code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } UpperCamelCase = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Dict = list(state_dict.keys() ) for name in state_dict_keys: A_ : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE ) # emb -> embedding if name.startswith('''emb.''' ): A_ : Tuple = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): A_ : int = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention A_ : List[Any] = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , SCREAMING_SNAKE_CASE ) # ffn -> feed_forward A_ : Optional[Any] = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , SCREAMING_SNAKE_CASE ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): A_ : Optional[int] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): A_ : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): A_ : Tuple = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": A_ : Union[str, Any] = '''rwkv.''' + name A_ : Dict = weight return state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) A_ : List[str] = 50_277 A_ : str = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: A_ : Optional[int] = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE ) A_ : str = len(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) # 2. Build the config A_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A_ : List[Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) A_ : Optional[int] = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE ) # 3. Download model file then convert state_dict A_ : Optional[Any] = hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) A_ : Tuple = convert_state_dict(SCREAMING_SNAKE_CASE ) # 4. Split in shards and save A_ , A_ : Optional[Any] = shard_checkpoint(SCREAMING_SNAKE_CASE ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if index is not None: A_ : str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save the index as well with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: A_ : str = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) A_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A_ : str = torch.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) A_ : Optional[int] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE ) model.push_to_hub(SCREAMING_SNAKE_CASE , max_shard_size='''2GB''' ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) UpperCamelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
186
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Union[str, Any] = None A_ : Any = 20 A_ : Any = self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore A_ : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A_ : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A_ : List[str] = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) A_ : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) A_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) A_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Any = None A_ : List[Any] = 10 A_ : str = 2 # create ramp distribution A_ : Any = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() A_ : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : Tuple = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A_ : Optional[int] = 5 A_ : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A_ : Optional[Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() A_ : Dict = top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = None A_ : Optional[Any] = 10 A_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A_ : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) A_ : str = FlaxTopPLogitsWarper(0.8 ) A_ : Optional[int] = np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A_ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # check edge cases with negative and extreme logits A_ : Union[str, Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A_ : str = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept A_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A_ : str = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = 20 A_ : Union[str, Any] = 4 A_ : Optional[Any] = 0 A_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 A_ : int = ids_tensor((batch_size, 20) , vocab_size=20 ) A_ : List[Any] = 5 A_ : Optional[int] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 A_ : Tuple = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = 15 A_ : int = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[int] = 20 A_ : Optional[int] = 4 A_ : Optional[int] = 0 A_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score A_ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) A_ : str = 1 A_ : List[str] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A_ : Optional[int] = 3 A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = 20 A_ : str = 4 A_ : Dict = 0 A_ : Optional[int] = 5 A_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached A_ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) A_ : Any = 4 A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A_ : int = 3 A_ : Union[str, Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Union[str, Any] = 15 A_ : str = 2 A_ : int = 1 A_ : List[str] = 15 # dummy input_ids and scores A_ : Tuple = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : int = input_ids.copy() A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = scores.copy() # instantiate all dist processors A_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = 10 # no processor list A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[str] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list A_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : List[str] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Tuple = 15 A_ : List[str] = 2 A_ : List[str] = 1 A_ : Union[str, Any] = 15 # dummy input_ids and scores A_ : Any = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = input_ids.copy() A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = scores.copy() # instantiate all dist processors A_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) A_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : str = 10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : Optional[int] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores A_ : Optional[int] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Dict = jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
186
1
"""simple docstring""" import argparse import copy def _lowercase ( __snake_case ) -> List[Any]: __lowerCAmelCase : Optional[Any] = {} with open(__snake_case ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowerCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) __lowerCAmelCase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowerCAmelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) __lowerCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _lowercase ( __snake_case ,__snake_case ) -> int: with open(__snake_case ) as f: __lowerCAmelCase : Union[str, Any] = f.read(1 ) __lowerCAmelCase : Any = start_node __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Tuple = start_node __lowerCAmelCase : List[str] = 0 while visiting not in first_solution: __lowerCAmelCase : List[Any] = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__snake_case ) and k[0] not in first_solution: __lowerCAmelCase : Dict = k[1] __lowerCAmelCase : Dict = k[0] first_solution.append(__snake_case ) __lowerCAmelCase : Optional[Any] = distance_of_first_solution + int(__snake_case ) __lowerCAmelCase : int = best_node first_solution.append(__snake_case ) __lowerCAmelCase : Optional[int] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowerCAmelCase : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def _lowercase ( __snake_case ,__snake_case ) -> str: __lowerCAmelCase : Dict = [] for n in solution[1:-1]: __lowerCAmelCase : Any = solution.index(__snake_case ) for kn in solution[1:-1]: __lowerCAmelCase : int = solution.index(__snake_case ) if n == kn: continue __lowerCAmelCase : int = copy.deepcopy(__snake_case ) __lowerCAmelCase : Tuple = kn __lowerCAmelCase : Optional[Any] = n __lowerCAmelCase : List[str] = 0 for k in _tmp[:-1]: __lowerCAmelCase : str = _tmp[_tmp.index(__snake_case ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowerCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__snake_case ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowerCAmelCase : int = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Dict: __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : str = first_solution __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Tuple = distance_of_first_solution __lowerCAmelCase : Tuple = solution while count <= iters: __lowerCAmelCase : List[str] = find_neighborhood(__snake_case ,__snake_case ) __lowerCAmelCase : str = 0 __lowerCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution] __lowerCAmelCase : Any = len(__snake_case ) - 1 __lowerCAmelCase : Union[str, Any] = False while not found: __lowerCAmelCase : str = 0 while i < len(__snake_case ): if best_solution[i] != solution[i]: __lowerCAmelCase : List[str] = best_solution[i] __lowerCAmelCase : str = solution[i] break __lowerCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowerCAmelCase : Any = True __lowerCAmelCase : Optional[int] = best_solution[:-1] __lowerCAmelCase : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowerCAmelCase : List[Any] = cost __lowerCAmelCase : List[Any] = solution else: __lowerCAmelCase : List[str] = index_of_best_solution + 1 __lowerCAmelCase : Optional[int] = neighborhood[index_of_best_solution] if len(__snake_case ) >= size: tabu_list.pop(0 ) __lowerCAmelCase : int = count + 1 return best_solution_ever, best_cost def _lowercase ( __snake_case=None ) -> Optional[Any]: __lowerCAmelCase : Union[str, Any] = generate_neighbours(args.File ) __lowerCAmelCase , __lowerCAmelCase : List[str] = generate_first_solution( args.File ,__snake_case ) __lowerCAmelCase , __lowerCAmelCase : Any = tabu_search( __snake_case ,__snake_case ,__snake_case ,args.Iterations ,args.Size ,) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
58
"""simple docstring""" import math def _lowercase ( __snake_case ) -> bool: __lowerCAmelCase : Optional[Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__snake_case ) def _lowercase ( __snake_case = 1 / 12_345 ) -> int: __lowerCAmelCase : str = 0 __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 3 while True: __lowerCAmelCase : Optional[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__snake_case ): __lowerCAmelCase : str = int(__snake_case ) total_partitions += 1 if check_partition_perfect(__snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__snake_case ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
58
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowercase__( unittest.TestCase ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]=9_9 , SCREAMING_SNAKE_CASE_ : Tuple=3_2 , SCREAMING_SNAKE_CASE_ : int=5 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=4 , ) -> Dict: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices def _lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Tuple ) -> str: lowercase_ = FlaxAlbertModelTester(self ) @slow def _lowercase ( self : List[Any] ) -> int: for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained('''albert-base-v2''' ) lowercase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Any ) -> Dict: lowercase_ = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) lowercase_ = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = (1, 1_1, 7_6_8) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
30
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
337
