code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import Any class __A : """simple docstring""" def __init__( self , __A ) -> Union[str, Any]: a =data a =None class __A : """simple docstring""" def __init__( self ) -> List[str]: a =None def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.head while temp is not None: print(temp.data , end=''' ''' ) a =temp.next print() def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: a =Node(__A ) a =self.head a =new_node def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> str: if node_data_a == node_data_a: return else: a =self.head while node_a is not None and node_a.data != node_data_a: a =node_a.next a =self.head while node_a is not None and node_a.data != node_data_a: a =node_a.next if node_a is None or node_a is None: return a , a =node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase_ : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
81
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowerCAmelCase = [] _lowerCAmelCase = list(range(snake_case ) ) # Find permutation while factorials: _lowerCAmelCase = factorials.pop() _lowerCAmelCase , _lowerCAmelCase = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
82
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A__ ( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowercase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def A__ ( UpperCAmelCase_ ): try: int(UpperCAmelCase_ ) return True except ValueError: return False def A__ ( UpperCAmelCase_ ): try: float(UpperCAmelCase_ ) return True except ValueError: return False class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = args _UpperCamelCase : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file ,newline='' ) as csv_file: _UpperCamelCase : List[Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: _UpperCamelCase : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _UpperCamelCase : Optional[int] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _UpperCamelCase : Dict = float(row['result'] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[int] = plt.subplots() _UpperCamelCase : List[str] = 'Time usage' if self.args.is_time else 'Memory usage' _UpperCamelCase : List[Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCamelCase : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) _UpperCamelCase : Optional[int] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _UpperCamelCase : List[str] = self.result_dict[model_name]['result'] ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCamelCase : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCamelCase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] ,dtype=lowerCamelCase__ ,) else: _UpperCamelCase : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] ,dtype=np.floataa ,) ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _UpperCamelCase : Dict = np.asarray(lowerCamelCase__ ,lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ ,lowerCamelCase__ ,label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCamelCase__ ,lowerCamelCase__ ,'--' ) title_str += F' {label_model_name} vs.' _UpperCamelCase : Optional[Any] = title_str[:-4] _UpperCamelCase : str = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A__ ( ): _UpperCamelCase : str = HfArgumentParser(UpperCAmelCase_ ) _UpperCamelCase : Dict = parser.parse_args_into_dataclasses()[0] _UpperCamelCase : List[str] = Plot(args=UpperCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
83
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _SCREAMING_SNAKE_CASE : def __init__( self , __A=None , **__A ) -> Optional[int]: logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowerCAmelCase_ :Dict = model lowerCAmelCase_ :List[Any] = kwargs.get("""model_save_dir""" , __A ) lowerCAmelCase_ :Dict = kwargs.get("""latest_model_name""" , __A ) def __call__( self , **__A ) -> Any: lowerCAmelCase_ :List[Any] = {k: np.array(__A ) for k, v in kwargs.items()} return self.model.run(__A , __A ) @staticmethod def __lowerCAmelCase ( __A , __A=None , __A=None ) -> str: if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowerCAmelCase_ :Optional[Any] = """CPUExecutionProvider""" return ort.InferenceSession(__A , providers=[provider] , sess_options=__A ) def __lowerCAmelCase ( self , __A , __A = None , **__A ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase_ :Any = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase_ :str = Path(__A ).joinpath(__A ) try: shutil.copyfile(__A , __A ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase_ :Union[str, Any] = self.model_save_dir.joinpath(__A ) if src_path.exists(): lowerCAmelCase_ :List[str] = Path(__A ).joinpath(__A ) try: shutil.copyfile(__A , __A ) except shutil.SameFileError: pass def __lowerCAmelCase ( self , __A , **__A , ) -> Union[str, Any]: if os.path.isfile(__A ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(__A , exist_ok=__A ) # saving model weights/files self._save_pretrained(__A , **__A ) @classmethod def __lowerCAmelCase ( cls , __A , __A = None , __A = None , __A = False , __A = None , __A = None , __A = None , __A = None , **__A , ) -> int: lowerCAmelCase_ :List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__A ): lowerCAmelCase_ :Optional[int] = OnnxRuntimeModel.load_model( os.path.join(__A , __A ) , provider=__A , sess_options=__A ) lowerCAmelCase_ :int = Path(__A ) # load model from hub else: # download model lowerCAmelCase_ :Optional[int] = hf_hub_download( repo_id=__A , filename=__A , use_auth_token=__A , revision=__A , cache_dir=__A , force_download=__A , ) lowerCAmelCase_ :Optional[int] = Path(__A ).parent lowerCAmelCase_ :Optional[Any] = Path(__A ).name lowerCAmelCase_ :str = OnnxRuntimeModel.load_model(__A , provider=__A , sess_options=__A ) return cls(model=__A , **__A ) @classmethod def __lowerCAmelCase ( cls , __A , __A = True , __A = None , __A = None , **__A , ) -> Union[str, Any]: lowerCAmelCase_ :str = None if len(str(__A ).split("""@""" ) ) == 2: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=__A , revision=__A , cache_dir=__A , force_download=__A , use_auth_token=__A , **__A , )
84
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
'''simple docstring''' import math def UpperCamelCase_( snake_case : int = 1_0_0 ): '''simple docstring''' snake_case_ = sum(i * i for i in range(1 , n + 1 ) ) snake_case_ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
85
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum): A_ : List[Any] = 0 A_ : Dict = 1 A_ : Union[str, Any] = 2 @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): A_ : str = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Any = None if self.model.config.prefix is not None: __lowerCAmelCase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params ) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : List[str] = {**self._forward_params, **forward_params} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Optional[int] = {} if prefix is not None: __lowerCAmelCase : Union[str, Any] = prefix if prefix: __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : List[Any] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ' [None, \'hole\']' ) __lowerCAmelCase : int = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = generate_kwargs __lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : List[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : str = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : Union[str, Any] = generate_kwargs['max_new_tokens'] else: __lowerCAmelCase : Any = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowerCAmelCase : int = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : List[Any] = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = model_inputs['input_ids'] __lowerCAmelCase : List[Any] = model_inputs.get('attention_mask' , _SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : str = None __lowerCAmelCase : Tuple = 1 else: __lowerCAmelCase : Any = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : Optional[int] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowerCAmelCase : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : List[str] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Dict = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Dict = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase : Any = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Any = model_outputs['generated_sequence'][0] __lowerCAmelCase : Tuple = model_outputs['input_ids'] __lowerCAmelCase : Any = model_outputs['prompt_text'] __lowerCAmelCase : int = generated_sequence.numpy().tolist() __lowerCAmelCase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : Any = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Optional[Any] = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Union[str, Any] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : int = text[prompt_length:] __lowerCAmelCase : Dict = {'generated_text': all_text} records.append(_SCREAMING_SNAKE_CASE ) return records
86
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase = df.iloc[:, 1:2] UpperCamelCase = actual_data.values.reshape(len_data, 1) UpperCamelCase = MinMaxScaler().fit_transform(actual_data) UpperCamelCase = 10 UpperCamelCase = 5 UpperCamelCase = 20 UpperCamelCase = len_data - periods * look_back UpperCamelCase = actual_data[:division] UpperCamelCase = actual_data[division - look_back :] UpperCamelCase , UpperCamelCase = [], [] UpperCamelCase , UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase = np.array(train_x) UpperCamelCase = np.array(test_x) UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase = model.predict(x_test)
87
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=99 , UpperCamelCase__ : Dict=36 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Dict=6 , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=1000 , ) -> Optional[int]: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = text_seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __magic_name__ = text_seq_length __magic_name__ = (image_size // patch_size) ** 2 + 1 __magic_name__ = self.text_seq_length + self.image_seq_length def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __magic_name__ = bbox[i, j, 3] __magic_name__ = bbox[i, j, 1] __magic_name__ = t if bbox[i, j, 2] < bbox[i, j, 0]: __magic_name__ = bbox[i, j, 2] __magic_name__ = bbox[i, j, 0] __magic_name__ = t __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.text_seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __magic_name__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" __magic_name__ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image __magic_name__ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __magic_name__ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> Tuple: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = False a__ = False a__ = False a__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a__ = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" return True def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = LayoutLMvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" __magic_name__ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): __magic_name__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self : str ) -> Tuple: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Dict ) -> int: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) __magic_name__ = torch.tensor([[1, 2]] ) __magic_name__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __magic_name__ = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits __magic_name__ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) __magic_name__ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
88
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Dict = LEDTokenizer lowerCAmelCase : List[str] = LEDTokenizerFast lowerCAmelCase : List[Any] = True def __lowercase ( self : List[str] ): super().setUp() _a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _a : Tuple = dict(zip(_UpperCAmelCase ,range(len(_UpperCAmelCase ) ) ) ) _a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _a : Tuple = {'unk_token': '<unk>'} _a : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def __lowercase ( self : List[Any] ,**_UpperCAmelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Dict ,**_UpperCAmelCase : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Any ,_UpperCAmelCase : Any ): return "lower newer", "lower newer" @cached_property def __lowercase ( self : str ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowercase ( self : Optional[Any] ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowercase ( self : List[str] ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Optional[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : List[Any] = tokenizer(_UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _a : int = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @require_torch def __lowercase ( self : Union[str, Any] ): _a : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : int = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIn('input_ids' ,_UpperCAmelCase ) self.assertIn('attention_mask' ,_UpperCAmelCase ) self.assertNotIn('labels' ,_UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' ,_UpperCAmelCase ) @require_torch def __lowercase ( self : str ): _a : List[Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(text_target=_UpperCAmelCase ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def __lowercase ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Any = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 5122) ) @require_torch def __lowercase ( self : List[str] ): _a : int = ['A long paragraph for summarization.'] _a : int = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(_UpperCAmelCase ,return_tensors='pt' ) _a : List[str] = tokenizer(text_target=_UpperCAmelCase ,return_tensors='pt' ) _a : List[Any] = inputs['input_ids'] _a : Tuple = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowercase ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Optional[Any] = ['Summary of the text.', 'Another summary.'] _a : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a : List[Any] = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ) _a : int = [[0] * len(_UpperCAmelCase ) for x in encoded_output['input_ids']] _a : List[Any] = tokenizer.pad(_UpperCAmelCase ) self.assertSequenceEqual(outputs['global_attention_mask'] ,_UpperCAmelCase ) def __lowercase ( self : List[str] ): pass def __lowercase ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = 'A, <mask> AllenNLP sentence.' _a : int = tokenizer_r.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) _a : List[Any] = tokenizer_p.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _a : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _a : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
89
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
90
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
"""simple docstring""" from __future__ import annotations import math def _A (__a , __a , __a , __a , __a ) -> int: """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __a , __a , __a ) , minimax(depth + 1 , node_index * 2 + 1 , __a , __a , __a ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __a , __a , __a ) , minimax(depth + 1 , node_index * 2 + 1 , __a , __a , __a ) , ) ) def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE_ : Any = math.log(len(__a ) , 2 ) print(f'Optimal value : {minimax(0 , 0 , __a , __a , __a )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
91
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase__ ( lowerCamelCase_ ): def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self ): """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ : List[Any] = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def _snake_case ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ : Optional[Any] = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self ): """simple docstring""" import PIL.Image lowercase_ : Optional[Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=__SCREAMING_SNAKE_CASE ) as mock_cast_to_python_objects: lowercase_ : int = pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] , type=Image() ) ) lowercase_ , lowercase_ : Optional[int] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , __SCREAMING_SNAKE_CASE ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = pa.BufferReader(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , pa.Buffer ) else pa.memory_map(__SCREAMING_SNAKE_CASE ) lowercase_ : str = pa.ipc.open_stream(__SCREAMING_SNAKE_CASE ) lowercase_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Any = pa.BufferOutputStream() lowercase_ : Union[str, Any] = pa.schema(__SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=__SCREAMING_SNAKE_CASE , schema=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase_ , lowercase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : Union[str, Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case_ ( ): """simple docstring""" lowercase_ : Optional[int] = pa.BufferOutputStream() lowercase_ : Union[str, Any] = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase_ : Union[str, Any] = pa.BufferReader(output.getvalue() ) lowercase_ : Dict = pa.ipc.open_stream(__SCREAMING_SNAKE_CASE ) lowercase_ : pa.Table = f.read_all() lowercase_ : Tuple = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : int = pa.BufferOutputStream() with ArrowWriter( stream=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE , hash_salt='''split_name''' , check_duplicates=__SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(__SCREAMING_SNAKE_CASE ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) lowercase_ , lowercase_ : List[str] = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE , hash_salt='''split_name''' , check_duplicates=__SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(__SCREAMING_SNAKE_CASE ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) lowercase_ , lowercase_ : Tuple = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE , hash_salt='''split_name''' , check_duplicates=__SCREAMING_SNAKE_CASE , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) lowercase_ , lowercase_ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Optional[Any] = pa.BufferOutputStream() lowercase_ : Any = pa.schema(__SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=__SCREAMING_SNAKE_CASE , schema=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) lowercase_ , lowercase_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : str = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Any = pa.BufferOutputStream() lowercase_ : Optional[int] = pa.schema(__SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=__SCREAMING_SNAKE_CASE , schema=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) lowercase_ , lowercase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : Union[str, Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : int = pa.BufferOutputStream() lowercase_ : Union[str, Any] = pa.schema(__SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=__SCREAMING_SNAKE_CASE , schema=__SCREAMING_SNAKE_CASE , writer_batch_size=__SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) lowercase_ , lowercase_ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ : List[Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case_ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Union[str, Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} lowercase_ : int = os.path.join(__SCREAMING_SNAKE_CASE , '''test.arrow''' ) with ArrowWriter(path=__SCREAMING_SNAKE_CASE , schema=pa.schema(__SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) lowercase_ , lowercase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(__SCREAMING_SNAKE_CASE , 1 ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if pa.types.is_list(__SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if isinstance(lst[0] , __SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] , __SCREAMING_SNAKE_CASE ) else: lowercase_ : Tuple = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Union[str, Any] = pa.array(TypedSequence(__SCREAMING_SNAKE_CASE , optimized_int_type=__SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Any = pa.array(OptimizedTypedSequence(__SCREAMING_SNAKE_CASE , col=__SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase_ : Union[str, Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = pa.array(OptimizedTypedSequence(__SCREAMING_SNAKE_CASE , col=__SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Dict = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : List[str] = '''mock://dataset-train.arrow''' with ArrowWriter(path=__SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase_ , lowercase_ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__SCREAMING_SNAKE_CASE ) def snake_case_ ( ): """simple docstring""" lowercase_ : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=__SCREAMING_SNAKE_CASE ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase_ , lowercase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase_ : Optional[int] = pa.BufferReader(output.getvalue() ) lowercase_ : pa.Table = pq.read_table(__SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" import PIL.Image lowercase_ : Any = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__SCREAMING_SNAKE_CASE , format='''png''' ) lowercase_ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=__SCREAMING_SNAKE_CASE , features=Features({'''image''': Image()} ) , embed_local_files=__SCREAMING_SNAKE_CASE ) as writer: writer.write({'''image''': image_path} ) writer.finalize() lowercase_ : Tuple = pa.BufferReader(output.getvalue() ) lowercase_ : pa.Table = pq.read_table(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case_ ( ): """simple docstring""" lowercase_ : Any = pa.schema([pa.field('''col_1''' , pa.string() , nullable=__SCREAMING_SNAKE_CASE )] ) lowercase_ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter(stream=__SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=__SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
