["""image_size"""] if not isinstance(_lowerCAmelCase , (list, tuple) ): __lowerCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase = os.path.split(_lowerCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Grab all the image filenames __lowerCAmelCase = [os.path.join(args.data_dir , _lowerCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences __lowerCAmelCase = [extract_label(_lowerCAmelCase ) for fname in file_names] __lowerCAmelCase = list(set(_lowerCAmelCase ) ) id_to_label.sort() __lowerCAmelCase = {lbl: i for i, lbl in enumerate(_lowerCAmelCase )} # Set the seed before splitting the data. np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # Split our filenames between train and validation __lowerCAmelCase = np.random.permutation(len(_lowerCAmelCase ) ) __lowerCAmelCase = int(0.8 * len(_lowerCAmelCase ) ) __lowerCAmelCase = random_perm[:cut] __lowerCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase = Compose([RandomResizedCrop(_lowerCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowerCAmelCase , label_to_id=_lowerCAmelCase ) # For evaluation, we use a deterministic Resize __lowerCAmelCase = Compose([Resize(_lowerCAmelCase ), ToTensor()] ) __lowerCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowerCAmelCase , label_to_id=_lowerCAmelCase ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) __lowerCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = create_model("""resnet50d""" , pretrained=_lowerCAmelCase , num_classes=len(_lowerCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase = False for param in model.get_classifier().parameters(): __lowerCAmelCase = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase = OneCycleLR(optimizer=_lowerCAmelCase , max_lr=_lowerCAmelCase , epochs=_lowerCAmelCase , steps_per_epoch=len(_lowerCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase = os.path.splitext(_lowerCAmelCase )[0] if "epoch" in training_difference: __lowerCAmelCase = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 __lowerCAmelCase = None else: __lowerCAmelCase = int(training_difference.replace("""step_""" , """""" ) ) __lowerCAmelCase = resume_step // len(_lowerCAmelCase ) resume_step -= starting_epoch * len(_lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): model.train() if args.with_tracking: __lowerCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase = accelerator.skip_first_batches(_lowerCAmelCase , _lowerCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["""image"""] - mean) / std __lowerCAmelCase = model(_lowerCAmelCase ) __lowerCAmelCase = torch.nn.functional.cross_entropy(_lowerCAmelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase ) accelerator.save_state(_lowerCAmelCase ) model.eval() __lowerCAmelCase = 0 __lowerCAmelCase = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["""image"""] - mean) / std with torch.no_grad(): __lowerCAmelCase = model(_lowerCAmelCase ) __lowerCAmelCase = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) __lowerCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(_lowerCAmelCase ), """epoch""": epoch, } , step=_lowerCAmelCase , ) if checkpointing_steps == "epoch": __lowerCAmelCase = f"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , _lowerCAmelCase ) accelerator.save_state(_lowerCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase (): __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=_lowerCAmelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=_lowerCAmelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=_lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _snake_case = Features({'''audio''': Audio()} ) _snake_case = Features({'''labels''': ClassLabel} ) _snake_case = "audio" _snake_case = "labels" def A__ ( self , snake_case_ ) -> int: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __lowerCAmelCase = copy.deepcopy(self ) __lowerCAmelCase = self.label_schema.copy() __lowerCAmelCase = features[self.label_column] __lowerCAmelCase = label_schema return task_template @property def A__ ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
301
"""simple docstring""" from math import isqrt, loga def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def lowercase (_lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ): __lowerCAmelCase = degree * loga(_lowerCAmelCase ) __lowerCAmelCase = int(_lowerCAmelCase ) __lowerCAmelCase = calculate_prime_numbers(_lowerCAmelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
301