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __lowerCAmelCase = float('nan') class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Tuple: _snake_case = sys.stdout _snake_case = open(UpperCAmelCase , """a""" ) def __getattr__(self , UpperCAmelCase ) -> Optional[Any]: return getattr(self.stdout , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> str: self.stdout.write(UpperCAmelCase ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" , """""" , UpperCAmelCase , 0 , re.M ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=False ): _snake_case = [] # deal with critical env vars _snake_case = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: _snake_case = os.environ.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) _snake_case = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _snake_case = [] _snake_case = """""" while len(_SCREAMING_SNAKE_CASE ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_SCREAMING_SNAKE_CASE ) _snake_case = """""" return "\\\n".join(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # unwrap multi-line input _snake_case = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own _snake_case = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir _snake_case = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) _snake_case = subprocess.run(_SCREAMING_SNAKE_CASE , capture_output=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams _snake_case = variation.replace(""" """ , """-""" ) with open(Path(_SCREAMING_SNAKE_CASE ) / f"""log.{prefix}.stdout.txt""" , """w""" ) as f: f.write(result.stdout ) with open(Path(_SCREAMING_SNAKE_CASE ) / f"""log.{prefix}.stderr.txt""" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , """r""" , encoding="""utf-8""" ) as f: _snake_case = json.load(_SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): _snake_case = [] _snake_case = [] _snake_case = f"""{id}: {variation:<{longest_variation_len}}""" _snake_case = f"""{preamble}: """ _snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_SCREAMING_SNAKE_CASE ) , desc=_SCREAMING_SNAKE_CASE , leave=_SCREAMING_SNAKE_CASE ): _snake_case = process_run_single( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = single_run_metrics[target_metric_key] if not math.isnan(_SCREAMING_SNAKE_CASE ): metrics.append(_SCREAMING_SNAKE_CASE ) results.append(_SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" _snake_case = f"""\33[2K\r{outcome}""" if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _snake_case = round(mean_metrics[target_metric_key] , 2 ) _snake_case = f"""{outcome} {mean_target}""" if len(_SCREAMING_SNAKE_CASE ) > 1: results_str += f""" {tuple(round(_SCREAMING_SNAKE_CASE , 2 ) for x in results )}""" print(_SCREAMING_SNAKE_CASE ) _snake_case = variation return mean_metrics else: print(_SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def __SCREAMING_SNAKE_CASE ( ): _snake_case = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = pd.DataFrame(_SCREAMING_SNAKE_CASE ) _snake_case = """variation""" _snake_case = """diff_%""" _snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel _snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_SCREAMING_SNAKE_CASE ): _snake_case = df.apply( lambda _SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns _snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] _snake_case = df.reindex(_SCREAMING_SNAKE_CASE , axis="""columns""" ) # reorder cols # capitalize _snake_case = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible _snake_case = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) _snake_case = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """\n""" ) , axis="""columns""" ) _snake_case = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] print("""\n\n""".join(_SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , nargs="""+""" , required=_SCREAMING_SNAKE_CASE , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=_SCREAMING_SNAKE_CASE , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=_SCREAMING_SNAKE_CASE , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=_SCREAMING_SNAKE_CASE , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) _snake_case = parser.parse_args() _snake_case = args.output_dir Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) _snake_case = get_base_command(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations _snake_case = [list(map(str.strip , re.split(R"""\|""" , _SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _snake_case = list(map(str.strip , map(""" """.join , itertools.product(*_SCREAMING_SNAKE_CASE ) ) ) ) _snake_case = max(len(_SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys _snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience _snake_case = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) _snake_case = Tee(_SCREAMING_SNAKE_CASE ) print(f"""\n*** Running {len(_SCREAMING_SNAKE_CASE )} benchmarks:""" ) print(f"""Base command: {" ".join(_SCREAMING_SNAKE_CASE )}""" ) _snake_case = """variation""" _snake_case = [] for id, variation in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc="""Total completion: """ , leave=_SCREAMING_SNAKE_CASE ) ): _snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.repeat_times , _SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(_SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.base_variation , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
270
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = StableDiffusionPanoramaPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase (self ) -> List[Any]: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _snake_case = DDIMScheduler() torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case = CLIPTextModel(UpperCAmelCase ) _snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: _snake_case = torch.manual_seed(UpperCAmelCase ) _snake_case = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase (self ) -> Tuple: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase (self ) -> Any: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def lowercase (self ) -> Any: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = """french fries""" _snake_case = sd_pipe(**UpperCAmelCase , negative_prompt=UpperCAmelCase ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase , view_batch_size=2 ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> Tuple: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=UpperCAmelCase ) _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self , UpperCAmelCase=0 ) -> List[str]: _snake_case = torch.manual_seed(UpperCAmelCase ) _snake_case = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase (self ) -> List[Any]: _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=UpperCAmelCase ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase (self ) -> Optional[int]: _snake_case = 0 def callback_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _snake_case = False _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**UpperCAmelCase , callback=UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase (self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
270
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __A : Optional[List[str]] = None __A : int = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __A : Any = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class A_ : UpperCAmelCase__ = True UpperCAmelCase__ = None # Automatically constructed UpperCAmelCase__ = "PIL.Image.Image" UpperCAmelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCAmelCase__ = field(default='''Image''' , init=a_ , repr=a_ ) def __call__( self ): '''simple docstring''' return self.pa_type def _lowercase ( self , _A ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_A , _A ): UpperCAmelCase = np.array(_A ) if isinstance(_A , _A ): return {"path": value, "bytes": None} elif isinstance(_A , _A ): return {"path": None, "bytes": value} elif isinstance(_A , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_A ) elif isinstance(_A , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_A ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowercase ( self , _A , _A=None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase = {} UpperCAmelCase , UpperCAmelCase = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_A ): UpperCAmelCase = PIL.Image.open(_A ) else: UpperCAmelCase = path.split('''::''' )[-1] try: UpperCAmelCase = string_to_dict(_A , config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase = token_per_repo_id.get(_A ) except ValueError: UpperCAmelCase = None with xopen(_A , '''rb''' , use_auth_token=_A ) as f: UpperCAmelCase = BytesIO(f.read() ) UpperCAmelCase = PIL.Image.open(bytes_ ) else: UpperCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _lowercase ( self ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def _lowercase ( self , _A ): '''simple docstring''' if pa.types.is_string(storage.type ): UpperCAmelCase = pa.array([None] * len(_A ) , type=pa.binary() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase = pa.array([None] * len(_A ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase = storage.field('''bytes''' ) else: UpperCAmelCase = pa.array([None] * len(_A ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase = storage.field('''path''' ) else: UpperCAmelCase = pa.array([None] * len(_A ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase = pa.array( [encode_np_array(np.array(_A ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase = pa.array([None] * len(_A ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_A , self.pa_type ) def _lowercase ( self , _A ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_A ): with xopen(_A , '''rb''' ) as f: UpperCAmelCase = f.read() return bytes_ UpperCAmelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase = pa.array( [os.path.basename(_A ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_A , self.pa_type ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bytes: '''simple docstring''' UpperCAmelCase = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase = image.format else: UpperCAmelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(UpperCamelCase__ , format=UpperCamelCase__ ) return buffer.getvalue() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> dict: '''simple docstring''' if hasattr(UpperCamelCase__ , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase = array.dtype UpperCAmelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase = dtype.kind UpperCAmelCase = dtype.itemsize UpperCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase = dtype_byteorder + dtype_kind + str(UpperCamelCase__ ) UpperCAmelCase = np.dtype(UpperCamelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCAmelCase = PIL.Image.fromarray(array.astype(UpperCamelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase , UpperCAmelCase = first_non_null_value(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCamelCase__ , np.ndarray ): UpperCAmelCase = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] elif isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCAmelCase = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] else: return objs else: return objs
273
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_A , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''prompt'''] UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: UpperCAmelCase = inputs['''image'''] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['''mask_image'''] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['''original_image'''] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(_A ) # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_A , _A , _A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_A , _A ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = inputs['''generator'''] UpperCAmelCase = inputs['''num_inference_steps'''] UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe(**_A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_A ) UpperCAmelCase = self.pipeline_class.from_pretrained(_A ) pipe_loaded.to(_A ) pipe_loaded.set_progress_bar_config(disable=_A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(_A ) UpperCAmelCase = pipe_loaded(**_A )[0] UpperCAmelCase = np.abs(to_np(_A ) - to_np(_A ) ).max() self.assertLess(_A , 1E-4 )
273