93
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[int] = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'gpt_neox_japanese' def __init__( self , _lowerCamelCase=3_2000 , _lowerCamelCase=2560 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=1.00 , _lowerCamelCase=1_0000 , _lowerCamelCase=2048 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=3_1996 , _lowerCamelCase=3_1999 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , **_lowerCamelCase , ): super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Optional[Any] = vocab_size a :int = max_position_embeddings a :Optional[int] = hidden_size a :Optional[Any] = num_hidden_layers a :Any = num_attention_heads a :Any = intermediate_multiple_size a :Optional[int] = hidden_act a :Tuple = rotary_pct a :Optional[int] = rotary_emb_base a :Any = initializer_range a :List[str] = layer_norm_eps a :List[str] = use_cache a :Tuple = attention_dropout a :List[str] = hidden_dropout
94
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
from importlib import import_module from .logging import get_logger UpperCAmelCase : int = get_logger(__name__) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' a__ : int =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Any =module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class __lowerCAmelCase : _lowercase : List[Any] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[str]: '''simple docstring''' a__ : Optional[int] =obj a__ : Tuple =target a__ : Tuple =new a__ : str =target.split("." )[0] a__ : str ={} a__ : int =attrs or [] def __enter__( self ) -> str: '''simple docstring''' *a__ , a__ : List[Any] =self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: a__ : Optional[int] =import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ : Optional[int] =getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): a__ : Dict =obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) a__ : Union[str, Any] =getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) a__ : int =getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ : Any =getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: a__ : Optional[Any] =getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ : Dict =globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *lowerCAmelCase__ ) -> str: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def _lowercase ( self ) -> str: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
95
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( lowercase__ ): _lowerCamelCase : str = SwinConfig() _lowerCamelCase : str = swin_name.split('_' ) _lowerCamelCase : Union[str, Any] = name_split[1] _lowerCamelCase : str = int(name_split[4] ) _lowerCamelCase : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": _lowerCamelCase : Any = 96 _lowerCamelCase : Optional[Any] = (2, 2, 6, 2) _lowerCamelCase : Dict = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase : Tuple = 96 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : Tuple = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase : Tuple = 128 _lowerCamelCase : int = (2, 2, 18, 2) _lowerCamelCase : Tuple = (4, 8, 16, 32) else: _lowerCamelCase : Any = 192 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : str = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCamelCase : Any = 21841 else: _lowerCamelCase : str = 1000 _lowerCamelCase : List[Any] = 'huggingface/label-files' _lowerCamelCase : List[str] = 'imagenet-1k-id2label.json' _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : int = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = img_size _lowerCamelCase : List[Any] = num_classes _lowerCamelCase : Any = embed_dim _lowerCamelCase : Any = depths _lowerCamelCase : Dict = num_heads _lowerCamelCase : Any = window_size return config def _snake_case ( lowercase__ ): if "patch_embed.proj" in name: _lowerCamelCase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCamelCase : Tuple = 'encoder.' + name if "attn.proj" in name: _lowerCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _lowerCamelCase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowerCamelCase : Any = 'layernorm.bias' if "head" in name: _lowerCamelCase : Dict = name.replace('head' , 'classifier' ) else: _lowerCamelCase : Tuple = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase : Dict = key.split('.' ) _lowerCamelCase : Optional[Any] = int(key_split[1] ) _lowerCamelCase : Any = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Union[str, Any] = val[:dim, :] _lowerCamelCase : int = val[ dim : dim * 2, : ] _lowerCamelCase : int = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[ :dim ] _lowerCamelCase : Dict = val[ dim : dim * 2 ] _lowerCamelCase : Optional[Any] = val[ -dim: ] else: _lowerCamelCase : str = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() _lowerCamelCase : Tuple = get_swin_config(lowercase__ ) _lowerCamelCase : Optional[int] = SwinForImageClassification(lowercase__ ) model.eval() _lowerCamelCase : int = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _lowerCamelCase : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Dict = image_processor(images=lowercase__ , return_tensors='pt' ) _lowerCamelCase : Tuple = timm_model(inputs['pixel_values'] ) _lowerCamelCase : List[Any] = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
96
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
'''simple docstring''' from ... import PretrainedConfig __snake_case = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowercase ( A__ ): """simple docstring""" _a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _a = 'nezha' def __init__( self , UpperCamelCase_=21128 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=64 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0.1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :List[Any] = hidden_act UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :Optional[int] = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :int = max_relative_position UpperCamelCase__ :Optional[int] = type_vocab_size UpperCamelCase__ :List[Any] = initializer_range UpperCamelCase__ :Any = layer_norm_eps UpperCamelCase__ :Dict = classifier_dropout UpperCamelCase__ :Optional[int] = use_cache
97
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = KandinskyInpaintPipeline snake_case__ = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] snake_case__ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] snake_case__ = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case__ = False @property def __lowerCAmelCase ( self : Any ): return 32 @property def __lowerCAmelCase ( self : Union[str, Any] ): return 32 @property def __lowerCAmelCase ( self : Dict ): return self.time_input_dim @property def __lowerCAmelCase ( self : Dict ): return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Dict ): return 100 @property def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __lowerCAmelCase ( self : str ): torch.manual_seed(0 ) UpperCAmelCase__ = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_005 ,) UpperCAmelCase__ = MultilingualCLIP(lowerCamelCase__ ) UpperCAmelCase__ = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase__ = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __lowerCAmelCase ( self : str ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : str ): torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.dummy_text_encoder UpperCAmelCase__ = self.dummy_tokenizer UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=1_000 ,beta_schedule='linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=lowerCamelCase__ ,) UpperCAmelCase__ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict=0 ): UpperCAmelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(lowerCamelCase__ ) # create init_image UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] UpperCAmelCase__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((256, 256) ) # create mask UpperCAmelCase__ = np.ones((64, 64) ,dtype=np.floataa ) UpperCAmelCase__ = 0 if str(lowerCamelCase__ ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase__ = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = 'cpu' UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**lowerCamelCase__ ) UpperCAmelCase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) ,return_dict=lowerCamelCase__ ,)[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __lowerCAmelCase ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase__ = np.ones((768, 768) ,dtype=np.floataa ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 'a hat' UpperCAmelCase__ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) UpperCAmelCase__ = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' ,torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() UpperCAmelCase__ = pipeline( lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,image_embeds=lowerCamelCase__ ,negative_image_embeds=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=100 ,height=768 ,width=768 ,output_type='np' ,) UpperCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ )
98
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
import random class A__ : """simple docstring""" @staticmethod def __lowercase ( lowercase) -> tuple[list[int], list[int]]: '''simple docstring''' a__ : Union[str, Any] = [ord(lowercase) for i in text] a__ : int = [] a__ : List[str] = [] for i in plain: a__ : Optional[Any] = random.randint(1 , 300) a__ : Optional[Any] = (i + k) * k cipher.append(lowercase) key.append(lowercase) return cipher, key @staticmethod def __lowercase ( lowercase , lowercase) -> str: '''simple docstring''' a__ : str = [] for i in range(len(lowercase)): a__ : Dict = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowercase)) return "".join(lowercase) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
99
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ :Union[str, Any] = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :str = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase__ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
101
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_55 , a_ = True , a_ = None , a_ = None , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Any = size if size is not None else {'''shortest_edge''': 2_56} __snake_case : Tuple = get_size_dict(a_ , default_to_square=a_ ) __snake_case : Dict = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __snake_case : Union[str, Any] = get_size_dict(a_ , param_name='''crop_size''' ) __snake_case : Optional[int] = do_resize __snake_case : Tuple = size __snake_case : Optional[int] = resample __snake_case : str = do_center_crop __snake_case : str = crop_size __snake_case : Tuple = do_rescale __snake_case : Tuple = rescale_factor __snake_case : Dict = do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BICUBIC , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Tuple = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' __snake_case : List[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): '''simple docstring''' __snake_case : int = do_resize if do_resize is not None else self.do_resize __snake_case : Optional[Any] = size if size is not None else self.size __snake_case : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) __snake_case : str = resample if resample is not None else self.resample __snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size __snake_case : List[Any] = get_size_dict(a_ , param_name='''crop_size''' ) __snake_case : int = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Dict = image_mean if image_mean is not None else self.image_mean __snake_case : Tuple = image_std if image_std is not None else self.image_std __snake_case : Dict = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __snake_case : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case : Dict = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case : List[Any] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case : str = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(a_ ): __snake_case : Optional[Any] = target_sizes.numpy() __snake_case : Dict = [] for idx in range(len(a_ ) ): __snake_case : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=a_ ) __snake_case : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: __snake_case : int = logits.argmax(dim=1 ) __snake_case : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
102
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : str = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['''DeiTFeatureExtractor'''] A__ : int = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( A__ ): # picklable for multiprocessing """simple docstring""" return x.sum() def _A ( A__ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : str class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = {} __lowercase = [] __lowercase = 1 __lowercase = [1, 2] __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': [1, 2], '''b''': [3, 4]} __lowercase = {'''a''': {'''1''': 1}, '''b''': 2} __lowercase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __lowercase = {} __lowercase = [] __lowercase = 2 __lowercase = [2, 3] __lowercase = {'''a''': 2, '''b''': 3} __lowercase = {'''a''': [2, 3], '''b''': [4, 5]} __lowercase = {'''a''': {'''1''': 2}, '''b''': 3} __lowercase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) __lowercase = 2 self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) __lowercase = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} __lowercase = {'''a''': 2, '''b''': 0, '''c''': 2} __lowercase = { '''a''': np.eye(2 ).astype(lowercase__ ), '''b''': np.zeros(3 ).astype(lowercase__ ), '''c''': np.ones(2 ).astype(lowercase__ ), } self.assertEqual(map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ) ,lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ,num_proc=lowercase__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) with self.assertRaises(lowercase__ ): # can't pickle a local lambda map_nested(lambda lowercase__ : x + 1 ,lowercase__ ,num_proc=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': 3, '''b''': 4} __lowercase = {'''a''': 5, '''b''': 6} __lowercase = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase__ ,lowercase__ ,lowercase__ ) ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 'bar' __lowercase = Foo() self.assertEqual(foo.my_attr ,'''bar''' ) with temporary_assignment(lowercase__ ,'''my_attr''' ,'''BAR''' ): self.assertEqual(foo.my_attr ,'''BAR''' ) self.assertEqual(foo.my_attr ,'''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( A__ , A__ , A__ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: __lowercase = {F"{i}": i for i in range(A__ )} __lowercase = map_nested(lambda A__ : x + 10 , A__ , num_proc=A__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowercase_ (lowerCamelCase__ ): """simple docstring""" @require_tf def SCREAMING_SNAKE_CASE ( self : Any ): import tensorflow as tf from tensorflow.keras import layers __lowercase = layers.Dense(2 ) def gen_random_output(): __lowercase = tf.random.uniform((1, 3) ) return model(lowercase__ ).numpy() with temp_seed(4_2 ,set_tensorflow=lowercase__ ): __lowercase = gen_random_output() with temp_seed(4_2 ,set_tensorflow=lowercase__ ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): import torch def gen_random_output(): __lowercase = torch.nn.Linear(3 ,2 ) __lowercase = torch.rand(1 ,3 ) return model(lowercase__ ).detach().numpy() with temp_seed(4_2 ,set_pytorch=lowercase__ ): __lowercase = gen_random_output() with temp_seed(4_2 ,set_pytorch=lowercase__ ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): def gen_random_output(): return np.random.rand(1 ,3 ) with temp_seed(4_2 ): __lowercase = gen_random_output() with temp_seed(4_2 ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def _A ( A__ ): """simple docstring""" __lowercase = NestedDataStructure(A__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = NestedDataStructure(A__ ).flatten() assert output == expected_output def _A ( ): """simple docstring""" __lowercase = A(x=1 , y='''foobar''' ) __lowercase = {'''x''': 1, '''y''': '''foobar'''} assert asdict(A__ ) == expected_output __lowercase = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} __lowercase = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(A__ ) == expected_output with pytest.raises(A__ ): asdict([1, A(x=10 , y='''foo''' )] ) def _A ( A__ ): """simple docstring""" return text.split() def _A ( A__ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): """simple docstring""" with Pool(2 ) as pool: __lowercase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __lowercase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __lowercase = [] for yield_time, content in iflatmap_unordered( A__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(A__ ) == 4
104
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : jnp.ndarray @flax_register_to_config class __UpperCamelCase ( nn.Module , a__ , a__ ): lowerCamelCase : int =32 lowerCamelCase : int =4 lowerCamelCase : int =4 lowerCamelCase : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCamelCase : Union[bool, Tuple[bool]] =False lowerCamelCase : Tuple[int] =(320, 640, 1280, 1280) lowerCamelCase : int =2 lowerCamelCase : Union[int, Tuple[int]] =8 lowerCamelCase : Optional[Union[int, Tuple[int]]] =None lowerCamelCase : int =1280 lowerCamelCase : float =0.0 lowerCamelCase : bool =False lowerCamelCase : jnp.dtype =jnp.floataa lowerCamelCase : bool =True lowerCamelCase : int =0 lowerCamelCase : bool =False def __a ( self , lowerCAmelCase__ ) -> FrozenDict: # init input tensors a : int = (1, self.in_channels, self.sample_size, self.sample_size) a : Dict = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) a : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) a : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a, a : str = jax.random.split(lowerCAmelCase__ ) a : Dict = {"params": params_rng, "dropout": dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def __a ( self ) -> Optional[int]: a : List[str] = self.block_out_channels a : Dict = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a : Tuple = self.num_attention_heads or self.attention_head_dim # input a : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a : Union[str, Any] = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) a : Any = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down a : Optional[Any] = [] a : str = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a : Optional[Any] = output_channel a : str = block_out_channels[i] a : int = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": a : Dict = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) a : int = down_blocks # mid a : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a : Any = [] a : Optional[int] = list(reversed(lowerCAmelCase__ ) ) a : Tuple = list(reversed(lowerCAmelCase__ ) ) a : Dict = list(reversed(lowerCAmelCase__ ) ) a : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a : Optional[int] = output_channel a : str = reversed_block_out_channels[i] a : List[Any] = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] a : Optional[Any] = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": a : str = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) a : Union[str, Any] = output_channel a : List[Any] = up_blocks # out a : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(lowerCAmelCase__ , jnp.ndarray ): a : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: a : Any = timesteps.astype(dtype=jnp.floataa ) a : int = jnp.expand_dims(lowerCAmelCase__ , 0 ) a : Any = self.time_proj(lowerCAmelCase__ ) a : Union[str, Any] = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process a : Tuple = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) a : Optional[int] = self.conv_in(lowerCAmelCase__ ) # 3. down a : Dict = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a, a : Optional[Any] = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: a, a : Optional[int] = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a : Optional[Any] = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a : List[str] = new_down_block_res_samples # 4. mid a : Optional[Any] = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a : Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] a : Any = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[int] = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: a : Optional[Any] = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process a : List[Any] = self.conv_norm_out(lowerCAmelCase__ ) a : str = nn.silu(lowerCAmelCase__ ) a : List[Any] = self.conv_out(lowerCAmelCase__ ) a : List[Any] = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
105
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = FileLock(str(tmpdir / '''foo.lock''' ) ) lowerCAmelCase__ : Dict = FileLock(str(tmpdir / '''foo.lock''' ) ) lowerCAmelCase__ : Optional[int] = 0.01 with locka.acquire(): with pytest.raises(A_ ): lowerCAmelCase__ : Optional[int] = time.time() locka.acquire(A_ ) assert time.time() - _start > timeout def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = '''a''' * 10_00 + '''.lock''' lowerCAmelCase__ : Dict = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 lowerCAmelCase__ : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A_ ): locka.acquire(0 )