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ ( enum.Enum ): '''simple docstring''' _snake_case = 0 _snake_case = 1 _snake_case = 2 @add_end_docstrings(A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]: super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase = None if self.model.config.prefix is not None: __lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._sanitize_parameters(prefix=snake_case_ , **self._forward_params ) __lowerCAmelCase = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase = {**self._forward_params, **forward_params} def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Any: __lowerCAmelCase = {} if prefix is not None: __lowerCAmelCase = prefix if prefix: __lowerCAmelCase = self.tokenizer( snake_case_ , padding=snake_case_ , add_special_tokens=snake_case_ , return_tensors=self.framework ) __lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) __lowerCAmelCase = handle_long_generation preprocess_params.update(snake_case_ ) __lowerCAmelCase = generate_kwargs __lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) __lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) __lowerCAmelCase = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A__ ( self , *snake_case_ , **snake_case_ ) -> Tuple: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*snake_case_ , **snake_case_ ) def __call__( self , snake_case_ , **snake_case_ ) -> Union[str, Any]: return super().__call__(snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_="" , snake_case_=None , **snake_case_ ) -> Optional[Any]: __lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=snake_case_ , add_special_tokens=snake_case_ , return_tensors=self.framework ) __lowerCAmelCase = prompt_text if handle_long_generation == "hole": __lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: __lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) __lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def A__ ( self , snake_case_ , **snake_case_ ) -> Union[str, Any]: __lowerCAmelCase = model_inputs["""input_ids"""] __lowerCAmelCase = model_inputs.get("""attention_mask""" , snake_case_ ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = 1 else: __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: __lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase = self.model.generate(input_ids=snake_case_ , attention_mask=snake_case_ , **snake_case_ ) __lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase = generated_sequence.reshape(snake_case_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase = tf.reshape(snake_case_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A__ ( self , snake_case_ , snake_case_=ReturnType.FULL_TEXT , snake_case_=True ) -> Optional[Any]: __lowerCAmelCase = model_outputs["""generated_sequence"""][0] __lowerCAmelCase = model_outputs["""input_ids"""] __lowerCAmelCase = model_outputs["""prompt_text"""] __lowerCAmelCase = generated_sequence.numpy().tolist() __lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase = self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase = 0 else: __lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase = prompt_text + text[prompt_length:] else: __lowerCAmelCase = text[prompt_length:] __lowerCAmelCase = {"""generated_text""": all_text} records.append(snake_case_ ) return records
301
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
1
"""simple docstring""" SCREAMING_SNAKE_CASE_ = 9.8_0_6_6_5 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
301
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = current_set.copy() for row_index, row in enumerate(_lowerCAmelCase ): __lowerCAmelCase = row[0] for column_index, column in enumerate(_lowerCAmelCase ): if magnitude == 0: __lowerCAmelCase = column continue __lowerCAmelCase = column / magnitude # Subtract to cancel term __lowerCAmelCase = current_set[0] __lowerCAmelCase = [first_row] __lowerCAmelCase = current_set[1::] for row in current_set: __lowerCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCAmelCase ) continue for column_index in range(len(_lowerCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowerCAmelCase = final_set[0] __lowerCAmelCase = [] __lowerCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowerCAmelCase = simplify(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCAmelCase ) __lowerCAmelCase = resultant return final_set def lowercase (_lowerCAmelCase ): if len(_lowerCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) __lowerCAmelCase = len(_lowerCAmelCase ) + 1 if any(len(_lowerCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_lowerCAmelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_lowerCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] __lowerCAmelCase = equations.copy() if any(0 in row for row in data_set ): __lowerCAmelCase = data_set.copy() __lowerCAmelCase = [] for row_index, row in enumerate(_lowerCAmelCase ): if 0 not in row: __lowerCAmelCase = data_set.pop(_lowerCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _lowerCAmelCase ) __lowerCAmelCase = data_set.copy() __lowerCAmelCase = simplify(_lowerCAmelCase ) __lowerCAmelCase = simplified[::-1] __lowerCAmelCase = [] for row in simplified: __lowerCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowerCAmelCase = row.copy()[: len(_lowerCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCAmelCase ) == 0: solutions.append(0 ) continue __lowerCAmelCase = temp_row[1::] __lowerCAmelCase = temp_row[::-1] for column_index, column in enumerate(_lowerCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCAmelCase ) __lowerCAmelCase = [] for item in solutions: final.append(float(round(_lowerCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
301
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
1