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : torch.FloatTensor class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @register_to_config def __init__( self ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 3 ,__UpperCAmelCase = ("DownEncoderBlock2D",) ,__UpperCAmelCase = ("UpDecoderBlock2D",) ,__UpperCAmelCase = (64,) ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "silu" ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 256 ,__UpperCAmelCase = 32 ,__UpperCAmelCase = None ,__UpperCAmelCase = 0.1_8_2_1_5 ,__UpperCAmelCase = "group" ,) -> List[str]: super().__init__() # pass init params to Encoder lowerCAmelCase__ : Any = Encoder( in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,down_block_types=__UpperCAmelCase ,block_out_channels=__UpperCAmelCase ,layers_per_block=__UpperCAmelCase ,act_fn=__UpperCAmelCase ,norm_num_groups=__UpperCAmelCase ,double_z=__UpperCAmelCase ,) lowerCAmelCase__ : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase__ : List[Any] = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : Optional[Any] = VectorQuantizer(__UpperCAmelCase ,__UpperCAmelCase ,beta=0.2_5 ,remap=__UpperCAmelCase ,sane_index_shape=__UpperCAmelCase ) lowerCAmelCase__ : str = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,1 ) # pass init params to Decoder lowerCAmelCase__ : Optional[Any] = Decoder( in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,up_block_types=__UpperCAmelCase ,block_out_channels=__UpperCAmelCase ,layers_per_block=__UpperCAmelCase ,act_fn=__UpperCAmelCase ,norm_num_groups=__UpperCAmelCase ,norm_type=__UpperCAmelCase ,) @apply_forward_hook def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = True ) -> VQEncoderOutput: lowerCAmelCase__ : Any = self.encoder(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = self.quant_conv(__UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCAmelCase ) @apply_forward_hook def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase__ : Dict = self.quantize(__UpperCAmelCase ) else: lowerCAmelCase__ : str = h lowerCAmelCase__ : Dict = self.post_quant_conv(__UpperCAmelCase ) lowerCAmelCase__ : str = self.decoder(__UpperCAmelCase ,quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase__ : int = sample lowerCAmelCase__ : List[Any] = self.encode(__UpperCAmelCase ).latents lowerCAmelCase__ : str = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
356
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase = 10 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(UpperCamelCase , UpperCamelCase ): if array[i] == target: return i return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = len(UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = (left + right) // 3 + 1 lowerCAmelCase__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase__ : int = one_third - 1 elif array[two_third] < target: lowerCAmelCase__ : Union[str, Any] = two_third + 1 else: lowerCAmelCase__ : List[Any] = one_third + 1 lowerCAmelCase__ : List[str] = two_third - 1 else: return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = (left + right) // 3 + 1 lowerCAmelCase__ : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase , one_third - 1 , UpperCamelCase , UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase , UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowerCAmelCase = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase = ite_ternary_search(collection, target) _lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('''Not found''')
184
0
import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: List[str] = str(id_ ) _A: Any = None _A: Tuple = None _A: Any = [] _A: Dict = {} # {vertex:distance} def __lt__( self : Union[str, Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" return self.key < other.key def __repr__( self : Tuple ): """simple docstring""" return self.id def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" self.neighbors.append(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): """simple docstring""" _A: Any = weight def lowerCamelCase__ ( a , a , a , a ) -> Tuple: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def lowerCamelCase__ ( a , a ) -> list: _A: int = [] for u in graph: _A: Union[str, Any] = math.inf _A: int = None _A: Optional[Any] = 0 _A: Union[str, Any] = graph[:] while q: _A: str = min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _A: int = u _A: Union[str, Any] = u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase__ ( a , a ) -> Iterator[tuple]: for u in graph: _A: Tuple = math.inf _A: Union[str, Any] = None _A: str = 0 _A: str = list(__snake_case ) hq.heapify(__snake_case ) while h: _A: Any = hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _A: List[Any] = u _A: Optional[int] = u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
121
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __snake_case : Optional[int] = ['small', 'medium', 'large'] __snake_case : Optional[int] = 'lm_head.decoder.weight' __snake_case : List[Any] = 'lm_head.weight' def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> int: """simple docstring""" A__ : str =torch.load(__snake_case ) A__ : List[Any] =d.pop(__snake_case ) os.makedirs(__snake_case, exist_ok=__snake_case ) torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) __snake_case : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: __snake_case : Dict = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") __snake_case : List[Any] = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> int: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int ) -> Any: return max(metric_fn(_snake_case , _snake_case ) for gt in ground_truths ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> int: _snake_case = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] _snake_case = [] if args.gold_data_mode == "qa": _snake_case = pd.read_csv(_snake_case , sep='''\t''' , header=_snake_case ) for answer_list in data[1]: _snake_case = ast.literal_eval(_snake_case ) answers.append(_snake_case ) else: _snake_case = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] _snake_case = [[reference] for reference in references] _snake_case = 0 for prediction, ground_truths in zip(_snake_case , _snake_case ): total += 1 em += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) fa += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) _snake_case = 100.0 * em / total _snake_case = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> int: _snake_case = args.k _snake_case = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] _snake_case = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] _snake_case = 0 for hypo, reference in zip(_snake_case , _snake_case ): _snake_case = set(hypo.split('''\t''' )[:k] ) _snake_case = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _snake_case = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ) -> List[str]: def strip_title(__lowerCamelCase : Optional[Any] ): if title.startswith('''"''' ): _snake_case = title[1:] if title.endswith('''"''' ): _snake_case = title[:-1] return title _snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case , )['''input_ids'''].to(args.device ) _snake_case = rag_model.rag.question_encoder(_snake_case ) _snake_case = question_enc_outputs[0] _snake_case = rag_model.retriever( _snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _snake_case = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _snake_case = [] for docs in all_docs: _snake_case = [strip_title(_snake_case ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_snake_case ) ) return provenance_strings def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ) -> Tuple: with torch.no_grad(): _snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case ) _snake_case = inputs_dict.input_ids.to(args.device ) _snake_case = inputs_dict.attention_mask.to(args.device ) _snake_case = rag_model.generate( # rag_model overwrites generate _snake_case , attention_mask=_snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _snake_case = rag_model.retriever.generator_tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) if args.print_predictions: for q, a in zip(_snake_case , _snake_case ): logger.info('''Q: {} - A: {}'''.format(_snake_case , _snake_case ) ) return answers def _UpperCAmelCase ( ) -> int: _snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_snake_case , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_snake_case , choices=['''exact''', '''compressed''', '''legacy'''] , type=_snake_case , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_snake_case , type=_snake_case , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_snake_case , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_snake_case , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_snake_case , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_snake_case , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_snake_case , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_snake_case , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_snake_case , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_snake_case , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_snake_case , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _snake_case = parser.parse_args() _snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> Union[str, Any]: _snake_case = {} if args.model_type is None: _snake_case = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): _snake_case = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _snake_case = args.n_docs if args.index_name is not None: _snake_case = args.index_name if args.index_path is not None: _snake_case = args.index_path else: _snake_case = BartForConditionalGeneration _snake_case = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _snake_case ) _snake_case = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _snake_case = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_snake_case , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_snake_case ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): _snake_case = RagRetriever.from_pretrained(_snake_case , **_snake_case ) _snake_case = model_class.from_pretrained(_snake_case , retriever=_snake_case , **_snake_case ) model.retriever.init_retrieval() else: _snake_case = model_class.from_pretrained(_snake_case , **_snake_case ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: _snake_case = [] for line in tqdm(_snake_case ): questions.append(line.strip() ) if len(_snake_case ) == args.eval_batch_size: _snake_case = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) + '''\n''' ) preds_file.flush() _snake_case = [] if len(_snake_case ) > 0: _snake_case = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) ) preds_file.flush() score_fn(_snake_case , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase__ = get_args() main(args)
352
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=13 , _lowerCamelCase : int=32 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[int]=[10, 20, 30, 40] , _lowerCamelCase : Dict=[2, 2, 3, 2] , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Any=0.0_2 , _lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , _lowerCamelCase : Any=[2, 3, 4] , _lowerCamelCase : Any=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_labels _snake_case = initializer_range _snake_case = out_features _snake_case = out_indices _snake_case = scope def lowercase ( self : Dict ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : str ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str] ): _snake_case = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] ): _snake_case = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : str ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict def lowercase ( self : int ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __a = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : str ): _snake_case = ConvNextVaModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowercase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Dict ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowercase ( self : int ): pass def lowercase ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = False _snake_case = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : Optional[Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Optional[int] ): def check_hidden_states_output(_lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ): _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : str ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ): _snake_case = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = preprocessor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
40