106
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCAmelCase : List[str] = logging.get_logger(__name__) def __magic_name__ ( A : Dict, A : int, A : Optional[int] ): '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __magic_name__ ( A : np.ndarray, A : Optional[str], A : Optional[str] = None ): '''simple docstring''' a = tesseract_config if tesseract_config is not None else "" # apply OCR a = to_pil_image(A ) a , a = pil_image.size a = pytesseract.image_to_data(A, lang=A, output_type="dict", config=A ) a , a , a , a , a = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates a = [idx for idx, word in enumerate(A ) if not word.strip()] a = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] a = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format a = [] for x, y, w, h in zip(A, A, A, A ): a = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes a = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A, A, A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["""pixel_values"""] def __init__( self : int , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "" , **__lowerCamelCase : Tuple , ) -> None: super().__init__(**__lowerCamelCase ) a = size if size is not None else {"height": 2_24, "width": 2_24} a = get_size_dict(__lowerCamelCase ) a = do_resize a = size a = resample a = apply_ocr a = ocr_lang a = tesseract_config def __UpperCAmelCase ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ) -> np.ndarray: a = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) a = (size["height"], size["width"]) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Optional[Any] , ) -> PIL.Image.Image: a = do_resize if do_resize is not None else self.do_resize a = size if size is not None else self.size a = get_size_dict(__lowerCamelCase ) a = resample if resample is not None else self.resample a = apply_ocr if apply_ocr is not None else self.apply_ocr a = ocr_lang if ocr_lang is not None else self.ocr_lang a = tesseract_config if tesseract_config is not None else self.tesseract_config a = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. a = [to_numpy_array(__lowerCamelCase ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) a = [] a = [] for image in images: a , a = apply_tesseract(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) words_batch.append(__lowerCamelCase ) boxes_batch.append(__lowerCamelCase ) if do_resize: a = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) a = [flip_channel_order(__lowerCamelCase ) for image in images] a = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] a = BatchFeature(data={"pixel_values": images} , tensor_type=__lowerCamelCase ) if apply_ocr: a = words_batch a = boxes_batch return data
107
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = get_activation("swish" ) self.assertIsInstance(snake_case__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_activation("silu" ) self.assertIsInstance(snake_case__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = get_activation("mish" ) self.assertIsInstance(snake_case__ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_activation("gelu" ) self.assertIsInstance(snake_case__ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
108
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A: int = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = ["DeiTFeatureExtractor"] A: Dict = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _UpperCamelCase = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _UpperCamelCase = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _UpperCamelCase = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = compute_bleu( reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase ) (__UpperCAmelCase) : str = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
254
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> List[Any]: A__ : str = None if token is not None: A__ : List[Any] = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} A__ : int = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" A__ : Union[str, Any] = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() A__ : Union[str, Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Any = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_lowerCAmelCase ): A__ : Union[str, Any] = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCAmelCase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCamelCase (lowercase_: str , lowercase_: List[Any]=None ) -> Tuple: A__ : Tuple = None if token is not None: A__ : Tuple = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} A__ : Optional[int] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" A__ : Optional[int] = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() A__ : Tuple = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) A__ : str = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_lowerCAmelCase ): A__ : int = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCAmelCase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Union[str, Any] , lowercase_: Any , lowercase_: str ) -> Union[str, Any]: A__ : Dict = None if token is not None: A__ : Any = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} A__ : Tuple = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase , allow_redirects=_lowerCAmelCase ) A__ : List[Any] = result.headers["Location"] A__ : Tuple = requests.get(_lowerCAmelCase , allow_redirects=_lowerCAmelCase ) A__ : List[Any] = os.path.join(_lowerCAmelCase , f"""{artifact_name}.zip""" ) with open(_lowerCAmelCase , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Optional[Any]=None ) -> List[Any]: A__ : Optional[Any] = [] A__ : Optional[Any] = [] A__ : Dict = None with zipfile.ZipFile(_lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCAmelCase ) as f: for line in f: A__ : int = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A__ : Any = line[: line.index(""": """ )] A__ : int = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed A__ : str = line[len("""FAILED """ ) :] failed_tests.append(_lowerCAmelCase ) elif filename == "job_name.txt": A__ : Tuple = line if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCAmelCase )} for `errors` """ f"""and {len(_lowerCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) A__ : List[Any] = None if job_name and job_links: A__ : Union[str, Any] = job_links.get(_lowerCAmelCase , _lowerCAmelCase ) # A list with elements of the form (line of error, error, failed test) A__ : List[Any] = [x + [y] + [job_link] for x, y in zip(_lowerCAmelCase , _lowerCAmelCase )] return result def UpperCamelCase (lowercase_: List[Any] , lowercase_: Union[str, Any]=None ) -> Optional[Any]: A__ : Optional[int] = [] A__ : Optional[int] = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for p in os.listdir(_lowerCAmelCase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCAmelCase , job_links=_lowerCAmelCase ) ) return errors def UpperCamelCase (lowercase_: Tuple , lowercase_: Any=None ) -> int: A__ : List[Any] = Counter() counter.update([x[1] for x in logs] ) A__ : Any = counter.most_common() A__ : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: A__ : Optional[Any] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} A__ : List[Any] = dict(sorted(r.items() , key=lambda lowercase_ : item[1]["count"] , reverse=_lowerCAmelCase ) ) return r def UpperCamelCase (lowercase_: Optional[int] ) -> int: A__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): A__ : Dict = test.split("""/""" )[2] else: A__ : str = None return test def UpperCamelCase (lowercase_: List[Any] , lowercase_: List[str]=None ) -> Dict: A__ : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] A__ : Optional[Any] = [x for x in logs if x[2] is not None] A__ : Union[str, Any] = {x[2] for x in logs} A__ : Tuple = {} for test in tests: A__ : Optional[Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A__ : Union[str, Any] = counter.most_common() A__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A__ : Optional[int] = sum(error_counts.values() ) if n_errors > 0: A__ : List[Any] = {"count": n_errors, "errors": error_counts} A__ : Tuple = dict(sorted(r.items() , key=lambda lowercase_ : item[1]["count"] , reverse=_lowerCAmelCase ) ) return r def UpperCamelCase (lowercase_: str ) -> int: A__ : Optional[int] = "| no. | error | status |" A__ : Dict = "|-:|:-|:-|" A__ : Union[str, Any] = [header, sep] for error in reduced_by_error: A__ : Optional[int] = reduced_by_error[error]["count"] A__ : str = f"""| {count} | {error[:100]} | |""" lines.append(_lowerCAmelCase ) return "\n".join(_lowerCAmelCase ) def UpperCamelCase (lowercase_: Optional[Any] ) -> List[str]: A__ : Tuple = "| model | no. of errors | major error | count |" A__ : Dict = "|-:|-:|-:|-:|" A__ : List[Any] = [header, sep] for model in reduced_by_model: A__ : Optional[Any] = reduced_by_model[model]["count"] A__ : Optional[Any] = list(reduced_by_model[model]["""errors"""].items() )[0] A__ : Any = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(_lowerCAmelCase ) return "\n".join(_lowerCAmelCase ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') A_ : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) A_ : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : str = k.find(' / ') A_ : Union[str, Any] = k[index + len(' / ') :] A_ : Optional[Any] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : Any = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Optional[int] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : List[str] = reduce_by_error(errors) A_ : str = reduce_by_model(errors) A_ : Union[str, Any] = make_github_table(reduced_by_error) A_ : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
192
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets SCREAMING_SNAKE_CASE_ : List[str] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' SCREAMING_SNAKE_CASE_ : str = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' SCREAMING_SNAKE_CASE_ : List[Any] = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Any=None , UpperCamelCase: int=True , UpperCamelCase: Any=False ): """simple docstring""" if rouge_types is None: A__ = ["rouge1", "rouge2", "rougeL", "rougeLsum"] A__ = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase , use_stemmer=UpperCamelCase ) if use_aggregator: A__ = scoring.BootstrapAggregator() else: A__ = [] for ref, pred in zip(UpperCamelCase , UpperCamelCase ): A__ = scorer.score(UpperCamelCase , UpperCamelCase ) if use_aggregator: aggregator.add_scores(UpperCamelCase ) else: scores.append(UpperCamelCase ) if use_aggregator: A__ = aggregator.aggregate() else: A__ = {} for key in scores[0]: A__ = [score[key] for score in scores] return result
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase = 1.054571817e-34 # unit of ℏ : J * s _lowerCAmelCase = 3e8 # unit of c : m * s^-1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: lowerCAmelCase__ : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase__ : Tuple = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase__ : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
37
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline a__ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : List[Any] = 'utf-8' __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = True # deprecated __SCREAMING_SNAKE_CASE : str = None # deprecated __SCREAMING_SNAKE_CASE : Optional[int] = 10 << 20 # 10MB __SCREAMING_SNAKE_CASE : Optional[Any] = None class a_ ( datasets.ArrowBasedBuilder ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = JsonConfig def __lowerCAmelCase ( self ) ->str: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) SCREAMING_SNAKE_CASE : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE : Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE : int = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = [files] SCREAMING_SNAKE_CASE : int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE : List[str] = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = [files] SCREAMING_SNAKE_CASE : Dict = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE : Optional[Any] = self.config.features.arrow_schema.field(_lowerCamelCase ).type SCREAMING_SNAKE_CASE : int = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.load(_lowerCamelCase ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : List[Any] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE : Optional[Any] = dataset SCREAMING_SNAKE_CASE : List[Any] = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE : int = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE : List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE : str = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE : Any = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: SCREAMING_SNAKE_CASE : int = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE : List[str] = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : Dict = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE : Tuple = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : List[str] ,A : int=13 ,A : int=32 ,A : List[str]=3 ,A : Union[str, Any]=4 ,A : int=[10, 20, 30, 40] ,A : List[str]=[2, 2, 3, 2] ,A : List[Any]=True ,A : Dict=True ,A : List[str]=37 ,A : Union[str, Any]="gelu" ,A : Tuple=10 ,A : Optional[int]=0.02 ,A : Optional[Any]=["stage2", "stage3", "stage4"] ,A : int=[2, 3, 4] ,A : List[Any]=None ,): __A = parent __A = batch_size __A = image_size __A = num_channels __A = num_stages __A = hidden_sizes __A = depths __A = is_training __A = use_labels __A = intermediate_size __A = hidden_act __A = num_labels __A = initializer_range __A = out_features __A = out_indices __A = scope def UpperCamelCase_ ( self : Union[str, Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=A ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ,A : int ,A : Any ): __A = ConvNextModel(config=A ) model.to(A ) model.eval() __A = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : Optional[int] ,A : Any ): __A = ConvNextForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Any ,A : int ,A : List[Any] ,A : Tuple ): __A = ConvNextBackbone(config=A ) model.to(A ) model.eval() __A = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None __A = None __A = ConvNextBackbone(config=A ) model.to(A ) model.eval() __A = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.prepare_config_and_inputs() __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case_ = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Dict ): __A = ConvNextModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : List[str] ): return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def UpperCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def UpperCamelCase_ ( self : Any ): pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): def check_hidden_states_output(A : int ,A : str ,A : List[Any] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A = self.model_tester.num_stages self.assertEqual(len(A ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Any ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = ConvNextModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : str ): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase , lowerCamelCase__ ): '''simple docstring''' snake_case_ = (ConvNextBackbone,) if is_torch_available() else () snake_case_ = ConvNextConfig snake_case_ = False def UpperCamelCase_ ( self : str ): __A = ConvNextModelTester(self )
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _a ( SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _a ( ): """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase__ = [1, 2, 3] with pytest.raises(_lowerCAmelCase ): with parallel_backend('''unsupported backend''' ): map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=2 ) with pytest.raises(_lowerCAmelCase ): with parallel_backend('''unsupported backend''' ): map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend('''spark''' ): assert map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) == expected_map_nested_sa assert map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) == expected_map_nested_sa assert map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) == expected_map_nested_sa assert map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) == expected_map_nested_sa assert map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) == expected_map_nested_sa
110
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
"""simple docstring""" import cmath import math def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = math.radians(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = math.radians(_lowerCAmelCase ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE__ : List[str] = cmath.rect(_lowerCAmelCase ,_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = cmath.rect(_lowerCAmelCase ,_lowerCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[Any]: a__: Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__: Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Any: for i in range(config.num_hidden_layers ): if base_model: a__: Optional[Any] = "" else: a__: Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__: Union[str, Any] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) a__: List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__: int = in_proj_weight[ : config.hidden_size, : ] a__: Union[str, Any] = in_proj_bias[: config.hidden_size] a__: int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__: Dict = in_proj_weight[ -config.hidden_size :, : ] a__: int = in_proj_bias[-config.hidden_size :] def __a ( _SCREAMING_SNAKE_CASE ) ->int: a__: str = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: Dict = dct.pop(_lowerCAmelCase ) a__: Dict = val def __a ( ) ->Dict: a__: Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a__: Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: List[str] = ViTConfig() a__: int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": a__: Tuple = True a__: int = int(vit_name[-12:-10] ) a__: Union[str, Any] = int(vit_name[-9:-6] ) else: a__: List[Any] = 1000 a__: Tuple = "huggingface/label-files" a__: Dict = "imagenet-1k-id2label.json" a__: int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__: Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} a__: List[Any] = idalabel a__: Optional[Any] = {v: k for k, v in idalabel.items()} a__: List[str] = int(vit_name[-6:-4] ) a__: List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): a__: Optional[Any] = 192 a__: Dict = 768 a__: int = 12 a__: List[Any] = 3 elif vit_name[9:].startswith('small' ): a__: Union[str, Any] = 384 a__: List[Any] = 1536 a__: List[str] = 12 a__: List[Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): a__: List[str] = 768 a__: Union[str, Any] = 2304 a__: Tuple = 8 a__: str = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): a__: List[str] = 1024 a__: Tuple = 4096 a__: List[Any] = 24 a__: Optional[Any] = 16 elif vit_name[4:].startswith('huge' ): a__: List[str] = 1280 a__: List[Any] = 5120 a__: str = 32 a__: Any = 16 # load original model from timm a__: Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__: Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) a__: List[str] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": a__: Optional[int] = ViTModel(_lowerCAmelCase ).eval() else: a__: Optional[Any] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: a__: str = DeiTImageProcessor(size=config.image_size ) else: a__: Any = ViTImageProcessor(size=config.image_size ) a__: str = image_processor(images=prepare_img() , return_tensors='pt' ) a__: Dict = encoding["pixel_values"] a__: List[str] = model(_lowerCAmelCase ) if base_model: a__: Dict = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: a__: Optional[Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __UpperCamelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = field(default=lowerCamelCase__ , metadata={"""help""": """Whether to use SortishSampler or not."""} ) SCREAMING_SNAKE_CASE_ : str = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field( default=lowerCamelCase__ , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) SCREAMING_SNAKE_CASE_ : Any = field( default=lowerCamelCase__ , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( default=lowerCamelCase__ , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = v.to_dict() return d