"""simple docstring""" import operator as op def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [] __lowerCAmelCase = lambda _lowerCAmelCase , _lowerCAmelCase : int(x / y ) # noqa: E731 integer division operation __lowerCAmelCase = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_lowerCAmelCase ) , sep=""" | """ ) else: __lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_lowerCAmelCase ) , sep=""" | """ ) __lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_lowerCAmelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(_lowerCAmelCase ) , int(_lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_lowerCAmelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
301
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase_ ( A__ ): '''simple docstring''' def A__ ( self , snake_case_ ) -> Any: with open(snake_case_ , encoding="""utf-8""" ) as input_file: __lowerCAmelCase = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __lowerCAmelCase = input_file.read() __lowerCAmelCase = regexp.search(snake_case_ ) return match def A__ ( self , snake_case_ ) -> List[str]: with open(snake_case_ , encoding="""utf-8""" ) as input_file: __lowerCAmelCase = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __lowerCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowerCAmelCase = regexp.finditer(snake_case_ ) __lowerCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self ) -> int: __lowerCAmelCase = Path("""./datasets""" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case_ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = Path("""./datasets""" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case_ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
301
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = path + """.py""" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
301
1
"""simple docstring""" import os from math import logaa def lowercase (_lowerCAmelCase = "base_exp.txt" ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_lowerCAmelCase ) , _lowerCAmelCase ) ) ): __lowerCAmelCase , __lowerCAmelCase = list(map(_lowerCAmelCase , line.split(""",""" ) ) ) if x * logaa(_lowerCAmelCase ) > largest: __lowerCAmelCase = x * logaa(_lowerCAmelCase ) __lowerCAmelCase = i + 1 return result if __name__ == "__main__": print(solution())
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
1
"""simple docstring""" def lowercase (_lowerCAmelCase = 10**9 ): __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCAmelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"{solution() = }")
301
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
1
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
1
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): __lowerCAmelCase = len(_lowerCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCAmelCase , _lowerCAmelCase , ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [] depth_first_search([] , [] , [] , _lowerCAmelCase , _lowerCAmelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCAmelCase ) print("""""" ) print(len(_lowerCAmelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
301
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=None , **snake_case_ ) -> Optional[Any]: __lowerCAmelCase = parent __lowerCAmelCase = config_class __lowerCAmelCase = has_text_modality __lowerCAmelCase = kwargs __lowerCAmelCase = common_properties def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case_ , snake_case_ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case_ ): try: setattr(snake_case_ , snake_case_ , snake_case_ ) self.parent.assertEqual( getattr(snake_case_ , snake_case_ ) , snake_case_ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case_ , snake_case_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case_ ): try: __lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case_ , snake_case_ ) , snake_case_ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case_ , snake_case_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(snake_case_ , """config.json""" ) config_first.to_json_file(snake_case_ ) __lowerCAmelCase = self.config_class.from_json_file(snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case_ ) __lowerCAmelCase = self.config_class.from_pretrained(snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = """test""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(snake_case_ , snake_case_ ) config_first.save_pretrained(snake_case_ ) __lowerCAmelCase = self.config_class.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def A__ ( self ) -> Tuple: if self.config_class.is_composition: return __lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(snake_case_ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = copy.deepcopy(snake_case_ ) __lowerCAmelCase = self.config_class(**snake_case_ ) __lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(snake_case_ , snake_case_ ) != value: wrong_values.append((key, getattr(snake_case_ , snake_case_ ), value) ) if len(snake_case_ ) > 0: __lowerCAmelCase = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def A__ ( self ) -> str: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
301
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1