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : int=None , __lowerCamelCase : List[str]=None ) ->Tuple: if rng is None: _SCREAMING_SNAKE_CASE = global_rng _SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=1_6000 , A=True , A=True , ) -> Tuple: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = min_seq_length _SCREAMING_SNAKE_CASE = max_seq_length _SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE = feature_size _SCREAMING_SNAKE_CASE = padding_value _SCREAMING_SNAKE_CASE = sampling_rate _SCREAMING_SNAKE_CASE = return_attention_mask _SCREAMING_SNAKE_CASE = do_normalize def snake_case_( self ) -> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_( self , A=False , A=False ) -> str: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: _SCREAMING_SNAKE_CASE = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ASTFeatureExtractor def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = ASTFeatureExtractionTester(self ) def snake_case_( self ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input _SCREAMING_SNAKE_CASE = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _SCREAMING_SNAKE_CASE = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE = feat_extract(A , padding=A , return_tensors="""np""" ).input_values _SCREAMING_SNAKE_CASE = feat_extract(A , padding=A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE = np.asarray(A ) _SCREAMING_SNAKE_CASE = feat_extract(A , return_tensors="""np""" ).input_values _SCREAMING_SNAKE_CASE = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) @require_torch def snake_case_( self ) -> List[Any]: import torch _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE = np.random.rand(100 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case_( self , A ) -> Optional[Any]: from datasets import load_dataset _SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def snake_case_( self ) -> Optional[int]: # fmt: off _SCREAMING_SNAKE_CASE = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE = ASTFeatureExtractor() _SCREAMING_SNAKE_CASE = feature_extractor(A , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1e-4 ) )
58
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase_ = HUGGINGFACE_HUB_CACHE lowercase_ = """config.json""" lowercase_ = """diffusion_pytorch_model.bin""" lowercase_ = """diffusion_flax_model.msgpack""" lowercase_ = """model.onnx""" lowercase_ = """diffusion_pytorch_model.safetensors""" lowercase_ = """weights.pb""" lowercase_ = """https://huggingface.co""" lowercase_ = default_cache_path lowercase_ = """diffusers_modules""" lowercase_ = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowercase_ = ["""fp16""", """non-ema"""] lowercase_ = """.self_attn"""
58
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[List[PIL.Image.Image], np.ndarray] __snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : np.ndarray __snake_case : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
356
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE = i + 1 else: SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
193
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]="None" , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Union[str, Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def __A ( self : Any ) -> str: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Any ) -> List[str]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self : Dict ) -> Dict: __lowerCamelCase = self.get_config() __lowerCamelCase = 3_00 return config def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: __lowerCamelCase = DebertaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: __lowerCamelCase = DebertaForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase = DebertaForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : str ) -> str: __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a__ : Union[str, Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) a__ : Dict = True a__ : Dict = False a__ : str = False a__ : str = False a__ : int = False def __A ( self : List[str] ) -> Tuple: __lowerCamelCase = DebertaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __A ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> List[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : Tuple ) -> Optional[int]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = DebertaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __A ( self : Dict ) -> List[str]: pass @slow def __A ( self : Optional[Any] ) -> Optional[Any]: __lowerCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
270
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase__ : def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Dict: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def __A ( self : List[Any] ) -> str: for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(SCREAMING_SNAKE_CASE__ )][self.get_x(SCREAMING_SNAKE_CASE__ )] def __A ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int: return int(self.ratio_x * x ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = 800, 600 SCREAMING_SNAKE_CASE__ : int = imread("image_data/lena.jpg", 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
270
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase = logging.get_logger(__name__) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> None: """simple docstring""" snake_case_ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ), f'''{len(SCREAMING_SNAKE_CASE )} != {len(SCREAMING_SNAKE_CASE )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" try: snake_case_ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(SCREAMING_SNAKE_CASE ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "student" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" snake_case_ = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ).save_pretrained(SCREAMING_SNAKE_CASE ) # purely for convenience snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).eval() else: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f'''teacher must be a model or string got type {type(SCREAMING_SNAKE_CASE )}''' snake_case_ = teacher.config.to_diff_dict() try: snake_case_ , snake_case_ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: snake_case_ = teacher_e if d is None: snake_case_ = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): snake_case_ , snake_case_ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: snake_case_ , snake_case_ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: snake_case_ = teacher_e if d is None: snake_case_ = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(SCREAMING_SNAKE_CASE ) # Copy weights snake_case_ = teacher.config_class(**SCREAMING_SNAKE_CASE ) snake_case_ = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. snake_case_ = student.load_state_dict(teacher.state_dict() , strict=SCREAMING_SNAKE_CASE ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save snake_case_ , snake_case_ = list(range(SCREAMING_SNAKE_CASE ) ), list(range(SCREAMING_SNAKE_CASE ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(SCREAMING_SNAKE_CASE ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: snake_case_ = pick_layers_to_copy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if d_layers_to_copy is None: snake_case_ = pick_layers_to_copy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) try: if hasattr( SCREAMING_SNAKE_CASE , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , SCREAMING_SNAKE_CASE ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , SCREAMING_SNAKE_CASE ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , SCREAMING_SNAKE_CASE ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , SCREAMING_SNAKE_CASE ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , SCREAMING_SNAKE_CASE ) copy_layers(teacher.decoder.block , student.decoder.block , SCREAMING_SNAKE_CASE ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) snake_case_ = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(SCREAMING_SNAKE_CASE ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
361
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: snake_case_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(SCREAMING_SNAKE_CASE ) snake_case_ = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
267
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _a ( unittest.TestCase ): A = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[Any] = hf_hub_download( repo_id="""nateraw/video-demo""", filename="""archery.mp4""", repo_type="""dataset""" ) UpperCAmelCase_: List[Any] = VideoClassificationPipeline(model=__lowerCamelCase, image_processor=__lowerCamelCase, top_k=2 ) UpperCAmelCase_: int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: for example in examples: UpperCAmelCase_: int = video_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase, [ {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, {"""score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase )}, ], ) @require_torch def __snake_case (self ) -> Dict: UpperCAmelCase_: Tuple = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCAmelCase_: Optional[int] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10}, crop_size={"""height""": 10, """width""": 10} ) UpperCAmelCase_: int = pipeline( """video-classification""", model=__lowerCamelCase, feature_extractor=__lowerCamelCase, frame_sampling_rate=4 ) UpperCAmelCase_: Tuple = hf_hub_download(repo_id="""nateraw/video-demo""", filename="""archery.mp4""", repo_type="""dataset""" ) UpperCAmelCase_: Optional[Any] = video_classifier(__lowerCamelCase, top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase, decimals=4 ), [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ) UpperCAmelCase_: Any = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(__lowerCamelCase, decimals=4 ), [ [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ], ) @require_tf def __snake_case (self ) -> Union[str, Any]: pass
147
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
184
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class snake_case__ ( _lowerCAmelCase ): lowercase__ : int = 0 lowercase__ : bool = False lowercase__ : float = 3.0 class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {"""a""": 2, """c""": 2.2_5} ) @require_cuda def __magic_name__ ( self ) -> str: # If no defaults are changed, `to_kwargs` returns an empty dict. __magic_name__ : Tuple = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __magic_name__ : List[str] = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __magic_name__ : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , lowerCAmelCase__ ) @require_multi_gpu def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __magic_name__: Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __magic_name__: Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) __magic_name__: Optional[Any] = torch.nn.Linear(100, 200) __magic_name__: Dict = accelerator.prepare(model) # Check the values changed in kwargs __magic_name__: str = "" __magic_name__: Optional[Any] = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
138
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ) -> Optional[Any]: __magic_name__ : Optional[Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[Any] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : Union[str, Any] = is_training __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Tuple = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : Any = initializer_range __magic_name__ : str = scope __magic_name__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __magic_name__ : Dict = (image_size // patch_size) ** 2 __magic_name__ : int = num_patches + 2 def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[str]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TFDeiTModel(config=lowerCAmelCase__ ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : int = TFDeiTForMaskedImageModeling(config=lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Tuple = 1 __magic_name__ : List[Any] = TFDeiTForMaskedImageModeling(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Union[str, Any] = self.type_sequence_label_size __magic_name__ : str = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : int = 1 __magic_name__ : List[str] = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase__ : Any = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase__ : int = False lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : int = False def __magic_name__ ( self ) -> str: __magic_name__ : str = TFDeiTModelTester(self ) __magic_name__ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Union[str, Any]: pass def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Dense ) ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: __magic_name__ : Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __magic_name__ ( self ) -> Dict: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = TFDeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __magic_name__ : Any = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass __magic_name__ : Dict = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
138
1