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _a = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ) -> List[Any]: """simple docstring""" __lowerCAmelCase: List[Any] = bnb_quantization_config.load_in_abit __lowerCAmelCase: List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) __lowerCAmelCase: Optional[int] = [] # custom device map if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(device_map.keys() ) > 1: __lowerCAmelCase: Optional[Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowerCAmelCase: int = get_keys_to_not_convert(_lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowerCAmelCase ) __lowerCAmelCase: List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowerCAmelCase: List[str] = [] __lowerCAmelCase: Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowerCAmelCase ) # compatibility with peft __lowerCAmelCase: List[Any] = load_in_abit __lowerCAmelCase: str = load_in_abit __lowerCAmelCase: Any = get_parameter_device(_lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) __lowerCAmelCase: Optional[int] = replace_with_bnb_layers(_lowerCAmelCase , _lowerCAmelCase , modules_to_not_convert=_lowerCAmelCase ) # convert param to the right dtype __lowerCAmelCase: Optional[int] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowerCAmelCase: Tuple = name.replace('.weight' , '' ).replace('.bias' , '' ) __lowerCAmelCase: List[str] = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowerCAmelCase ): param.to(_lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): __lowerCAmelCase: List[str] = replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , modules_to_not_convert=_lowerCAmelCase ) __lowerCAmelCase: Tuple = get_quantized_model_device_map( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , max_memory=_lowerCAmelCase , no_split_module_classes=_lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowerCAmelCase: Optional[int] = True __lowerCAmelCase: Optional[int] = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowerCAmelCase , offload_state_dict=_lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowerCAmelCase , device_map=_lowerCAmelCase , offload_dir=_lowerCAmelCase ) def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Tuple=None ) -> Dict: """simple docstring""" if device_map is None: if torch.cuda.is_available(): __lowerCAmelCase: Union[str, Any] = {"": torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) __lowerCAmelCase: Union[str, Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowerCAmelCase: Any = {} __lowerCAmelCase: List[Any] = special_dtypes __lowerCAmelCase: Union[str, Any] = no_split_module_classes __lowerCAmelCase: List[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowerCAmelCase: str = get_balanced_memory( _lowerCAmelCase , low_zero=(device_map == 'balanced_low_0') , max_memory=_lowerCAmelCase , **_lowerCAmelCase , ) __lowerCAmelCase: Dict = max_memory __lowerCAmelCase: Any = infer_auto_device_map(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # check if don't have any quantized module on the cpu __lowerCAmelCase: List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowerCAmelCase: Optional[int] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : int=None ) -> Union[str, Any]: """simple docstring""" if modules_to_not_convert is None: __lowerCAmelCase: Dict = [] __lowerCAmelCase: List[Any] = _replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : List[Any]=None , ) -> Dict: """simple docstring""" __lowerCAmelCase: Union[str, Any] = False for name, module in model.named_children(): if current_key_name is None: __lowerCAmelCase: List[Any] = [] current_key_name.append(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowerCAmelCase: int = ".".join(_lowerCAmelCase ) __lowerCAmelCase: int = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowerCAmelCase: Union[str, Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowerCAmelCase: str = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __lowerCAmelCase: int = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) __lowerCAmelCase: Optional[int] = module.weight.data if module.bias is not None: __lowerCAmelCase: List[Any] = module.bias.data bnb_module.requires_grad_(_lowerCAmelCase ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase: Optional[int] = True if len(list(module.children() ) ) > 0: __lowerCAmelCase: Dict = _replace_with_bnb_layers( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase: Dict = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" with init_empty_weights(): __lowerCAmelCase: Optional[Any] = deepcopy(_lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowerCAmelCase: str = find_tied_parameters(_lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase: Dict = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowerCAmelCase: Any = sum(_lowerCAmelCase , [] ) __lowerCAmelCase: List[Any] = len(_lowerCAmelCase ) > 0 # Check if it is a base model __lowerCAmelCase: Dict = False if hasattr(_lowerCAmelCase , 'base_model_prefix' ): __lowerCAmelCase: Union[str, Any] = not hasattr(_lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCAmelCase: Optional[Any] = list(model.named_children() ) __lowerCAmelCase: str = [list_modules[-1][0]] # add last module together with tied weights __lowerCAmelCase: str = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) __lowerCAmelCase: int = list(set(_lowerCAmelCase ) ) + list(_lowerCAmelCase ) # remove ".weight" from the keys __lowerCAmelCase: Any = [".weight", ".bias"] __lowerCAmelCase: Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCAmelCase: Tuple = name.replace(_lowerCAmelCase , '' ) filtered_module_names.append(_lowerCAmelCase ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" for m in model.modules(): if isinstance(_lowerCAmelCase , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ) -> List[Any]: """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_lowerCAmelCase , _lowerCAmelCase , 0 , dtype=_lowerCAmelCase , value=_lowerCAmelCase ) __lowerCAmelCase: int = param_name __lowerCAmelCase: str = model if "." in tensor_name: __lowerCAmelCase: List[Any] = tensor_name.split('.' ) for split in splits[:-1]: __lowerCAmelCase: str = getattr(_lowerCAmelCase , _lowerCAmelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) __lowerCAmelCase: Union[str, Any] = new_module __lowerCAmelCase: int = splits[-1] # offload weights __lowerCAmelCase: str = False offload_weight(module._parameters[tensor_name] , _lowerCAmelCase , _lowerCAmelCase , index=_lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , _lowerCAmelCase , index=_lowerCAmelCase , ) else: offload_weight(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index=_lowerCAmelCase ) offload_weight(_lowerCAmelCase , param_name.replace('weight' , 'SCB' ) , _lowerCAmelCase , index=_lowerCAmelCase ) set_module_tensor_to_device(_lowerCAmelCase , _lowerCAmelCase , 'meta' , dtype=_lowerCAmelCase , value=torch.empty(*param.size() ) )
322
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) __UpperCAmelCase : Dict = flatten_dict(_lowerCAmelCase ) return flax_params def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : int = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __UpperCAmelCase : List[Any] = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCAmelCase : str = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCAmelCase : Optional[Any] = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCAmelCase : Any = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCAmelCase : Dict = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , _lowerCAmelCase ) __UpperCAmelCase : List[Any] = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCAmelCase : List[Any] = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , _lowerCAmelCase ) __UpperCAmelCase : List[str] = flax_dict[key] __UpperCAmelCase : Dict = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCAmelCase : List[str] = torch.from_numpy(converted_dict[key].T ) else: __UpperCAmelCase : Optional[int] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str=False ): """simple docstring""" __UpperCAmelCase : int = get_flax_param(_lowerCAmelCase ) if not use_large: __UpperCAmelCase : Union[str, Any] = PixaStructVisionConfig() __UpperCAmelCase : Optional[Any] = PixaStructTextConfig() else: __UpperCAmelCase : int = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCAmelCase : List[Any] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __UpperCAmelCase : Optional[int] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCAmelCase ) __UpperCAmelCase : Dict = PixaStructForConditionalGeneration(_lowerCAmelCase ) __UpperCAmelCase : Dict = rename_and_convert_flax_params(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) __UpperCAmelCase : List[Any] = PixaStructImageProcessor() __UpperCAmelCase : str = PixaStructProcessor(image_processor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) if use_large: __UpperCAmelCase : List[Any] = 4096 __UpperCAmelCase : Union[str, Any] = True # mkdir if needed os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) print("""Model saved in {}""".format(_lowerCAmelCase ) ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') _UpperCamelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
254
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _a (lowerCamelCase__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = (DDPMScheduler,) def __A ( self , **A__ ): A__ : Dict = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**A__ ) return config def __A ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A__ ) def __A ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __A ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A__ ) def __A ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A__ ) def __A ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=A__ ) def __A ( self ): self.check_over_configs(thresholding=A__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A__ , prediction_type=A__ , sample_max_value=A__ , ) def __A ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __A ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=A__ ) def __A ( self ): A__ : Tuple = self.scheduler_classes[0] A__ : List[str] = self.get_scheduler_config() A__ : List[str] = scheduler_class(**A__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def __A ( self ): A__ : int = self.scheduler_classes[0] A__ : List[str] = self.get_scheduler_config() A__ : int = scheduler_class(**A__ ) A__ : Tuple = len(A__ ) A__ : List[str] = self.dummy_model() A__ : Optional[Any] = self.dummy_sample_deter A__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(A__ ) ): # 1. predict noise residual A__ : Tuple = model(A__ , A__ ) # 2. predict previous mean of sample x_t-1 A__ : Dict = scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ : Optional[int] = pred_prev_sample A__ : Tuple = torch.sum(torch.abs(A__ ) ) A__ : str = torch.mean(torch.abs(A__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __A ( self ): A__ : Optional[int] = self.scheduler_classes[0] A__ : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) A__ : List[str] = scheduler_class(**A__ ) A__ : int = len(A__ ) A__ : Dict = self.dummy_model() A__ : str = self.dummy_sample_deter A__ : Any = torch.manual_seed(0 ) for t in reversed(range(A__ ) ): # 1. predict noise residual A__ : Optional[int] = model(A__ , A__ ) # 2. predict previous mean of sample x_t-1 A__ : Tuple = scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ : List[str] = pred_prev_sample A__ : Optional[Any] = torch.sum(torch.abs(A__ ) ) A__ : List[str] = torch.mean(torch.abs(A__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __A ( self ): A__ : str = self.scheduler_classes[0] A__ : Optional[Any] = self.get_scheduler_config() A__ : Dict = scheduler_class(**A__ ) A__ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A__ ) A__ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(A__ ): if i == len(A__ ) - 1: A__ : str = -1 else: A__ : List[str] = timesteps[i + 1] A__ : Optional[int] = scheduler.previous_timestep(A__ ) A__ : List[str] = prev_t.item() self.assertEqual(A__ , A__ ) def __A ( self ): A__ : Optional[Any] = self.scheduler_classes[0] A__ : int = self.get_scheduler_config() A__ : Tuple = scheduler_class(**A__ ) A__ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(A__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A__ ) def __A ( self ): A__ : Any = self.scheduler_classes[0] A__ : Union[str, Any] = self.get_scheduler_config() A__ : Optional[int] = scheduler_class(**A__ ) A__ : Union[str, Any] = [100, 87, 50, 1, 0] A__ : Optional[int] = len(A__ ) with self.assertRaises(A__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A__ , timesteps=A__ ) def __A ( self ): A__ : Union[str, Any] = self.scheduler_classes[0] A__ : Optional[Any] = self.get_scheduler_config() A__ : Optional[int] = scheduler_class(**A__ ) A__ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( A__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A__ )
192
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a : """simple docstring""" UpperCAmelCase = LEDConfig UpperCAmelCase = {} UpperCAmelCase = "gelu" def __init__( self: Optional[int] , UpperCamelCase: List[str] , UpperCamelCase: Any=13 , UpperCamelCase: Optional[int]=7 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: List[str]=False , UpperCamelCase: str=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Dict=2 , UpperCamelCase: Dict=4 , UpperCamelCase: str=37 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=20 , UpperCamelCase: List[str]=2 , UpperCamelCase: List[Any]=1 , UpperCamelCase: Any=0 , UpperCamelCase: Dict=4 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after A__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests A__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) A__ = prepare_led_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = tf.concat( [tf.zeros_like(UpperCamelCase )[:, :-1], tf.ones_like(UpperCamelCase )[:, -1:]] , axis=-1 , ) A__ = global_attention_mask return config, inputs_dict def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = TFLEDModel(config=UpperCamelCase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = 1 # first forward pass A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , use_cache=UpperCamelCase ) A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] A__ = model(UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=None , ): if attention_mask is None: A__ = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a ( lowerCamelCase__, lowerCamelCase__, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = TFLEDModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = tf.zeros_like(inputs_dict["""attention_mask"""] ) A__ = 2 A__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) A__ = True A__ = self.model_tester.seq_length A__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCamelCase: str ): A__ = outputs.decoder_attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCamelCase: int ): A__ = [t.numpy() for t in outputs.encoder_attentions] A__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: A__ = True A__ = False A__ = False A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = len(UpperCamelCase ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) if self.is_encoder_decoder: A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_decoder_attentions_output(UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def UpperCamelCase ( self: int ): """simple docstring""" pass def UpperCamelCase ( self: Dict ): """simple docstring""" pass def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): return tf.constant(_lowerCAmelCase , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1E-4 @slow @require_tf class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here A__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ = prepare_led_inputs_dict(model.config , UpperCamelCase , UpperCamelCase ) A__ = model(**UpperCamelCase )[0] A__ = (1, 10_24, 7_68) self.assertEqual(output.shape , UpperCamelCase ) # change to expected output here A__ = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-3 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here A__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ = prepare_led_inputs_dict(model.config , UpperCamelCase , UpperCamelCase ) A__ = model(**UpperCamelCase )[0] A__ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , UpperCamelCase ) # change to expected output here A__ = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-3 , rtol=1e-3 )
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from ....utils import logging a__ : str = logging.get_logger(__name__) class a_ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=2048 ) ->Dict: SCREAMING_SNAKE_CASE : str = config.__dict__ SCREAMING_SNAKE_CASE : str = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels
313
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
def UpperCAmelCase ( a_ ) -> None: """simple docstring""" __A = generate_pascal_triangle(_lowerCAmelCase ) for row_idx in range(_lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def UpperCAmelCase ( a_ ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) __A = [] for current_row_idx in range(_lowerCAmelCase ): __A = populate_current_row(_lowerCAmelCase , _lowerCAmelCase ) triangle.append(_lowerCAmelCase ) return triangle def UpperCAmelCase ( a_ , a_ ) -> list[int]: """simple docstring""" __A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __A = 1, 1 for current_col_idx in range(1 , _lowerCAmelCase ): calculate_current_element( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return current_row def UpperCAmelCase ( a_ , a_ , a_ , a_ , ) -> None: """simple docstring""" __A = triangle[current_row_idx - 1][current_col_idx - 1] __A = triangle[current_row_idx - 1][current_col_idx] __A = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( a_ ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) __A = [[1]] for row_index in range(1 , _lowerCAmelCase ): __A = [0] + result[-1] + [0] __A = row_index + 1 # Calculate the number of distinct elements in a row __A = sum(divmod(_lowerCAmelCase , 2 ) ) __A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __A = row_first_half + row_second_half result.append(_lowerCAmelCase ) return result def UpperCAmelCase ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ , a_ ) -> None: __A = F'''{func.__name__}({value})''' __A = timeit(F'''__main__.{call}''' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
15
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
import sys import turtle def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) lowerCAmelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') lowerCAmelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE__ : List[str] = array[indexa], array[indexa] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): if length > 1: SCREAMING_SNAKE_CASE__ : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase ,low + middle ): comp_and_swap(_lowerCAmelCase ,_lowerCAmelCase ,i + middle ,_lowerCAmelCase ) bitonic_merge(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) bitonic_merge(_lowerCAmelCase ,low + middle ,_lowerCAmelCase ,_lowerCAmelCase ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): if length > 1: SCREAMING_SNAKE_CASE__ : Optional[int] = int(length / 2 ) bitonic_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,1 ) bitonic_sort(_lowerCAmelCase ,low + middle ,_lowerCAmelCase ,0 ) bitonic_merge(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
25
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase__ = '''base_with_context''' def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: List[Any] = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) a__: int = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): a__: List[Any] = weights[F'layers_{lyr_num}'] a__: str = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) a__: List[str] = ly_weight["attention"] a__: str = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a__: Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a__: int = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: List[Any] = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) a__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): a__: Tuple = weights[F'layers_{lyr_num}'] a__: Dict = ly_weight["attention"] a__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a__: Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a__: Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) a__: Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a__: int = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a__: Dict = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: a__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) a__: str = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCAmelCase ) a__: List[str] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): a__: Union[str, Any] = weights[F'layers_{lyr_num}'] a__: List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) a__: int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) a__: Optional[int] = ly_weight["self_attention"] a__: Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a__: Dict = ly_weight["MultiHeadDotProductAttention_0"] a__: str = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a__: int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a__: Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) a__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a__: Any = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) a__: Any = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) a__: List[Any] = jnp.tree_util.tree_map(onp.array , _lowerCAmelCase ) a__: Tuple = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] a__: Any = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) a__: Optional[int] = inference.parse_training_gin_file(_lowerCAmelCase , _lowerCAmelCase ) a__: Tuple = inference.InferenceModel(args.checkpoint_path , _lowerCAmelCase ) a__: int = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) a__: Optional[int] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) a__: int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) a__: int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) a__: List[Any] = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _lowerCAmelCase ) a__: str = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _lowerCAmelCase ) a__: Optional[int] = load_decoder(ta_checkpoint['target']['decoder'] , _lowerCAmelCase ) a__: Optional[Any] = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) a__: Tuple = SpectrogramDiffusionPipeline( notes_encoder=_lowerCAmelCase , continuous_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase , scheduler=_lowerCAmelCase , melgan=_lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='Path to the original jax model checkpoint.', ) lowercase__ = parser.parse_args() main(args)