'''simple docstring''' import argparse import copy def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Dict: UpperCAmelCase : List[Any] = {} with open(_lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Union[str, Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> str: with open(_lowerCAmelCase ) as f: UpperCAmelCase : Dict = f.read(1 ) UpperCAmelCase : Union[str, Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = start_node UpperCAmelCase : Tuple = 0 while visiting not in first_solution: UpperCAmelCase : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCAmelCase ) and k[0] not in first_solution: UpperCAmelCase : Optional[int] = k[1] UpperCAmelCase : List[str] = k[0] first_solution.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = distance_of_first_solution + int(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = best_node first_solution.append(_lowerCAmelCase ) UpperCAmelCase : str = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ) -> List[Any]: UpperCAmelCase : int = [] for n in solution[1:-1]: UpperCAmelCase : List[Any] = solution.index(_lowerCAmelCase ) for kn in solution[1:-1]: UpperCAmelCase : List[Any] = solution.index(_lowerCAmelCase ) if n == kn: continue UpperCAmelCase : int = copy.deepcopy(_lowerCAmelCase ) UpperCAmelCase : int = kn UpperCAmelCase : Union[str, Any] = n UpperCAmelCase : Tuple = 0 for k in _tmp[:-1]: UpperCAmelCase : str = _tmp[_tmp.index(_lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : Union[str, Any] = distance + int(i[1] ) _tmp.append(_lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : Optional[int] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> str: UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Dict = first_solution UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : str = find_neighborhood(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = neighborhood[index_of_best_solution] UpperCAmelCase : List[str] = len(_lowerCAmelCase ) - 1 UpperCAmelCase : Optional[Any] = False while not found: UpperCAmelCase : int = 0 while i < len(_lowerCAmelCase ): if best_solution[i] != solution[i]: UpperCAmelCase : Any = best_solution[i] UpperCAmelCase : Any = solution[i] break UpperCAmelCase : Any = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : int = True UpperCAmelCase : Union[str, Any] = best_solution[:-1] UpperCAmelCase : List[str] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Any = cost UpperCAmelCase : int = solution else: UpperCAmelCase : Tuple = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(_lowerCAmelCase ) >= size: tabu_list.pop(0 ) UpperCAmelCase : Optional[int] = count + 1 return best_solution_ever, best_cost def snake_case_ ( _lowerCAmelCase : Union[str, Any]=None ) -> Tuple: UpperCAmelCase : Optional[int] = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , _lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = tabu_search( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": UpperCamelCase__: List[Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowerCAmelCase ( A__: Optional[Any] ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowerCAmelCase ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = '''mock-s3-bucket''' UpperCAmelCase = F"""s3://{mock_bucket}""" UpperCAmelCase = extract_path_from_uri(A__ ) assert dataset_path.startswith('''s3://''' ) is False UpperCAmelCase = '''./local/path''' UpperCAmelCase = extract_path_from_uri(A__ ) assert dataset_path == new_dataset_path def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = is_remote_filesystem(A__ ) assert is_remote is True UpperCAmelCase = fsspec.filesystem('''file''' ) UpperCAmelCase = is_remote_filesystem(A__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , A__ ) def _lowerCAmelCase ( A__: Dict , A__: Dict , A__: List[str] , A__: List[Any] , A__: Tuple , A__: Optional[Any] , A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} UpperCAmelCase = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A__ ) UpperCAmelCase = fsspec.filesystem(compression_fs_class.protocol , fo=A__ ) assert isinstance(A__ , A__ ) UpperCAmelCase = os.path.basename(A__ ) UpperCAmelCase = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(A__ , '''r''' , encoding='''utf-8''' ) as f, open(A__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def _lowerCAmelCase ( A__: Tuple , A__: List[str] , A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} UpperCAmelCase = compressed_file_paths[protocol] UpperCAmelCase = '''dataset.jsonl''' UpperCAmelCase = F"""{protocol}://{member_file_path}::{compressed_file_path}""" UpperCAmelCase , *UpperCAmelCase = fsspec.get_fs_token_paths(A__ ) assert fs.isfile(A__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def _lowerCAmelCase ( A__: List[str] , A__: int , A__: Optional[Any] , A__: List[str] ): '''simple docstring''' UpperCAmelCase = hf_api.dataset_info(A__ , token=A__ ) UpperCAmelCase = HfFileSystem(repo_info=A__ , token=A__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(A__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(A__ , A__ , clobber=A__ ) with pytest.warns(A__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(A__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
152
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __magic_name__ = logging.get_logger(__name__) def _lowerCAmelCase ( A__: nn.ModuleList , A__: nn.ModuleList , A__: List[int] ): '''simple docstring''' UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(A__ ) == len(A__ ), F"""{len(A__ )} != {len(A__ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __magic_name__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __magic_name__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _lowerCAmelCase ( A__: List[str] , A__: Optional[int] ): '''simple docstring''' try: UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(A__ ) ) def _lowerCAmelCase ( A__: Optional[int] , A__: Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(A__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _lowerCAmelCase ( A__: Union[str, PreTrainedModel] , A__: Union[str, Path] = "student" , A__: Union[int, None] = None , A__: Union[int, None] = None , A__: Optional[int]=False , A__: Tuple=None , A__: Any=None , **A__: List[str] , ): '''simple docstring''' UpperCAmelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(A__ , A__ ): AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ ) # purely for convenience UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).eval() else: assert isinstance(A__ , A__ ), F"""teacher must be a model or string got type {type(A__ )}""" UpperCAmelCase = teacher.config.to_diff_dict() try: UpperCAmelCase , UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): UpperCAmelCase , UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase , UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(A__ ) # Copy weights UpperCAmelCase = teacher.config_class(**A__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(A__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=A__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase , UpperCAmelCase = list(range(A__ ) ), list(range(A__ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(A__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(A__ , A__ ) if d_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(A__ , A__ ) try: if hasattr( A__ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , A__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , A__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , A__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , A__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , A__ ) copy_layers(teacher.decoder.block , student.decoder.block , A__ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) UpperCAmelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(A__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
152
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): UpperCamelCase_ = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: UpperCamelCase_ = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _UpperCAmelCase ( _lowerCamelCase : str ) -> int: _lowerCAmelCase : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : str = numpy_to_pil(UpperCamelCase__ ) return images def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: if images.ndim == 3: _lowerCAmelCase : List[Any] = images[None, ...] _lowerCAmelCase : int = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase : Union[str, Any] = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: _lowerCAmelCase : Optional[int] = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
309
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): '''simple docstring''' UpperCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Any ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["""lr"""] UpperCAmelCase__ = int(config["""num_epochs"""] ) UpperCAmelCase__ = int(config["""seed"""] ) UpperCAmelCase__ = int(config["""batch_size"""] ) UpperCAmelCase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = outputs.loss UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPImageVariationPipeline __SCREAMING_SNAKE_CASE : Optional[int] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __SCREAMING_SNAKE_CASE : Optional[int] = IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __SCREAMING_SNAKE_CASE : Optional[int] = False @property def _a (self ): return 32 @property def _a (self ): return 32 @property def _a (self ): return self.time_input_dim @property def _a (self ): return self.time_input_dim * 4 @property def _a (self ): return 100 @property def _a (self ): A_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a (self ): torch.manual_seed(0 ) A_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__SCREAMING_SNAKE_CASE ) @property def _a (self ): torch.manual_seed(0 ) A_ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__SCREAMING_SNAKE_CASE ) @property def _a (self ): torch.manual_seed(0 ) A_ : Optional[int] = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } A_ : Any = UnCLIPTextProjModel(**__SCREAMING_SNAKE_CASE ) return model @property def _a (self ): torch.manual_seed(0 ) A_ : str = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } A_ : Tuple = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def _a (self ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _a (self ): torch.manual_seed(0 ) A_ : int = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _a (self ): torch.manual_seed(1 ) A_ : Tuple = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _a (self ): A_ : List[Any] = self.dummy_decoder A_ : Optional[Any] = self.dummy_text_proj A_ : int = self.dummy_text_encoder A_ : List[str] = self.dummy_tokenizer A_ : int = self.dummy_super_res_first A_ : List[str] = self.dummy_super_res_last A_ : int = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) A_ : Dict = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) A_ : Tuple = CLIPImageProcessor(crop_size=32 , size=32 ) A_ : List[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _a (self , lowercase , lowercase=0 , lowercase=True ): A_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): A_ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: A_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) if pil_image: A_ : List[str] = input_image * 0.5 + 0.5 A_ : Optional[Any] = input_image.clamp(0 , 1 ) A_ : str = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A_ : Optional[Any] = DiffusionPipeline.numpy_to_pil(__SCREAMING_SNAKE_CASE )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _a (self ): A_ : str = """cpu""" A_ : Any = self.get_dummy_components() A_ : Union[str, Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = pipe(**__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = output.images A_ : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : Dict = pipe( **__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] A_ : int = image[0, -3:, -3:, -1] A_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : int = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): A_ : str = """cpu""" A_ : Optional[Any] = self.get_dummy_components() A_ : str = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) A_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : Any = pipe(**__SCREAMING_SNAKE_CASE ) A_ : List[str] = output.images A_ : List[str] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : Dict = pipe( **__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Union[str, Any] = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): A_ : List[Any] = """cpu""" A_ : Optional[Any] = self.get_dummy_components() A_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) A_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : int = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] A_ : List[str] = pipe(**__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = output.images A_ : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : int = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] A_ : List[Any] = pipe( **__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] A_ : List[Any] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) A_ : str = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): A_ : Dict = torch.device("""cpu""" ) class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : Optional[Any] = 1 A_ : Tuple = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) A_ : Tuple = pipe.decoder.dtype A_ : Any = 1 A_ : List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) A_ : List[Any] = pipe.prepare_latents( __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , latents=__SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) A_ : Tuple = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) A_ : str = pipe.prepare_latents( __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , latents=__SCREAMING_SNAKE_CASE , scheduler=DummyScheduler() ) A_ : Optional[Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) A_ : Tuple = pipe( **__SCREAMING_SNAKE_CASE , decoder_latents=__SCREAMING_SNAKE_CASE , super_res_latents=__SCREAMING_SNAKE_CASE ).images A_ : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE , pil_image=__SCREAMING_SNAKE_CASE ) # Don't pass image, instead pass embedding A_ : List[str] = pipeline_inputs.pop("""image""" ) A_ : Tuple = pipe.image_encoder(__SCREAMING_SNAKE_CASE ).image_embeds A_ : Optional[Any] = pipe( **__SCREAMING_SNAKE_CASE , decoder_latents=__SCREAMING_SNAKE_CASE , super_res_latents=__SCREAMING_SNAKE_CASE , image_embeddings=__SCREAMING_SNAKE_CASE , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _a (self ): A_ : Tuple = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor A_ : str = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=__SCREAMING_SNAKE_CASE ) @skip_mps def _a (self ): A_ : Union[str, Any] = torch_device == """cpu""" A_ : List[str] = True A_ : Optional[Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=__SCREAMING_SNAKE_CASE , relax_max_difference=__SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=__SCREAMING_SNAKE_CASE , ) def _a (self ): A_ : str = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes A_ : List[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=__SCREAMING_SNAKE_CASE , additional_params_copy_to_batched_inputs=__SCREAMING_SNAKE_CASE , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__SCREAMING_SNAKE_CASE ) @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a (self ): return super().test_save_load_local() @skip_mps def _a (self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) A_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) A_ : int = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) A_ : Any = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) A_ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ : Any = pipeline( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) A_ : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 15 )
206
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase : str = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "linear" lowerCAmelCase__ = "cosine" lowerCAmelCase__ = "cosine_with_restarts" lowerCAmelCase__ = "polynomial" lowerCAmelCase__ = "constant" lowerCAmelCase__ = "constant_with_warmup" lowerCAmelCase__ = "piecewise_constant" def a__ ( a__ , a__ = -1 ): """simple docstring""" return LambdaLR(a__ , lambda a__ : 1 , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(a__ ) __SCREAMING_SNAKE_CASE = float(a__ ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(a__ , a__ ): def rule_func(a__ ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ , a__=-1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 0.5 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 1 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__=1E-7 , a__=1.0 , a__=-1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) UpperCAmelCase : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( a__ , a__ , a__ = None , a__ = None , a__ = None , a__ = 1 , a__ = 1.0 , a__ = -1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE = SchedulerType(a__ ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
267
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Initialise PyTorch model _A : List[Any] = MobileBertConfig.from_json_file(snake_case_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _A : Tuple = MobileBertForPreTraining(snake_case_ ) # Load weights from tf checkpoint _A : Tuple = load_tf_weights_in_mobilebert(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
343
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __A : Tuple = logging.get_logger(__name__) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , **UpperCAmelCase_ : Dict ): lowerCAmelCase : str = feature_size lowerCAmelCase : Any = sampling_rate lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Optional[int] = kwargs.pop('padding_side' , 'right' ) lowerCAmelCase : int = kwargs.pop('return_attention_mask' , UpperCAmelCase_ ) super().__init__(**UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowerCAmelCase : Optional[int] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) lowerCAmelCase : Optional[Any] = processed_features[self.model_input_names[0]] lowerCAmelCase : int = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase_ ) == 0: if return_attention_mask: lowerCAmelCase : Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCAmelCase : Tuple = required_input[0] if isinstance(UpperCAmelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCAmelCase : Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase_ ): lowerCAmelCase : List[str] = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase_ ): lowerCAmelCase : Tuple = 'tf' elif is_torch_tensor(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = 'pt' elif isinstance(UpperCAmelCase_ , (int, float, list, tuple, np.ndarray) ): lowerCAmelCase : List[Any] = 'np' else: raise ValueError( f"type of {first_element} unknown: {type(UpperCAmelCase_ )}. " 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowerCAmelCase : Optional[Any] = to_numpy(UpperCAmelCase_ ) else: lowerCAmelCase : str = [to_numpy(UpperCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy lowerCAmelCase : Tuple = self._get_padding_strategies(padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) lowerCAmelCase : Any = processed_features[self.model_input_names[0]] lowerCAmelCase : Union[str, Any] = len(UpperCAmelCase_ ) if not all(len(UpperCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) lowerCAmelCase : List[Any] = [] for i in range(UpperCAmelCase_ ): lowerCAmelCase : int = {k: v[i] for k, v in processed_features.items()} # truncation lowerCAmelCase : List[Any] = self._truncate( UpperCAmelCase_ , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , truncation=UpperCAmelCase_ , ) truncated_inputs.append(UpperCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCAmelCase : Optional[int] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowerCAmelCase : Optional[int] = PaddingStrategy.MAX_LENGTH lowerCAmelCase : Any = {} for i in range(UpperCAmelCase_ ): # padding lowerCAmelCase : List[str] = self._pad( truncated_inputs[i] , max_length=UpperCAmelCase_ , padding_strategy=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCAmelCase : Any = [] if value.dtype is np.dtype(np.floataa ): lowerCAmelCase : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase_ ) return BatchFeature(UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , ): lowerCAmelCase : Tuple = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCAmelCase : Tuple = len(UpperCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase : Any = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCAmelCase : List[str] = np.ones(len(UpperCAmelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: lowerCAmelCase : List[str] = max_length - len(UpperCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: lowerCAmelCase : Union[str, Any] = np.pad( processed_features['attention_mask'] , (0, difference) ) lowerCAmelCase : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCAmelCase : str = np.pad( UpperCAmelCase_ , UpperCAmelCase_ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowerCAmelCase : Union[str, Any] = np.pad( processed_features['attention_mask'] , (difference, 0) ) lowerCAmelCase : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCAmelCase : Optional[int] = np.pad( UpperCAmelCase_ , UpperCAmelCase_ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) lowerCAmelCase : Dict = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase : List[str] = len(UpperCAmelCase_ ) > max_length if needs_to_be_truncated: lowerCAmelCase : List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCAmelCase : Optional[Any] = processed_features['attention_mask'][:max_length] return processed_features def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=None ): # Get padding strategy if padding is not False: if padding is True: lowerCAmelCase : List[str] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = PaddingStrategy(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = padding else: lowerCAmelCase : Optional[int] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
138
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(_UpperCAmelCase, 2 ) - a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' return 2 * x def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Any = 2.0 while start <= a: lowerCAmelCase : Dict = math.pow(_UpperCAmelCase, 2 ) return start def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 9_999, _UpperCAmelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCAmelCase : Optional[Any] = get_initial_point(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): lowerCAmelCase : Any = value lowerCAmelCase : int = value - fx(_UpperCAmelCase, _UpperCAmelCase ) / fx_derivative(_UpperCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
138
1
from __future__ import annotations from collections.abc import Callable def A_ ( A__ , A__ , A__ , A__ = 100 , ) -> float: a__ : Dict = x_start a__ : Any = fnc(A__ ) a__ : Optional[int] = 0.0 for _ in range(A__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area a__ : Union[str, Any] = (x_end - x_start) / steps + xa a__ : str = fnc(A__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step a__ : Optional[Any] = xa a__ : Optional[int] = fxa return area if __name__ == "__main__": def A_ ( A__ ) -> List[str]: return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") lowercase : Union[str, Any] = 1_0 while i <= 1_0_0_0_0_0: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
225
def A_ ( A__ ) -> List[str]: # noqa: E741 a__ : Dict = len(A__ ) a__ : str = 0 a__ : Any = [0] * n a__ : int = [False] * n a__ : Optional[Any] = [False] * n def dfs(A__ , A__ , A__ , A__ ): if parent == root: out_edge_count += 1 a__ : Union[str, Any] = True a__ : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: a__ : List[Any] = dfs(A__ , A__ , A__ , A__ ) a__ : Dict = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: a__ : Dict = True # AP found via cycle if at == low[to]: a__ : List[Any] = True else: a__ : Optional[int] = min(low[at] , A__ ) return out_edge_count for i in range(A__ ): if not visited[i]: a__ : Tuple = 0 a__ : Any = dfs(A__ , A__ , -1 , A__ ) a__ : List[Any] = out_edge_count > 1 for x in range(len(A__ ) ): if is_art[x] is True: print(A__ ) # Adjacency list of graph lowercase : List[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
225
1
'''simple docstring''' import socket def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ : str =socket.gethostname() SCREAMING_SNAKE_CASE__ : List[Any] =1_2_3_1_2 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: SCREAMING_SNAKE_CASE__ : List[str] =sock.recv(1_0_2_4 ) if not data: break out_file.write(UpperCamelCase__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
152
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """ibert""" def __init__( self : Optional[int] , __lowercase : List[str]=3_05_22 , __lowercase : Tuple=7_68 , __lowercase : str=12 , __lowercase : Optional[int]=12 , __lowercase : Optional[Any]=30_72 , __lowercase : str="gelu" , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[str]=5_12 , __lowercase : str=2 , __lowercase : Tuple=0.02 , __lowercase : Union[str, Any]=1e-12 , __lowercase : List[Any]=1 , __lowercase : List[str]=0 , __lowercase : Optional[Any]=2 , __lowercase : int="absolute" , __lowercase : Tuple=False , __lowercase : int="none" , **__lowercase : Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Any =vocab_size SCREAMING_SNAKE_CASE__ : Dict =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =hidden_act SCREAMING_SNAKE_CASE__ : List[str] =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict =type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple =initializer_range SCREAMING_SNAKE_CASE__ : str =layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple =position_embedding_type SCREAMING_SNAKE_CASE__ : Any =quant_mode SCREAMING_SNAKE_CASE__ : Optional[int] =force_dequant class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @property def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ : Any ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