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' @staticmethod @abstractmethod def __A ( lowerCAmelCase__ ) -> Optional[int]: raise NotImplementedError() @abstractmethod def __A ( self ) -> str: raise NotImplementedError()
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
322
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _A ( unittest.TestCase ): def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __UpperCAmelCase : Optional[int] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Dict: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : Any = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[int] = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Dict = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Dict = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : int = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = self.prepare_image_inputs() __UpperCAmelCase : Dict = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : Any = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Dict = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = "lower newer" __UpperCAmelCase : str = processor(text=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer(__UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Any = "lower newer" __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : Any = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : Optional[int] = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : str = processor.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : Dict = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Dict = AlignProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = "lower newer" __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
254
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase (lowercase_: int = 8 ) -> str: A__ : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def UpperCamelCase (lowercase_: str , lowercase_: int ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_lowerCAmelCase ) A__ : Optional[Any] = i // 3 A__ : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) A__ : Optional[int] = ( chars_incl + random(_lowerCAmelCase , quotient + remainder ) + random(_lowerCAmelCase , _lowerCAmelCase ) + random(_lowerCAmelCase , _lowerCAmelCase ) ) A__ : str = list(_lowerCAmelCase ) shuffle(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) # random is a generalised function for letters, characters and numbers def UpperCamelCase (lowercase_: str , lowercase_: int ) -> str: return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def UpperCamelCase (lowercase_: int , lowercase_: Any ) -> Optional[Any]: pass # Put your code here... def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: int ) -> int: pass # Put your code here... def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Tuple ) -> Tuple: pass # Put your code here... def UpperCamelCase (lowercase_: str , lowercase_: int = 8 ) -> bool: if len(_lowerCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False A__ : str = any(char in ascii_uppercase for char in password ) A__ : Optional[Any] = any(char in ascii_lowercase for char in password ) A__ : Optional[Any] = any(char in digits for char in password ) A__ : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase () -> Tuple: A__ : List[Any] = int(input("""Please indicate the max length of your password: """ ).strip() ) A__ : Tuple = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_lowerCAmelCase ) ) print( """Alternative Password generated:""" , alternative_password_generator(_lowerCAmelCase , _lowerCAmelCase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
192
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) class a ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Optional[Any] , UpperCamelCase: Optional[Any]="</s>" , UpperCamelCase: Dict="<unk>" , UpperCamelCase: List[str]="<pad>" , UpperCamelCase: Optional[Any]=1_25 , UpperCamelCase: Any=None , **UpperCamelCase: Optional[Any] , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: A__ = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A__ = len(set(filter(lambda UpperCamelCase : bool("""extra_id""" in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) A__ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token A__ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token A__ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else unk_token super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) A__ = extra_ids A__ = 2**8 # utf is 8 bits # define special tokens dict A__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } A__ = len(self.special_tokens_encoder ) A__ = len(UpperCamelCase ) for i, token in enumerate(UpperCamelCase ): A__ = self.vocab_size + i - n A__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def UpperCamelCase ( self: Tuple ): """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def UpperCamelCase ( self: List[Any] , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def UpperCamelCase ( self: str , UpperCamelCase: List[int] ): """simple docstring""" if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase ( self: List[str] , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ): """simple docstring""" A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase ( self: Any , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ): """simple docstring""" A__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: A__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: str ): """simple docstring""" A__ = [chr(UpperCamelCase ) for i in text.encode("""utf-8""" )] return tokens def UpperCamelCase ( self: List[Any] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if token in self.special_tokens_encoder: A__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: A__ = self.added_tokens_encoder[token] elif len(UpperCamelCase ) != 1: A__ = self.unk_token_id else: A__ = ord(UpperCamelCase ) + self._num_special_tokens return token_id def UpperCamelCase ( self: Dict , UpperCamelCase: Optional[Any] ): """simple docstring""" if index in self.special_tokens_decoder: A__ = self.special_tokens_decoder[index] else: A__ = chr(index - self._num_special_tokens ) return token def UpperCamelCase ( self: Any , UpperCamelCase: Any ): """simple docstring""" A__ = B"" for token in tokens: if token in self.special_tokens_decoder: A__ = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: A__ = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: A__ = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: A__ = token.encode("""utf-8""" ) else: A__ = bytes([ord(UpperCamelCase )] ) bstring += tok_string A__ = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def UpperCamelCase ( self: Tuple , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ): """simple docstring""" return ()
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
37
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a__ : int = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } a__ : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class a_ ( lowerCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : int = RobertaTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Optional[Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Dict = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : int = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = "post_processor" SCREAMING_SNAKE_CASE : Dict = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : List[Any] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Tuple = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[str] = trim_offsets SCREAMING_SNAKE_CASE : Any = True if changes_to_apply: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Any = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[Any]: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : Any = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Any = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[str]: SCREAMING_SNAKE_CASE : str = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Tuple: SCREAMING_SNAKE_CASE : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
import copy import random from transformers import CLIPTokenizer class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] ,*A : str ,**A : Optional[int] ): super().__init__(*A ,**A ) __A = {} def UpperCamelCase_ ( self : List[Any] ,A : Dict ,*A : Union[str, Any] ,**A : Any ): __A = super().add_tokens(A ,*A ,**A ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def UpperCamelCase_ ( self : int ,A : Tuple ,*A : Optional[Any] ,A : List[Any]=1 ,**A : str ): __A = [] if num_vec_per_token == 1: self.try_adding_tokens(A ,*A ,**A ) output.append(A ) else: __A = [] for i in range(A ): __A = placeholder_token + f'''_{i}''' self.try_adding_tokens(A ,*A ,**A ) output.append(A ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __A = output def UpperCamelCase_ ( self : Dict ,A : Tuple ,A : Optional[Any]=False ,A : Any=1.0 ): if isinstance(A ,A ): __A = [] for i in range(len(A ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=A ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __A = self.token_map[placeholder_token] __A = tokens[: 1 + int(len(A ) * prop_tokens_to_load )] if vector_shuffle: __A = copy.copy(A ) random.shuffle(A ) __A = text.replace(A ," ".join(A ) ) return text def __call__( self : Dict ,A : List[str] ,*A : Dict ,A : List[str]=False ,A : Any=1.0 ,**A : Any ): return super().__call__( self.replace_placeholder_tokens_in_text( A ,vector_shuffle=A ,prop_tokens_to_load=A ) ,*A ,**A ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,*A : Any ,A : Any=False ,A : Tuple=1.0 ,**A : Optional[Any] ): return super().encode( self.replace_placeholder_tokens_in_text( A ,vector_shuffle=A ,prop_tokens_to_load=A ) ,*A ,**A ,)
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCAmelCase = logging.get_logger(__name__) class _a ( lowerCamelCase__ ): _lowercase : List[str] = ['''input_features''', '''attention_mask'''] def __init__( self: int , UpperCamelCase_: int=80 , UpperCamelCase_: Optional[int]=16_000 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: Optional[Any]=25 , UpperCamelCase_: Dict="hamming_window" , UpperCamelCase_: Tuple=32768.0 , UpperCamelCase_: str=0.97 , UpperCamelCase_: List[str]=1.0 , UpperCamelCase_: Dict=True , UpperCamelCase_: str=True , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = feature_size lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = hop_length lowercase__ = win_length lowercase__ = frame_signal_scale lowercase__ = preemphasis_coeff lowercase__ = mel_floor lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = win_function lowercase__ = return_attention_mask lowercase__ = win_length * sampling_rate // 1_000 lowercase__ = hop_length * sampling_rate // 1_000 lowercase__ = optimal_fft_length(self.sample_size ) lowercase__ = (self.n_fft // 2) + 1 def lowerCamelCase_ ( self: Any , UpperCamelCase_: np.array ) -> List[Any]: """simple docstring""" if self.win_function == "hamming_window": lowercase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCamelCase_ ) else: lowercase__ = window_function(window_length=self.sample_size , name=self.win_function ) lowercase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase__ = spectrogram( one_waveform * self.frame_signal_scale , window=UpperCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=UpperCamelCase_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def lowerCamelCase_ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str ) -> Dict: """simple docstring""" if self.normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if self.normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def lowerCamelCase_ ( self: int , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ) -> Optional[int]: """simple docstring""" lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(UpperCamelCase_ , UpperCamelCase_ , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ )] def __call__( self: int , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Dict , ) -> Union[str, Any]: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase__ = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): lowercase__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_mfsc_features(UpperCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({'''input_features''': features} ) lowercase__ = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format lowercase__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase_ ): lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase__ = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
110
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowercase_ ( _snake_case ,_snake_case ): return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(_lowerCAmelCase ,_lowerCAmelCase ) ) ) def lowercase_ ( _snake_case ,_snake_case ): if dataset.ndim != value_array.ndim: SCREAMING_SNAKE_CASE__ : Optional[int] = ( "Wrong input data's dimensions... " f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ( "Wrong input data's shape... " f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: SCREAMING_SNAKE_CASE__ : Optional[int] = ( "Input data have different datatype... " f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for value in value_array: SCREAMING_SNAKE_CASE__ : Optional[int] = euclidean(_lowerCAmelCase ,dataset[0] ) SCREAMING_SNAKE_CASE__ : List[str] = dataset[0].tolist() for dataset_value in dataset[1:]: SCREAMING_SNAKE_CASE__ : Optional[Any] = euclidean(_lowerCAmelCase ,_lowerCAmelCase ) if dist > temp_dist: SCREAMING_SNAKE_CASE__ : Tuple = temp_dist SCREAMING_SNAKE_CASE__ : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def lowercase_ ( _snake_case ,_snake_case ): return np.dot(_lowerCAmelCase ,_lowerCAmelCase ) / (norm(_lowerCAmelCase ) * norm(_lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r'([A-Z]+)([A-Z][a-z])') lowercase__ = re.compile(r'([a-z\d])([A-Z])') lowercase__ = re.compile(r'(?<!_)_(?!_)') lowercase__ = re.compile(r'(_{2,})') lowercase__ = r'''^\w+(\.\w+)*$''' lowercase__ = r'''<>:/\|?*''' def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: a__: str = _uppercase_uppercase_re.sub(r'\1_\2' , _lowerCAmelCase ) a__: List[Any] = _lowercase_uppercase_re.sub(r'\1_\2' , _lowerCAmelCase ) return name.lower() def __a ( _SCREAMING_SNAKE_CASE ) ->Any: a__: Any = _single_underscore_re.split(_lowerCAmelCase ) a__: Tuple = [_multiple_underscores_re.split(_lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCAmelCase ) if n != '' ) def __a ( _SCREAMING_SNAKE_CASE ) ->Dict: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , _lowerCAmelCase ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(_lowerCAmelCase )}-{split}' def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: List[Any] = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) if filetype_suffix: prefix += F'.{filetype_suffix}' a__: Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) return F'{filepath}*' def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: Tuple = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) a__: int = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if shard_lengths: a__: int = len(_lowerCAmelCase ) a__: List[Any] = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(_lowerCAmelCase )] if filetype_suffix: a__: Any = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: a__: str = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = logging.get_verbosity() SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __A ( self ) -> Optional[int]: transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE = logging.get_verbosity() self.assertEqual( lowerCAmelCase__ , lowerCAmelCase__ , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level SCREAMING_SNAKE_CASE = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __A ( self ) -> Optional[Any]: transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE = logging.logging.getLogger() with CaptureLogger(lowerCAmelCase__ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __A ( self ) -> str: transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) def lowercase () -> Tuple: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> List[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase ) for s in shape] )}.npy''' def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: super().tearDown() gc.collect() def UpperCAmelCase ( self : int , UpperCAmelCase : str=0 , UpperCAmelCase : Any=(4, 4, 6_4, 6_4) , UpperCAmelCase : Tuple=False ) -> Optional[int]: __lowerCAmelCase: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: List[str] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase ) return image def UpperCAmelCase ( self : List[str] , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict="CompVis/stable-diffusion-v1-4" ) -> Tuple: __lowerCAmelCase: str = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: str = "bf16" if fpaa else None __lowerCAmelCase: Dict = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase , subfolder='unet' , dtype=UpperCAmelCase , revision=UpperCAmelCase ) return model, params def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Tuple=0 , UpperCAmelCase : List[str]=(4, 7_7, 7_6_8) , UpperCAmelCase : Any=False ) -> List[Any]: __lowerCAmelCase: Any = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase: Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> Dict: __lowerCAmelCase: List[Any] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self.get_latents(UpperCAmelCase , fpaa=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self.get_encoder_hidden_states(UpperCAmelCase , fpaa=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model.apply( {'params': params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCAmelCase: List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase: List[str] = jnp.array(UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = self.get_latents(UpperCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=UpperCAmelCase ) __lowerCAmelCase: str = self.get_encoder_hidden_states(UpperCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=UpperCAmelCase ) __lowerCAmelCase: Tuple = model.apply( {'params': params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCAmelCase: Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase: List[Any] = jnp.array(UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 )
322
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
'''simple docstring''' from functools import lru_cache def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : str = 2 __UpperCAmelCase : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCAmelCase ) if n > 1: factors.add(_lowerCAmelCase ) return factors @lru_cache def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" return len(unique_prime_factors(_lowerCAmelCase ) ) def lowercase_ ( lowerCAmelCase__ : list ): """simple docstring""" return len(set(_lowerCAmelCase ) ) in (0, 1) def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Any = 2 while True: # Increment each value of a generated range __UpperCAmelCase : Optional[Any] = [base + i for i in range(_lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __UpperCAmelCase : Dict = [upf_len(_lowerCAmelCase ) for x in group] checker.append(_lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def lowercase_ ( lowerCAmelCase__ : int = 4 ): """simple docstring""" __UpperCAmelCase : int = run(_lowerCAmelCase ) return results[0] if len(_lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
254
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A_ : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class _a (lowerCamelCase__ ): '''simple docstring''' def __init__( self , **A__ ): super().__init__(**A__ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , A__ , **A__ ): return super().__call__(A__ , **A__ ) def __A ( self , **A__ ): A__ : int = {} if "candidate_labels" in kwargs: A__ : Dict = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: A__ : Dict = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __A ( self , A__ , A__=None , A__="This is a sound of {}." ): if isinstance(A__ , A__ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ : Optional[Any] = requests.get(A__ ).content else: with open(A__ , """rb""" ) as f: A__ : Union[str, Any] = f.read() if isinstance(A__ , A__ ): A__ : str = ffmpeg_read(A__ , self.feature_extractor.sampling_rate ) if not isinstance(A__ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ : Any = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ : Tuple = candidate_labels A__ : List[str] = [hypothesis_template.format(A__ ) for x in candidate_labels] A__ : List[str] = self.tokenizer(A__ , return_tensors=self.framework , padding=A__ ) A__ : List[str] = [text_inputs] return inputs def __A ( self , A__ ): A__ : Dict = model_inputs.pop("""candidate_labels""" ) A__ : List[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , A__ ): A__ : List[Any] = text_inputs[0] else: # Batching case. A__ : List[Any] = text_inputs[0][0] A__ : Any = self.model(**A__ , **A__ ) A__ : Any = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def __A ( self , A__ ): A__ : Any = model_outputs.pop("""candidate_labels""" ) A__ : Tuple = model_outputs["logits"][0] if self.framework == "pt": A__ : str = logits.softmax(dim=0 ) A__ : Any = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ : Optional[Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(A__ , A__ ) , key=lambda A__ : -x[0] ) ] return result