152
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : List[Any] = inspect.getfile(accelerate.test_utils ) A_ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) A_ : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) A_ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices.' ) A_ : Union[str, Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices.' ) A_ : Tuple = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): A_ : int = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() ) @require_multi_gpu def _a (self ): print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) A_ : Union[str, Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(lowercase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase :List[Any] = Accelerator() lowerCamelCase :int = (accelerator.state.process_index + 2, 1_0) lowerCamelCase :str = torch.randint(0, 1_0, shape).to(accelerator.device) lowerCamelCase :str = '''''' lowerCamelCase :Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase :Tuple = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase :Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
135
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _a = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 100 , lowercase_ = None , lowercase_ = None , lowercase_ = True , ): """simple docstring""" if audio_length_in_s is None: UpperCAmelCase_ : Tuple = self.unet.config.sample_size / self.unet.config.sample_rate UpperCAmelCase_ : Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate UpperCAmelCase_ : Tuple = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCAmelCase_ : Tuple = int(lowercase_ ) if sample_size % down_scale_factor != 0: UpperCAmelCase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" " process." ) UpperCAmelCase_ : Tuple = int(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype UpperCAmelCase_ : Dict = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_ : int = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) UpperCAmelCase_ : List[str] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : int = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCAmelCase_ : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCAmelCase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
61
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: UpperCAmelCase_ : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=32 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = initializer_range def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : int = model_class_name(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : Any = model_class_name(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Any = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._get_config_and_data() UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : Optional[int] = lm_model(input_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ (lowercase__ ,unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = FlaxBlenderbotSmallModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
61
1
def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = len(UpperCAmelCase_ ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase_ )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase_ )] cur -= 1 return arr if __name__ == "__main__": __a :Tuple = input('Enter numbers separated by a comma:\n').strip() __a :Any = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
357
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' # Initialise PyTorch model UpperCamelCase = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint UpperCamelCase = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
343
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Any=13 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : List[Any]=[32, 64, 1_28] , lowerCamelCase__ : List[Any]=[1, 2, 1] , lowerCamelCase__ : List[Any]=[2, 2, 4] , lowerCamelCase__ : Any=2 , lowerCamelCase__ : Optional[int]=2.0 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Any=0.0_2 , lowerCamelCase__ : Optional[int]=1E-5 , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=None , lowerCamelCase__ : int=True , lowerCamelCase__ : int=10 , lowerCamelCase__ : int=8 , lowerCamelCase__ : Optional[int]=["stage1", "stage2"] , lowerCamelCase__ : Optional[Any]=[1, 2] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[int] = embed_dim _UpperCAmelCase : Union[str, Any] = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : Union[str, Any] = num_heads _UpperCAmelCase : str = window_size _UpperCAmelCase : str = mlp_ratio _UpperCAmelCase : Tuple = qkv_bias _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = drop_path_rate _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Tuple = use_absolute_embeddings _UpperCAmelCase : Any = patch_norm _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Dict = is_training _UpperCAmelCase : int = scope _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Optional[int] = encoder_stride _UpperCAmelCase : Union[str, Any] = out_features _UpperCAmelCase : Optional[int] = out_indices def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : str = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) _UpperCAmelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[Any] = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : List[Any] = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[str] = False lowerCAmelCase : str = False lowerCAmelCase : Tuple = False lowerCAmelCase : Any = False lowerCAmelCase : Optional[int] = False def lowerCAmelCase__ ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = FocalNetModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' return def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : Optional[Any] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = outputs.hidden_states _UpperCAmelCase : List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = reshaped_hidden_states[0].shape _UpperCAmelCase : Tuple = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Dict = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase : List[Any] = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase : List[Any] = FocalNetConfig lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = FocalNetModelTester(self )
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : int ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : str=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = '' else: SCREAMING_SNAKE_CASE_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_ = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE_ = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = val def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ = ViTMSNConfig() SCREAMING_SNAKE_CASE_ = 10_00 SCREAMING_SNAKE_CASE_ = 'datasets/huggingface/label-files' SCREAMING_SNAKE_CASE_ = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 3_84 SCREAMING_SNAKE_CASE_ = 15_36 SCREAMING_SNAKE_CASE_ = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 10_24 SCREAMING_SNAKE_CASE_ = 40_96 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = 10_24 SCREAMING_SNAKE_CASE_ = 40_96 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = ViTMSNModel(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' )['target_encoder'] SCREAMING_SNAKE_CASE_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , base_model=__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) SCREAMING_SNAKE_CASE_ = ViTImageProcessor( size=config.image_size , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = image_processor(images=__UpperCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __UpperCAmelCase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
225
1
def lowercase__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) lowercase : str = len(bin(_lowerCAmelCase )[3:] ) lowercase : Union[str, Any] = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] lowercase : Dict = ( ( """1""" + """0""" * (binary_number_length - len(_lowerCAmelCase )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'dandelin/vilt-b32-finetuned-vqa' _lowerCamelCase = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) _lowerCamelCase = 'image_qa' _lowerCamelCase = AutoProcessor _lowerCamelCase = AutoModelForVisualQuestionAnswering _lowerCamelCase = ['image', 'text'] _lowerCamelCase = ['text'] def __init__( self : List[str], *lowerCAmelCase : Optional[Any], **lowerCAmelCase : Optional[Any] ) -> str: requires_backends(self, ['vision'] ) super().__init__(*lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Optional[Any], lowerCAmelCase : "Image", lowerCAmelCase : str ) -> Dict: return self.pre_processor(lowerCAmelCase, lowerCAmelCase, return_tensors='pt' ) def lowercase ( self : List[Any], lowerCAmelCase : int ) -> Tuple: with torch.no_grad(): return self.model(**lowerCAmelCase ).logits def lowercase ( self : List[str], lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: lowercase : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
53
0
"""simple docstring""" import numpy as np from PIL import Image def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Dict = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Union[str, Any] = 0 # compute the shape of the output matrix __lowerCamelCase : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : Any = 0 __lowerCamelCase : Optional[int] = 0 return updated_arr def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : str = 0 # compute the shape of the output matrix __lowerCamelCase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase : Optional[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __A = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
135
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = '''pt''' elif is_tf_available(): __A = '''tf''' else: __A = '''jax''' class _snake_case ( a__ , unittest.TestCase ): snake_case__ = PerceiverTokenizer snake_case__ = False def lowerCamelCase__ ( self : List[str] ): super().setUp() __lowerCamelCase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowerCamelCase__ ( self : List[Any] , **UpperCAmelCase : str ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=False , UpperCAmelCase : str=20 , UpperCAmelCase : Union[str, Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCamelCase : Dict = [] for i in range(len(UpperCAmelCase ) ): try: __lowerCamelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase : Any = list(filter(lambda UpperCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , UpperCAmelCase ) ) __lowerCamelCase : str = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __lowerCamelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __lowerCamelCase : int = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase : str = [t[0] for t in toks] # Ensure consistency __lowerCamelCase : Optional[int] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __lowerCamelCase : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __lowerCamelCase : Optional[int] = " " + output_txt __lowerCamelCase : List[Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = self.perceiver_tokenizer __lowerCamelCase : Optional[int] = "Unicode €." __lowerCamelCase : Union[str, Any] = tokenizer(UpperCAmelCase ) __lowerCamelCase : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : List[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]Unicode €.[SEP]" ) __lowerCamelCase : Optional[Any] = tokenizer("e è é ê ë" ) __lowerCamelCase : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : Optional[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __lowerCamelCase : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __lowerCamelCase : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __lowerCamelCase : str = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCAmelCase ) self.assertIn("attention_mask" , UpperCAmelCase ) self.assertNotIn("decoder_input_ids" , UpperCAmelCase ) self.assertNotIn("decoder_attention_mask" , UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = [ "Summary of the text.", "Another summary.", ] __lowerCamelCase : int = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="max_length" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCamelCase__ ( self : str ): # safety check on max_len default value so we are sure the test works __lowerCamelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : int = tempfile.mkdtemp() __lowerCamelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __lowerCamelCase : Any = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Tuple = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __lowerCamelCase : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Dict = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __lowerCamelCase : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __lowerCamelCase : Tuple = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Optional[int] = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Any = json.load(UpperCAmelCase ) __lowerCamelCase : Tuple = [F"""<extra_id_{i}>""" for i in range(125 )] __lowerCamelCase : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] __lowerCamelCase : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase : List[Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCAmelCase )] __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowerCamelCase__ ( self : List[str] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Optional[int] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCamelCase : List[str] = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] __lowerCamelCase : Any = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