192
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _snake_case ( UpperCAmelCase_ : int = 3 ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(_lowerCAmelCase ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) A__ = QuantumRegister(_lowerCAmelCase , """qr""" ) A__ = ClassicalRegister(_lowerCAmelCase , """cr""" ) A__ = QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) A__ = number_of_qubits for i in range(_lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCAmelCase , _lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCAmelCase , _lowerCAmelCase ) # simulate with 10000 shots A__ = Aer.get_backend("""qasm_simulator""" ) A__ = execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_0000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = original_name.split(""".""" )[0] lowerCAmelCase__ : str = key.split(""".""" ) lowerCAmelCase__ : Union[str, Any] = int(key_list[key_list.index(_lowerCAmelCase ) - 2] ) lowerCAmelCase__ : Any = int(key_list[key_list.index(_lowerCAmelCase ) - 1] ) lowerCAmelCase__ : Tuple = orig_block_num - offset lowerCAmelCase__ : Any = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = OrderedDict() lowerCAmelCase__ : str = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): lowerCAmelCase__ : List[Any] = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCAmelCase__ : Tuple = key[: key.find("""proj""" )] lowerCAmelCase__ : Optional[Any] = key.replace(_lowerCAmelCase , f"""patch_embeddings.{total_embed_found}.""" ) lowerCAmelCase__ : List[str] = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: lowerCAmelCase__ : Optional[Any] = "poolformer.encoder." + key if "mlp.fc1" in key: lowerCAmelCase__ : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: lowerCAmelCase__ : Tuple = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: lowerCAmelCase__ : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """norm1""" , """before_norm""" ) if "norm2" in key: lowerCAmelCase__ : Union[str, Any] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: lowerCAmelCase__ : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: lowerCAmelCase__ : Any = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: lowerCAmelCase__ : Optional[int] = key.replace("""head""" , """classifier""" ) lowerCAmelCase__ : Any = value return new_state_dict def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = PoolFormerConfig() # set attributes based on model_name lowerCAmelCase__ : int = "huggingface/label-files" lowerCAmelCase__ : List[Any] = model_name[-3:] lowerCAmelCase__ : Tuple = 1000 lowerCAmelCase__ : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase__ : int = (1, 1000) # set config attributes lowerCAmelCase__ : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Dict = {v: k for k, v in idalabel.items()} if size == "s12": lowerCAmelCase__ : Optional[Any] = [2, 2, 6, 2] lowerCAmelCase__ : Dict = [64, 128, 320, 512] lowerCAmelCase__ : Tuple = 4.0 lowerCAmelCase__ : str = 0.9 elif size == "s24": lowerCAmelCase__ : Any = [4, 4, 12, 4] lowerCAmelCase__ : List[Any] = [64, 128, 320, 512] lowerCAmelCase__ : Optional[Any] = 4.0 lowerCAmelCase__ : Any = 0.9 elif size == "s36": lowerCAmelCase__ : Any = [6, 6, 18, 6] lowerCAmelCase__ : Any = [64, 128, 320, 512] lowerCAmelCase__ : str = 4.0 lowerCAmelCase__ : List[str] = 1e-6 lowerCAmelCase__ : List[str] = 0.9 elif size == "m36": lowerCAmelCase__ : List[str] = [6, 6, 18, 6] lowerCAmelCase__ : str = [96, 192, 384, 768] lowerCAmelCase__ : Optional[int] = 4.0 lowerCAmelCase__ : str = 1e-6 lowerCAmelCase__ : Optional[Any] = 0.95 elif size == "m48": lowerCAmelCase__ : Any = [8, 8, 24, 8] lowerCAmelCase__ : Any = [96, 192, 384, 768] lowerCAmelCase__ : Optional[Any] = 4.0 lowerCAmelCase__ : int = 1e-6 lowerCAmelCase__ : List[Any] = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor lowerCAmelCase__ : str = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) # Prepare image lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : int = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict lowerCAmelCase__ : List[Any] = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase__ : Dict = rename_keys(_lowerCAmelCase ) # create HuggingFace model and load state dict lowerCAmelCase__ : Optional[int] = PoolFormerForImageClassification(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Define image processor lowerCAmelCase__ : Dict = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) lowerCAmelCase__ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass lowerCAmelCase__ : Optional[Any] = model(_lowerCAmelCase ) lowerCAmelCase__ : str = outputs.logits # define expected logit slices for different models if size == "s12": lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": lowerCAmelCase__ : Optional[int] = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": lowerCAmelCase__ : Optional[int] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": lowerCAmelCase__ : Union[str, Any] = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": lowerCAmelCase__ : int = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a__ : int = logging.get_logger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(_lowerCAmelCase , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE : Any = tf.shape(_lowerCAmelCase ) if tensor.shape == tf.TensorShape(_lowerCAmelCase ): return dynamic SCREAMING_SNAKE_CASE : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowerCAmelCase )] def UpperCAmelCase_( a__ , a__ = None , a__ = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowerCAmelCase , name=_lowerCAmelCase ) def UpperCAmelCase_( a__ , a__ , a__ , a__=1e-5 , a__=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE : Union[str, Any] = tf.nn.moments(_lowerCAmelCase , axes=[axis] , keepdims=_lowerCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE : str = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE : Tuple = shape_list(_lowerCAmelCase )[axis] SCREAMING_SNAKE_CASE : Tuple = tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE : Tuple = tf.nn.batch_normalization( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , offset=_lowerCAmelCase , scale=_lowerCAmelCase , variance_epsilon=_lowerCAmelCase , ) return outputs def UpperCAmelCase_( a__ , a__=0 , a__=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE : str = tf.shape(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(_lowerCAmelCase , tf.Tensor ): SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor(_lowerCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE : List[str] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_( a__ , a__ , a__ = "input_ids" ): """simple docstring""" tf.debugging.assert_less( _lowerCAmelCase , tf.cast(_lowerCAmelCase , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(_lowerCAmelCase )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE : int = [x for x in data if len(_lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) SCREAMING_SNAKE_CASE : Dict = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : str = np.array_split(_lowerCAmelCase , _lowerCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE : str = np.array_split(_lowerCAmelCase , _lowerCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE : str = chunk_data else: SCREAMING_SNAKE_CASE : str = data def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if name in group.attrs: SCREAMING_SNAKE_CASE : List[str] = [n.decode('''utf8''' ) if hasattr(_lowerCAmelCase , '''decode''' ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(_lowerCAmelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_( a__ ): """simple docstring""" def _expand_single_ad_tensor(a__ ): if isinstance(_lowerCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowerCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowerCAmelCase )
313
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' snake_case_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Tuple ,**A : List[str] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __A = deprecated_arg[3:] setattr(self ,A ,not kwargs.pop(A ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __A = kwargs.pop("torchscript" ,self.torchscript ) __A = kwargs.pop("torch_xla_tpu_print_metrics" ,self.torch_xla_tpu_print_metrics ) __A = kwargs.pop("fp16_opt_level" ,self.fpaa_opt_level ) super().__init__(**A ) snake_case_ = field(default=lowerCamelCase__ , metadata={"help": "Trace the models using torchscript"} ) snake_case_ = field(default=lowerCamelCase__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) snake_case_ = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): requires_backends(self ,["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: __A = torch.device("cpu" ) __A = 0 elif is_torch_tpu_available(): __A = xm.xla_device() __A = 0 else: __A = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __A = torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self : List[str] ): requires_backends(self ,["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self : Any ): requires_backends(self ,["torch"] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self : Union[str, Any] ): requires_backends(self ,["torch"] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self : Dict ): return self.n_gpu > 0
15
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _a ( lowerCamelCase__ ): _lowercase : Union[str, Any] = 42 @flax_register_to_config class _a ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): _lowercase : int = 32 _lowercase : Any = 4 _lowercase : List[str] = 4 _lowercase : Union[str, Any] = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) _lowercase : Dict = ('''UpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''') _lowercase : int = False _lowercase : List[Any] = (320, 640, 1280, 1280) _lowercase : List[str] = 2 _lowercase : int = 8 _lowercase : Union[str, Any] = None _lowercase : str = 1280 _lowercase : Any = 0.0 _lowercase : str = False _lowercase : str = jnp.floataa _lowercase : Optional[Any] = True _lowercase : Tuple = 0 _lowercase : Union[str, Any] = False def lowerCamelCase_ ( self: str , UpperCamelCase_: jax.random.KeyArray ) -> Tuple: """simple docstring""" lowercase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowercase__ = jnp.zeros(UpperCamelCase_ , dtype=jnp.floataa ) lowercase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowercase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase__ = jax.random.split(UpperCamelCase_ ) lowercase__ = {"params": params_rng, "dropout": dropout_rng} return self.init(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )["params"] def lowerCamelCase_ ( self: List[str] ) -> Any: """simple docstring""" lowercase__ = self.block_out_channels lowercase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase__ = self.num_attention_heads or self.attention_head_dim # input lowercase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase__ = FlaxTimestepEmbedding(UpperCamelCase_ , dtype=self.dtype ) lowercase__ = self.only_cross_attention if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowercase__ = [] lowercase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowercase__ = output_channel lowercase__ = block_out_channels[i] lowercase__ = i == len(UpperCamelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase__ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase__ = FlaxDownBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase_ ) lowercase__ = down_blocks # mid lowercase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowercase__ = [] lowercase__ = list(reversed(UpperCamelCase_ ) ) lowercase__ = list(reversed(UpperCamelCase_ ) ) lowercase__ = list(reversed(UpperCamelCase_ ) ) lowercase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowercase__ = output_channel lowercase__ = reversed_block_out_channels[i] lowercase__ = reversed_block_out_channels[min(i + 1 , len(UpperCamelCase_ ) - 1 )] lowercase__ = i == len(UpperCamelCase_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowercase__ = FlaxCrossAttnUpBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , prev_output_channel=UpperCamelCase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase__ = FlaxUpBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , prev_output_channel=UpperCamelCase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCamelCase_ ) lowercase__ = output_channel lowercase__ = up_blocks # out lowercase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: bool = True , UpperCamelCase_: bool = False , ) -> Tuple: """simple docstring""" if not isinstance(UpperCamelCase_ , jnp.ndarray ): lowercase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase__ = timesteps.astype(dtype=jnp.floataa ) lowercase__ = jnp.expand_dims(UpperCamelCase_ , 0 ) lowercase__ = self.time_proj(UpperCamelCase_ ) lowercase__ = self.time_embedding(UpperCamelCase_ ) # 2. pre-process lowercase__ = jnp.transpose(UpperCamelCase_ , (0, 2, 3, 1) ) lowercase__ = self.conv_in(UpperCamelCase_ ) # 3. down lowercase__ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = down_block(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) else: lowercase__ = down_block(UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowercase__ = () for down_block_res_sample, down_block_additional_residual in zip( UpperCamelCase_ , UpperCamelCase_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowercase__ = new_down_block_res_samples # 4. mid lowercase__ = self.mid_block(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowercase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowercase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = up_block( UpperCamelCase_ , temb=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , res_hidden_states_tuple=UpperCamelCase_ , deterministic=not train , ) else: lowercase__ = up_block(UpperCamelCase_ , temb=UpperCamelCase_ , res_hidden_states_tuple=UpperCamelCase_ , deterministic=not train ) # 6. post-process lowercase__ = self.conv_norm_out(UpperCamelCase_ ) lowercase__ = nn.silu(UpperCamelCase_ ) lowercase__ = self.conv_out(UpperCamelCase_ ) lowercase__ = jnp.transpose(UpperCamelCase_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCamelCase_ )
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
25
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->int: assert column_title.isupper() a__: Tuple = 0 a__: Optional[Any] = len(_lowerCAmelCase ) - 1 a__: List[str] = 0 while index >= 0: a__: int = (ord(column_title[index] ) - 64) * pow(26 , _lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int ) -> float: if digit_amount > 0: return round(number - int(_lowerCAmelCase ) , _lowerCAmelCase ) return number - int(_lowerCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
322
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( lowerCAmelCase__ : str = "laptop" ): """simple docstring""" __UpperCAmelCase : str = f'https://www.amazon.in/laptop/s?k={product}' __UpperCAmelCase : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __UpperCAmelCase : Tuple = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles __UpperCAmelCase : List[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: __UpperCAmelCase : Dict = item.ha.text __UpperCAmelCase : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] __UpperCAmelCase : List[Any] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: __UpperCAmelCase : List[str] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: __UpperCAmelCase : List[Any] = "Not available" try: __UpperCAmelCase : Any = ( "₹" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: __UpperCAmelCase : List[Any] = "" try: __UpperCAmelCase : List[Any] = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: __UpperCAmelCase : List[Any] = float("""nan""" ) except AttributeError: pass __UpperCAmelCase : List[Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __UpperCAmelCase : Any = " " __UpperCAmelCase : Any = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _UpperCamelCase = '''headphones''' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
254
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : '''simple docstring''' @staticmethod def __A ( *A__ , **A__ ): pass @is_pipeline_test @require_vision class _a (unittest.TestCase ): '''simple docstring''' @require_torch def __A ( self ): A__ : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) A__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : Tuple = image_classifier(A__ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A__ ) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) A__ : Tuple = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(A__ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], ] , ) @require_tf def __A ( self ): A__ : List[Any] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) A__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : Any = image_classifier(A__ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(A__ ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) A__ : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(A__ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, {"""score""": 0.3_3_3, """label""": ANY(A__ )}, ], ] , ) @slow @require_torch def __A ( self ): A__ : Tuple = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes A__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : str = image_classifier(A__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(A__ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) A__ : str = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(A__ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def __A ( self ): A__ : str = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes A__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : Dict = image_classifier(A__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(A__ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) A__ : Dict = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(A__ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
192
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE_ : int = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE_ : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _snake_case ( UpperCAmelCase_ : str ): re.sub("""<n>""" , """""" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCAmelCase = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') _lowerCAmelCase = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCAmelCase = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCAmelCase = sorted(arg_to_scheduler.keys()) _lowerCAmelCase = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class lowerCAmelCase_( pl.LightningModule ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="base" ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> str: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = Path(self.hparams.output_dir ) lowerCAmelCase__ : Optional[int] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCAmelCase__ : Any = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path ,**({"""num_labels""": num_labels} if num_labels is not None else {}) ,cache_dir=__UpperCAmelCase ,**__UpperCAmelCase ,) else: lowerCAmelCase__ : PretrainedConfig = config lowerCAmelCase__ : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams ,__UpperCAmelCase ,__UpperCAmelCase ): assert hasattr(self.config ,__UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config ,__UpperCAmelCase ,getattr(self.hparams ,__UpperCAmelCase ) ) if tokenizer is None: lowerCAmelCase__ : str = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path ,cache_dir=__UpperCAmelCase ,) else: lowerCAmelCase__ : PreTrainedTokenizer = tokenizer lowerCAmelCase__ : List[Any] = MODEL_MODES[mode] if model is None: lowerCAmelCase__ : Union[str, Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path ,from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) ,config=self.config ,cache_dir=__UpperCAmelCase ,) else: lowerCAmelCase__ : Optional[Any] = model def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = self.model_type.from_pretrained(*__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[Any] = arg_to_scheduler[self.hparams.lr_scheduler] lowerCAmelCase__ : Dict = get_schedule_func( self.opt ,num_warmup_steps=self.hparams.warmup_steps ,num_training_steps=self.total_steps() ) lowerCAmelCase__ : str = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = self.model lowerCAmelCase__ : Optional[Any] = ["bias", "LayerNorm.weight"] lowerCAmelCase__ : Tuple = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: lowerCAmelCase__ : Optional[Any] = Adafactor( __UpperCAmelCase ,lr=self.hparams.learning_rate ,scale_parameter=__UpperCAmelCase ,relative_step=__UpperCAmelCase ) else: lowerCAmelCase__ : Union[str, Any] = AdamW( __UpperCAmelCase ,lr=self.hparams.learning_rate ,eps=self.hparams.adam_epsilon ) lowerCAmelCase__ : Tuple = optimizer lowerCAmelCase__ : List[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: return self.validation_step(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : int = max(1 ,self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCAmelCase__ : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: if stage == "test": lowerCAmelCase__ : Tuple = len(self.test_dataloader().dataset ) else: lowerCAmelCase__ : Optional[int] = self.get_dataloader("""train""" ,self.hparams.train_batch_size ,shuffle=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> int: raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase_ ( self ) -> List[str]: return self.train_loader def UpperCAmelCase_ ( self ) -> List[str]: return self.get_dataloader("""dev""" ,self.hparams.eval_batch_size ,shuffle=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: return self.get_dataloader("""test""" ,self.hparams.eval_batch_size ,shuffle=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return os.path.join( self.hparams.data_dir ,"""cached_{}_{}_{}""".format( __UpperCAmelCase ,list(filter(__UpperCAmelCase ,self.hparams.model_name_or_path.split("""/""" ) ) ).pop() ,str(self.hparams.max_seq_length ) ,) ,) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : str = self.output_dir.joinpath("""best_tfmr""" ) lowerCAmelCase__ : Optional[int] = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ,__UpperCAmelCase ) -> str: parser.add_argument( """--model_name_or_path""" ,default=__UpperCAmelCase ,type=__UpperCAmelCase ,required=__UpperCAmelCase ,help="""Path to pretrained model or model identifier from huggingface.co/models""" ,) parser.add_argument( """--config_name""" ,default="""""" ,type=__UpperCAmelCase ,help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" ,default=__UpperCAmelCase ,type=__UpperCAmelCase ,help="""Pretrained tokenizer name or path if not the same as model_name""" ,) parser.add_argument( """--cache_dir""" ,default=str(Path(__UpperCAmelCase ).parent / """test_run""" / """cache""" ) ,type=__UpperCAmelCase ,help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" ,) parser.add_argument( """--encoder_layerdrop""" ,type=__UpperCAmelCase ,help="""Encoder layer dropout probability (Optional). Goes into model.config""" ,) parser.add_argument( """--decoder_layerdrop""" ,type=__UpperCAmelCase ,help="""Decoder layer dropout probability (Optional). Goes into model.config""" ,) parser.add_argument( """--dropout""" ,type=__UpperCAmelCase ,help="""Dropout probability (Optional). Goes into model.config""" ,) parser.add_argument( """--attention_dropout""" ,type=__UpperCAmelCase ,help="""Attention dropout probability (Optional). Goes into model.config""" ,) parser.add_argument("""--learning_rate""" ,default=5E-5 ,type=__UpperCAmelCase ,help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" ,default="""linear""" ,choices=__UpperCAmelCase ,metavar=__UpperCAmelCase ,type=__UpperCAmelCase ,help="""Learning rate scheduler""" ,) parser.add_argument("""--weight_decay""" ,default=0.0 ,type=__UpperCAmelCase ,help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" ,default=1E-8 ,type=__UpperCAmelCase ,help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" ,default=0 ,type=__UpperCAmelCase ,help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" ,default=4 ,type=__UpperCAmelCase ,help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" ,dest="""max_epochs""" ,default=3 ,type=__UpperCAmelCase ) parser.add_argument("""--train_batch_size""" ,default=32 ,type=__UpperCAmelCase ) parser.add_argument("""--eval_batch_size""" ,default=32 ,type=__UpperCAmelCase ) parser.add_argument("""--adafactor""" ,action="""store_true""" ) class lowerCAmelCase_( pl.Callback ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase_( pl.Callback ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class lowerCAmelCase_( pl.Callback ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = trainer.lr_schedulers[0]["scheduler"] lowerCAmelCase__ : Union[str, Any] = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: rank_zero_info("""***** Validation results *****""" ) lowerCAmelCase__ : List[str] = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__UpperCAmelCase ,str(metrics[key] ) ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: rank_zero_info("""***** Test results *****""" ) lowerCAmelCase__ : int = trainer.callback_metrics # Log and save results to file lowerCAmelCase__ : Tuple = os.path.join(pl_module.hparams.output_dir ,"""test_results.txt""" ) with open(__UpperCAmelCase ,"""w""" ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__UpperCAmelCase ,str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__UpperCAmelCase ,str(metrics[key] ) ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(_lowerCAmelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_lowerCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_lowerCAmelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_lowerCAmelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_lowerCAmelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_lowerCAmelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=_lowerCAmelCase , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(_lowerCAmelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_lowerCAmelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=[] , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" pl.seed_everything(args.seed ) # init model lowerCAmelCase__ : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: lowerCAmelCase__ : List[str] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowerCAmelCase ) if logging_callback is None: lowerCAmelCase__ : Optional[int] = LoggingCallback() lowerCAmelCase__ : Tuple = {} if args.fpaa: lowerCAmelCase__ : Union[str, Any] = 16 if args.gpus > 1: lowerCAmelCase__ : Dict = "auto" lowerCAmelCase__ : Any = "ddp" lowerCAmelCase__ : Dict = args.accumulate_grad_batches lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Optional[int] = "auto" lowerCAmelCase__ : Any = pl.Trainer.from_argparse_args( _lowerCAmelCase , weights_summary=_lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCAmelCase , ) if args.do_train: trainer.fit(_lowerCAmelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
37
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE :int = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase_ ( self : Optional[Any] ,A : List[str] ,A : List[str] ,A : Optional[Any] ): __A = ZeroShotClassificationPipeline( model=A ,tokenizer=A ,candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : str ): __A = classifier("Who are you voting for in 2020?" ,candidate_labels="politics" ) self.assertEqual(A ,{"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) # No kwarg __A = classifier("Who are you voting for in 2020?" ,["politics"] ) self.assertEqual(A ,{"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) __A = classifier("Who are you voting for in 2020?" ,candidate_labels=["politics"] ) self.assertEqual(A ,{"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) __A = classifier("Who are you voting for in 2020?" ,candidate_labels="politics, public health" ) self.assertEqual( A ,{"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) ,1.0 ) __A = classifier("Who are you voting for in 2020?" ,candidate_labels=["politics", "public health"] ) self.assertEqual( A ,{"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) ,1.0 ) __A = classifier( "Who are you voting for in 2020?" ,candidate_labels="politics" ,hypothesis_template="This text is about {}" ) self.assertEqual(A ,{"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) # https://github.com/huggingface/transformers/issues/13846 __A = classifier(["I am happy"] ,["positive", "negative"] ) self.assertEqual( A ,[ {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} for i in range(1 ) ] ,) __A = classifier(["I am happy", "I am sad"] ,["positive", "negative"] ) self.assertEqual( A ,[ {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} for i in range(2 ) ] ,) with self.assertRaises(A ): classifier("" ,candidate_labels="politics" ) with self.assertRaises(A ): classifier(A ,candidate_labels="politics" ) with self.assertRaises(A ): classifier("Who are you voting for in 2020?" ,candidate_labels="" ) with self.assertRaises(A ): classifier("Who are you voting for in 2020?" ,candidate_labels=A ) with self.assertRaises(A ): classifier( "Who are you voting for in 2020?" ,candidate_labels="politics" ,hypothesis_template="Not formatting template" ,) with self.assertRaises(A ): classifier( "Who are you voting for in 2020?" ,candidate_labels="politics" ,hypothesis_template=A ,) self.run_entailment_id(A ) def UpperCamelCase_ ( self : Any ,A : Pipeline ): __A = zero_shot_classifier.model.config __A = config.labelaid __A = zero_shot_classifier.entailment_id __A = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) __A = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __A = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __A = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) __A = original_labelaid self.assertEqual(A ,zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase_ ( self : int ): __A = pipeline( "zero-shot-classification" ,model="sshleifer/tiny-distilbert-base-cased-distilled-squad" ,framework="pt" ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 1_00 ,candidate_labels=["politics", "public health", "science"] ) @require_torch def UpperCamelCase_ ( self : Tuple ): __A = pipeline( "zero-shot-classification" ,model="sshleifer/tiny-distilbert-base-cased-distilled-squad" ,framework="pt" ,) __A = zero_shot_classifier( "Who are you voting for in 2020?" ,candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) ,{ "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } ,) @require_tf def UpperCamelCase_ ( self : Optional[Any] ): __A = pipeline( "zero-shot-classification" ,model="sshleifer/tiny-distilbert-base-cased-distilled-squad" ,framework="tf" ,) __A = zero_shot_classifier( "Who are you voting for in 2020?" ,candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) ,{ "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_33, 0.3_33, 0.3_33], } ,) @slow @require_torch def UpperCamelCase_ ( self : Tuple ): __A = pipeline("zero-shot-classification" ,model="roberta-large-mnli" ,framework="pt" ) __A = zero_shot_classifier( "Who are you voting for in 2020?" ,candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) ,{ "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } ,) __A = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." ,candidate_labels=["machine learning", "statistics", "translation", "vision"] ,multi_label=A ,) self.assertEqual( nested_simplify(A ) ,{ "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } ,) @slow @require_tf def UpperCamelCase_ ( self : int ): __A = pipeline("zero-shot-classification" ,model="roberta-large-mnli" ,framework="tf" ) __A = zero_shot_classifier( "Who are you voting for in 2020?" ,candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) ,{ "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_76, 0.0_15, 0.0_09], } ,) __A = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." ,candidate_labels=["machine learning", "statistics", "translation", "vision"] ,multi_label=A ,) self.assertEqual( nested_simplify(A ) ,{ "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } ,)
15
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) class _a ( lowerCamelCase__ ): _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self: Optional[int] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Dict[str, int]] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , **UpperCamelCase_: List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {"shortest_edge": 256} lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[int] , ) -> str: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size(UpperCamelCase_ , size=size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: List[str] , ) -> Tuple: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: int ) -> Any: """simple docstring""" return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: List[Any] , ) -> Optional[int]: """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ) -> List[str]: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowercase__ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowercase__ = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Tuple] = None ) -> List[str]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase_ ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(UpperCamelCase_ ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
110
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase__ : Optional[int] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=19 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE__=25 , SCREAMING_SNAKE_CASE__=5 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : Dict = prediction_length SCREAMING_SNAKE_CASE__ : List[str] = context_length SCREAMING_SNAKE_CASE__ : List[str] = cardinality SCREAMING_SNAKE_CASE__ : Dict = num_time_features SCREAMING_SNAKE_CASE__ : Optional[int] = lags_sequence SCREAMING_SNAKE_CASE__ : List[str] = embedding_dimension SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = context_length SCREAMING_SNAKE_CASE__ : Any = prediction_length + label_length SCREAMING_SNAKE_CASE__ : str = label_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = moving_average SCREAMING_SNAKE_CASE__ : Union[str, Any] = autocorrelation_factor def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = config.context_length + max(config.lags_sequence ) SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, _past_length] ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] ) SCREAMING_SNAKE_CASE__ : Any = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_config() SCREAMING_SNAKE_CASE__ : int = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = AutoformerModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = model.create_network_inputs(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) SCREAMING_SNAKE_CASE__ : int = encoder(inputs_embeds=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) SCREAMING_SNAKE_CASE__ : Any = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) SCREAMING_SNAKE_CASE__ : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = decoder( trend=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase : Dict = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Dict = False __UpperCamelCase : Dict = False __UpperCamelCase : int = False def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = AutoformerModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertEqual(info["""missing_keys"""] , [] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def __magic_name__ (self ) -> Dict: """simple docstring""" pass def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = inspect.signature(getattr(SCREAMING_SNAKE_CASE__ , """forward""" ) ) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE__ : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[int] = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Any = getattr(self.model_tester , """seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = getattr(self.model_tester , """decoder_seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = getattr(self.model_tester , """encoder_seq_length""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = getattr(self.model_tester , """d_model""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = getattr(self.model_tester , """num_attention_heads""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Dict = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : int = outputs.encoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) SCREAMING_SNAKE_CASE__ : Any = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # decoder attentions SCREAMING_SNAKE_CASE__ : Dict = outputs.decoder_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.cross_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : str = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __magic_name__ (self ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase_ ( _snake_case="train-batch.pt" ): SCREAMING_SNAKE_CASE__ : Optional[int] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" ,filename=_lowerCAmelCase ,repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.load(_lowerCAmelCase ,map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] SCREAMING_SNAKE_CASE__ : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : int = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE__ , rtol=1E-1 ) )
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Any: a__: Optional[int] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__: List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Any: for i in range(config.num_hidden_layers ): if base_model: a__: Tuple = "" else: a__: str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__: Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) a__: List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__: List[str] = in_proj_weight[ : config.hidden_size, : ] a__: int = in_proj_bias[: config.hidden_size] a__: List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__: Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] a__: List[Any] = in_proj_bias[-config.hidden_size :] def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Dict = dct.pop(_lowerCAmelCase ) a__: Optional[Any] = val def __a ( ) ->str: a__: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a__: List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: a__: str = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_lowerCAmelCase , ) a__: Dict = ViTHybridConfig(backbone_config=_lowerCAmelCase , image_size=384 , num_labels=1000 ) a__: Optional[int] = False # load original model from timm a__: Any = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__: Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) a__: Tuple = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) a__: Any = "huggingface/label-files" a__: Tuple = "imagenet-1k-id2label.json" a__: Union[str, Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__: Optional[int] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} a__: Optional[int] = idalabel a__: Optional[int] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a__: Tuple = ViTHybridModel(_lowerCAmelCase ).eval() else: a__: Tuple = ViTHybridForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # create image processor a__: Dict = create_transform(**resolve_data_config({} , model=_lowerCAmelCase ) ) a__: str = transform.transforms a__: int = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a__: str = ViTHybridImageProcessor( do_resize=_lowerCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a__: Any = prepare_img() a__: List[Any] = transform(_lowerCAmelCase ).unsqueeze(0 ) a__: Optional[Any] = processor(_lowerCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) # verify logits with torch.no_grad(): a__: str = model(_lowerCAmelCase ) a__: Any = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: a__: Optional[Any] = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: a__: Any = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowercase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> List[Any]: super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = load_from_cache_file SCREAMING_SNAKE_CASE = file_format SCREAMING_SNAKE_CASE = Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __A ( self ) -> Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[float] ) -> bool: """simple docstring""" if len(_lowerCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase: List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
322
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
0
'''simple docstring''' from collections import defaultdict class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __UpperCAmelCase : str = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__UpperCAmelCase ) ) ] __UpperCAmelCase : Dict = defaultdict(__UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __UpperCAmelCase : List[str] = (1 << len(__UpperCAmelCase )) - 1 def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __UpperCAmelCase : Any = self.count_ways_until(__UpperCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __UpperCAmelCase : int = total_ways_util return self.dp[mask][task_no] def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _UpperCamelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _UpperCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
254
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A_ : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' A_ : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' A_ : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a (datasets.Metric ): '''simple docstring''' def __A ( self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def __A ( self , A__ , A__ , A__ = False , A__ = False , A__ = False , A__ = False , ): A__ : List[str] = len(references[0] ) if any(len(A__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ : int = [[refs[i] for refs in references] for i in range(A__ )] A__ : Optional[Any] = TER( normalized=A__ , no_punct=A__ , asian_support=A__ , case_sensitive=A__ , ) A__ : List[Any] = sb_ter.corpus_score(A__ , A__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
192
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ : List[Any] = '''''' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class a ( tr.AbstractTransform ): """simple docstring""" def __init__( self: Any , UpperCamelCase: str = " " ): """simple docstring""" A__ = sentence_delimiter def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str ): """simple docstring""" return list(UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: List[str] ): """simple docstring""" A__ = [] for sent_idx, sentence in enumerate(UpperCamelCase ): chars.extend(self.process_string(UpperCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars SCREAMING_SNAKE_CASE_ : Dict = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ : Any = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ : List[Any] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' SCREAMING_SNAKE_CASE_ : List[Any] = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: int=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( UpperCamelCase , UpperCamelCase , truth_transform=UpperCamelCase , hypothesis_transform=UpperCamelCase , )["wer"] A__ = 0 A__ = 0 for prediction, reference in zip(UpperCamelCase , UpperCamelCase ): A__ = jiwer.compute_measures( UpperCamelCase , UpperCamelCase , truth_transform=UpperCamelCase , hypothesis_transform=UpperCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
'''simple docstring''' import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = BeautifulSoup(requests.get(_lowerCAmelCase , params=_lowerCAmelCase ).content , """html.parser""" ) lowerCAmelCase__ : Optional[int] = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) lowerCAmelCase__ : Any = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
37
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''data2vec-vision''' def __init__( self :int , snake_case :Optional[int]=768 , snake_case :Any=12 , snake_case :Any=12 , snake_case :Tuple=3_072 , snake_case :Any="gelu" , snake_case :Tuple=0.0 , snake_case :int=0.0 , snake_case :Any=0.02 , snake_case :str=1e-12 , snake_case :List[str]=224 , snake_case :Dict=16 , snake_case :int=3 , snake_case :int=False , snake_case :str=False , snake_case :List[Any]=False , snake_case :Optional[Any]=False , snake_case :Tuple=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Any=True , snake_case :Optional[Any]=[3, 5, 7, 11] , snake_case :Dict=[1, 2, 3, 6] , snake_case :int=True , snake_case :List[Any]=0.4 , snake_case :Any=256 , snake_case :Union[str, Any]=1 , snake_case :Union[str, Any]=False , snake_case :Any=255 , **snake_case :int , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : str = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : Optional[Any] = use_mask_token A_ : Optional[Any] = use_absolute_position_embeddings A_ : Optional[int] = use_relative_position_bias A_ : Dict = use_shared_relative_position_bias A_ : Any = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : str = use_auxiliary_head A_ : List[Any] = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : List[str] = auxiliary_concat_input A_ : Optional[int] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : str = logging.get_logger(__name__) class a_ ( lowerCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'timm_backbone' def __init__( self , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Tuple: super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = backbone SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : str = features_only SCREAMING_SNAKE_CASE : Tuple = use_pretrained_backbone SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = out_indices if out_indices is not None else (-1,)
313
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[int] ,*A : Dict ,**A : Tuple ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." ,A ,) super().__init__(*A ,**A )
15
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
0
from PIL import Image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = image.size lowercase__ = 0 lowercase__ = image.load() for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): lowercase__ = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCAmelCase ): for i in range(_lowerCAmelCase ): lowercase__ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
"""simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = data SCREAMING_SNAKE_CASE__ : List[str] = previous SCREAMING_SNAKE_CASE__ : Tuple = next_node def __str__(self ) -> Optional[Any]: """simple docstring""" return F'''{self.data}''' def __magic_name__ (self ) -> Dict: """simple docstring""" return self.data def __magic_name__ (self ) -> int: """simple docstring""" return self.next def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return self.previous class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = head def __iter__(self ) -> Any: """simple docstring""" return self def __magic_name__ (self ) -> List[Any]: """simple docstring""" if not self.current: raise StopIteration else: SCREAMING_SNAKE_CASE__ : Dict = self.current.get_data() SCREAMING_SNAKE_CASE__ : Optional[int] = self.current.get_next() return value class lowerCAmelCase_ : """simple docstring""" def __init__(self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = None # First node in list SCREAMING_SNAKE_CASE__ : Any = None # Last node in list def __str__(self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.head SCREAMING_SNAKE_CASE__ : Optional[Any] = [] while current is not None: nodes.append(current.get_data() ) SCREAMING_SNAKE_CASE__ : List[Any] = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE__ ) for node in nodes ) def __contains__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.head while current: if current.get_data() == value: return True SCREAMING_SNAKE_CASE__ : str = current.get_next() return False def __iter__(self ) -> Optional[Any]: """simple docstring""" return LinkedListIterator(self.head ) def __magic_name__ (self ) -> int: """simple docstring""" if self.head: return self.head.get_data() return None def __magic_name__ (self ) -> str: """simple docstring""" if self.tail: return self.tail.get_data() return None def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if self.head is None: SCREAMING_SNAKE_CASE__ : int = node SCREAMING_SNAKE_CASE__ : Tuple = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.set_tail(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = node SCREAMING_SNAKE_CASE__ : Any = node.previous if node.get_previous() is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = node_to_insert else: SCREAMING_SNAKE_CASE__ : str = node_to_insert SCREAMING_SNAKE_CASE__ : Optional[int] = node_to_insert def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = node SCREAMING_SNAKE_CASE__ : Any = node.next if node.get_next() is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = node_to_insert else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = node_to_insert SCREAMING_SNAKE_CASE__ : List[str] = node_to_insert def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_position += 1 SCREAMING_SNAKE_CASE__ : int = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.head while node: if node.get_data() == item: return node SCREAMING_SNAKE_CASE__ : Tuple = node.get_next() raise Exception("""Node not found""" ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if (node := self.get_node(SCREAMING_SNAKE_CASE__ )) is not None: if node == self.head: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.head.get_next() if node == self.tail: SCREAMING_SNAKE_CASE__ : int = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE__ ) @staticmethod def __magic_name__ (SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if node.get_next(): SCREAMING_SNAKE_CASE__ : Tuple = node.previous if node.get_previous(): SCREAMING_SNAKE_CASE__ : Tuple = node.next SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None def __magic_name__ (self ) -> Dict: """simple docstring""" return self.head is None def lowercase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __snake_case ( lowerCamelCase__ ): a__ = """Wav2Vec2FeatureExtractor""" a__ = """AutoTokenizer""" def __init__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' super().__init__(lowercase , lowercase) a__: str = self.feature_extractor a__: Any = False @classmethod def lowerCamelCase_ ( cls , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' try: return super().from_pretrained(lowercase , **lowercase) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , lowercase , ) a__: str = WavaVecaFeatureExtractor.from_pretrained(lowercase , **lowercase) a__: List[Any] = WavaVecaCTCTokenizer.from_pretrained(lowercase , **lowercase) return cls(feature_extractor=lowercase , tokenizer=lowercase) def __call__( self , *lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') a__: Union[str, Any] = kwargs.pop('raw_speech') else: a__: Dict = kwargs.pop('audio' , lowercase) a__: List[str] = kwargs.pop('sampling_rate' , lowercase) a__: List[str] = kwargs.pop('text' , lowercase) if len(lowercase) > 0: a__: Tuple = args[0] a__: Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: a__: List[Any] = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase) if text is not None: a__: Optional[int] = self.tokenizer(lowercase , **lowercase) if text is None: return inputs elif audio is None: return encodings else: a__: int = encodings["input_ids"] return inputs def lowerCamelCase_ ( self , *lowercase , **lowercase) -> int: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase) a__: Optional[Any] = kwargs.pop('input_features' , lowercase) a__: Optional[Any] = kwargs.pop('labels' , lowercase) if len(lowercase) > 0: a__: Any = args[0] a__: Union[str, Any] = args[1:] if input_features is not None: a__: Optional[int] = self.feature_extractor.pad(lowercase , *lowercase , **lowercase) if labels is not None: a__: List[str] = self.tokenizer.pad(lowercase , **lowercase) if labels is None: return input_features elif input_features is None: return labels else: a__: Optional[Any] = labels["input_ids"] return input_features def lowerCamelCase_ ( self , *lowercase , **lowercase) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase) def lowerCamelCase_ ( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase) @contextmanager def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') a__: Any = True a__: Any = self.tokenizer yield a__: Dict = self.feature_extractor a__: int = False
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
from __future__ import annotations _a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class A_ : def __init__( self : List[str] , UpperCAmelCase : dict[str, list[str]] , UpperCAmelCase : str ) -> Optional[int]: __lowerCAmelCase: Optional[Any] = graph # mapping node to its parent in resulting breadth first tree __lowerCAmelCase: dict[str, str | None] = {} __lowerCAmelCase: Optional[Any] = source_vertex def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: Optional[Any] = {self.source_vertex} __lowerCAmelCase: Union[str, Any] = None __lowerCAmelCase: str = [self.source_vertex] # first in first out queue while queue: __lowerCAmelCase: int = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase ) __lowerCAmelCase: str = vertex queue.append(UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str ) -> List[str]: if target_vertex == self.source_vertex: return self.source_vertex __lowerCAmelCase: Union[str, Any] = self.parent.get(UpperCAmelCase ) if target_vertex_parent is None: __lowerCAmelCase: Optional[Any] = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCAmelCase ) return self.shortest_path(UpperCAmelCase ) + F'''->{target_vertex}''' if __name__ == "__main__": _a = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
322
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
0
'''simple docstring''' from collections.abc import Callable import numpy as np def lowercase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): """simple docstring""" __UpperCAmelCase : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) __UpperCAmelCase : Dict = np.zeros((n + 1,) ) __UpperCAmelCase : str = ya __UpperCAmelCase : str = xa for k in range(_lowerCAmelCase ): __UpperCAmelCase : int = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] ) __UpperCAmelCase : Tuple = y[k] + ( (step_size / 2) * (ode_func(_lowerCAmelCase , y[k] ) + ode_func(x + step_size , _lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
254
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A_ : Dict = logging.get_logger(__name__) A_ : Tuple = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class _a (lowerCamelCase__ ): '''simple docstring''' def __init__( self , A__=None , A__=None , *A__ , **A__ ): super().__init__(*A__ , **A__ ) if config is None: assert isinstance(self.model , A__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) A__ : List[Any] = self.model.config else: A__ : Optional[Any] = config A__ : str = data_args A__ : Tuple = self.config.tgt_vocab_size if isinstance(self.config , A__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" """ padding..""" ) if self.args.label_smoothing == 0: A__ : Union[str, Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A__ : List[Any] = label_smoothed_nll_loss def __A ( self , A__ ): if self.optimizer is None: A__ : str = ["bias", "LayerNorm.weight"] A__ : Dict = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] A__ : List[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A__ : Any = Adafactor A__ : Optional[Any] = {"scale_parameter": False, "relative_step": False} else: A__ : int = AdamW A__ : Optional[int] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } A__ : Dict = self.args.learning_rate if self.sharded_ddp: A__ : str = OSS( params=A__ , optim=A__ , **A__ , ) else: A__ : Optional[int] = optimizer_cls(A__ , **A__ ) if self.lr_scheduler is None: A__ : Optional[int] = self._get_lr_scheduler(A__ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def __A ( self , A__ ): A__ : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A__ : Union[str, Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A__ : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A__ : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A__ ) return scheduler def __A ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __A ( self , A__ , A__ , A__ ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A__ : Union[str, Any] = model(**A__ , use_cache=A__ )[0] A__ : Any = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A__ : int = model(**A__ , labels=A__ , use_cache=A__ )[:2] else: # compute label smoothed loss A__ : Dict = model(**A__ , use_cache=A__ )[0] A__ : Any = torch.nn.functional.log_softmax(A__ , dim=-1 ) A__ : List[str] = self.loss_fn(A__ , A__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __A ( self , A__ , A__ ): A__ : List[Any] = inputs.pop("""labels""" ) A__ : Dict = self._compute_loss(A__ , A__ , A__ ) return loss def __A ( self , A__ , A__ , A__ , A__ = None , ): A__ : Optional[Any] = self._prepare_inputs(A__ ) A__ : Optional[int] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A__ : Any = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A__ : List[Any] = self._pad_tensors_to_max_len(A__ , gen_kwargs["""max_length"""] ) A__ : Tuple = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data A__ : Dict = self._compute_loss(A__ , A__ , A__ ) A__ : Union[str, Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A__ : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A__ : Optional[int] = self._pad_tensors_to_max_len(A__ , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def __A ( self , A__ , A__ ): A__ : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F""" padded to `max_length`={max_length}""" ) A__ : Any = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A__ : List[str] = tensor return padded_tensor
192
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_ : Optional[int] = 1_6 SCREAMING_SNAKE_CASE_ : List[str] = 3_2 def _snake_case ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ): A__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) A__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE_ : Optional[Any] = mocked_dataloaders # noqa: F811 def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCAmelCase ) == "1": A__ = 2 # New Code # A__ = int(args.gradient_accumulation_steps ) # Initialize accelerator A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["""num_epochs"""] ) A__ = int(config["""seed"""] ) A__ = int(config["""batch_size"""] ) A__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(_lowerCAmelCase ) A__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCAmelCase ): A__ = model(**_lowerCAmelCase ) A__ = output.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCAmelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCAmelCase ) def _snake_case ( ): A__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
335
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowerCAmelCase : Union[str, Any] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowerCAmelCase : Optional[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Optional[int] , snake_case :List[Any] , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' A_ : List[str] = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A_ : int = [[refs[i] for refs in references] for i in range(snake_case )] A_ : Optional[Any] = TER( normalized=snake_case , no_punct=snake_case , asian_support=snake_case , case_sensitive=snake_case , ) A_ : List[Any] = sb_ter.corpus_score(snake_case , snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=1000 ,) -> int: lowerCAmelCase__ : str = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : str = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : Any = use_input_mask lowerCAmelCase__ : str = use_token_type_ids lowerCAmelCase__ : Tuple = use_labels lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Any = num_labels lowerCAmelCase__ : Optional[int] = num_choices lowerCAmelCase__ : Optional[Any] = scope lowerCAmelCase__ : Any = range_bbox def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase__ : str = bbox[i, j, 3] lowerCAmelCase__ : Union[str, Any] = bbox[i, j, 1] lowerCAmelCase__ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase__ : Any = bbox[i, j, 2] lowerCAmelCase__ : Tuple = bbox[i, j, 0] lowerCAmelCase__ : int = t lowerCAmelCase__ : int = tf.convert_to_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = None if self.use_input_mask: lowerCAmelCase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : str = None if self.use_token_type_ids: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : str = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : int = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Any = TFLayoutLMModel(config=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = model(__UpperCAmelCase ,__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : str = model(__UpperCAmelCase ,__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = TFLayoutLMForMaskedLM(config=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = model(__UpperCAmelCase ,__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = self.num_labels lowerCAmelCase__ : int = TFLayoutLMForSequenceClassification(config=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase ,__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : str = TFLayoutLMForTokenClassification(config=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase ,__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __lowercase : Any = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowercase : Dict = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Any = False __lowercase : Dict = True __lowercase : Optional[Any] = 1_0 def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Tuple = TFLayoutLMModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> int: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[str] = TFLayoutLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def UpperCAmelCase_ ( self ) -> Any: pass def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase__ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase__ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase__ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase__ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) lowerCAmelCase__ : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ : Tuple = model(input_ids=__UpperCAmelCase ,bbox=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) # test the sequence output on [0, :3, :3] lowerCAmelCase__ : List[Any] = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase__ : Optional[Any] = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__UpperCAmelCase ,atol=1E-3 ) ) @slow def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" ,num_labels=2 ) lowerCAmelCase__ : Any = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ : Dict = model( input_ids=__UpperCAmelCase ,bbox=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar lowerCAmelCase__ : List[str] = outputs.loss lowerCAmelCase__ : Union[str, Any] = (2,) self.assertEqual(loss.shape ,__UpperCAmelCase ) # test the shape of the logits lowerCAmelCase__ : Tuple = outputs.logits lowerCAmelCase__ : Tuple = (2, 2) self.assertEqual(logits.shape ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : int = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" ,num_labels=13 ) lowerCAmelCase__ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ : Union[str, Any] = model( input_ids=__UpperCAmelCase ,bbox=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) # test the shape of the logits lowerCAmelCase__ : Dict = outputs.logits lowerCAmelCase__ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) lowerCAmelCase__ : str = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ : Union[str, Any] = model(input_ids=__UpperCAmelCase ,bbox=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) # test the shape of the logits lowerCAmelCase__ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape ,__UpperCAmelCase ) self.assertEqual(outputs.end_logits.shape ,__UpperCAmelCase )
37
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowerCamelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings SCREAMING_SNAKE_CASE : List[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCamelCase , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCamelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.create_estimator(_lowerCamelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCamelCase )
313
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
0