135
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") UpperCAmelCase = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(_snake_case ): os.makedirs(_snake_case ) UpperCAmelCase = model.state_dict() def to_tf_var_name(_snake_case ): for patt, repl in iter(_snake_case ): UpperCAmelCase = name.replace(_snake_case , _snake_case ) return F'''bert/{name}''' def create_tf_var(_snake_case , _snake_case , _snake_case ): UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase = tf.get_variable(dtype=_snake_case , shape=tensor.shape , name=_snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase = to_tf_var_name(_snake_case ) UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase = torch_tensor.T UpperCAmelCase = create_tf_var(tensor=_snake_case , name=_snake_case , session=_snake_case ) tf.keras.backend.set_value(_snake_case , _snake_case ) UpperCAmelCase = session.run(_snake_case ) print(F'''Successfully created {tf_name}: {np.allclose(_snake_case , _snake_case )}''' ) UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(_snake_case , os.path.join(_snake_case , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def _a ( _snake_case=None ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=_snake_case , required=_snake_case , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=_snake_case , default=_snake_case , required=_snake_case , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=_snake_case , required=_snake_case , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=_snake_case , required=_snake_case , help="""Directory in which to save tensorflow model""" ) UpperCAmelCase = parser.parse_args(_snake_case ) UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
367
"""simple docstring""" import numpy as np def _a ( _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
234
0
def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[int] =[int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split("." ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = input().strip() UpperCAmelCase : Optional[int] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
95
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _a ( _lowerCAmelCase , _lowerCAmelCase ): A = 1 @register_to_config def __init__(self, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=20, SCREAMING_SNAKE_CASE_=1E-3 ) -> str: UpperCAmelCase_: List[str] = None UpperCAmelCase_: str = None UpperCAmelCase_: List[str] = None def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: UpperCAmelCase_: Dict = torch.linspace(1, self.config.sampling_eps, SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCAmelCase_: Any = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCAmelCase_: List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCAmelCase_: Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): UpperCAmelCase_: Dict = std.unsqueeze(-1 ) UpperCAmelCase_: List[str] = -score / std # compute UpperCAmelCase_: Any = -1.0 / len(self.timesteps ) UpperCAmelCase_: List[Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCAmelCase_: Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCAmelCase_: List[str] = beta_t.unsqueeze(-1 ) UpperCAmelCase_: str = -0.5 * beta_t * x UpperCAmelCase_: Dict = torch.sqrt(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = drift - diffusion**2 * score UpperCAmelCase_: List[Any] = x + drift * dt # add noise UpperCAmelCase_: int = randn_tensor(x.shape, layout=x.layout, generator=SCREAMING_SNAKE_CASE_, device=x.device, dtype=x.dtype ) UpperCAmelCase_: List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> Tuple: return self.config.num_train_timesteps
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a : str = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } a : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = SqueezeBertTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Optional[Any] = do_lower_case UpperCAmelCase_: int = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase_ : Optional[Any] = '''.''' if __name__ == "__main__": UpperCAmelCase_ : List[Any] = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase_ : Any = line.strip() UpperCAmelCase_ : int = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase_ : Union[str, Any] = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
38
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Any = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' _A : Any ={'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} _A : Optional[Any] =['''a''', '''b''', '''c''', '''d''', '''e'''] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCamelCase__ : str = start # add current to visited visited.append(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase__ : str = topological_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # if all neighbors visited add current to sort sort.append(UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase ) != len(UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase__ : Union[str, Any] = topological_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # return sort return sort if __name__ == "__main__": _A : Optional[Any] =topological_sort('''a''', [], []) print(sort)
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="naver-clova-ix/donut-base-finetuned-docvqa" SCREAMING_SNAKE_CASE_ : Dict =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) SCREAMING_SNAKE_CASE_ : List[str] ="document_qa" SCREAMING_SNAKE_CASE_ : Union[str, Any] =AutoProcessor SCREAMING_SNAKE_CASE_ : Union[str, Any] =VisionEncoderDecoderModel SCREAMING_SNAKE_CASE_ : List[Any] =["image", "text"] SCREAMING_SNAKE_CASE_ : Any =["text"] def __init__( self : Optional[int] , *__A : List[str] , **__A : List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__A , **__A ) def _lowerCamelCase ( self : Any , __A : "Image" , __A : str ): __UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase = task_prompt.replace('{user_input}' , __A ) __UpperCamelCase = self.pre_processor.tokenizer( __A , add_special_tokens=__A , return_tensors='pt' ).input_ids __UpperCamelCase = self.pre_processor(__A , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self : Union[str, Any] , __A : Optional[Any] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__A , ).sequences def _lowerCamelCase ( self : Tuple , __A : List[Any] ): __UpperCamelCase = self.pre_processor.batch_decode(__A )[0] __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __UpperCamelCase = re.sub(R'<.*?>' , '' , __A , count=1 ).strip() # remove first task start token __UpperCamelCase = self.pre_processor.tokenajson(__A ) return sequence["answer"]
53
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase : Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowerCAmelCase : int = [] lowerCAmelCase : Any = [] lowerCAmelCase : List[Any] = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowerCAmelCase : Any = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", 'emoji': True, }, } ] lowerCAmelCase : List[str] = 0 for log in Path().glob('*.log'): lowerCAmelCase : List[str] = 0 with open(log, 'r') as f: for line in f: lowerCAmelCase : Dict = json.loads(line) if line.get('nodeid', '') != "": lowerCAmelCase : Tuple = line['nodeid'] if line.get('duration', None) is not None: lowerCAmelCase : List[str] = f"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase : Optional[Any] = [] log.unlink() lowerCAmelCase : int = '' lowerCAmelCase : Tuple = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = {} for test in failed_tests: lowerCAmelCase : int = test[0].split('::') lowerCAmelCase : Optional[int] = data[0].split('/')[-1] if data[0] not in filesafailed: lowerCAmelCase : Tuple = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase : Optional[int] = [test[0] for test in failed_table] lowerCAmelCase : int = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase : List[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase : int = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowerCAmelCase : Any = 'Too many failed tests, please see the full report in the Action results.' lowerCAmelCase : int = len(err) + 10 lowerCAmelCase : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowerCAmelCase : List[Any] = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowerCAmelCase : List[str] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowerCAmelCase : Tuple = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowerCAmelCase : Optional[int] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) lowerCAmelCase : Optional[int] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase : List[Any] = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowerCAmelCase : str = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase : str = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase : Optional[Any] = row[0] else: lowerCAmelCase : int = '' lowerCAmelCase : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
251
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_( A : List[Any]): UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Any): UpperCamelCase = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(A) elif "subsample" in key: UpperCamelCase = s_dict.pop(A) def A_( A : Optional[int]): UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(A , A , bias=A) UpperCamelCase = emb.weight.data return lin_layer def A_( A : Optional[int] , A : List[str]): UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(A) rename_keys(A) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(A) for i in args.conv_kernel_sizes.split(',')] UpperCamelCase = SpeechaTextConfig( vocab_size=A , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(A) , conv_channels=args.conv_channels , conv_kernel_sizes=A , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A , num_beams=5 , max_length=200 , use_cache=A , decoder_start_token_id=2 , early_stopping=A , ) UpperCamelCase = SpeechaTextForConditionalGeneration(A) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(A , strict=A) if len(A) > 0 and not set(A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''') if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens) else: UpperCamelCase = lm_head_weights model.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
251
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } __a = input_paths_and_base_extractors[compression_format] if input_path is None: __a = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) assert base_extractor.is_extractable(__lowerCAmelCase ) __a = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __a = file_path.read_text(encoding='''utf-8''' ) else: __a = output_path.read_text(encoding='''utf-8''' ) __a = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } __a = input_paths[compression_format] if input_path is None: __a = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) __a = Extractor.infer_extractor_format(__lowerCAmelCase ) assert extractor_format is not None __a = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __a = file_path.read_text(encoding='''utf-8''' ) else: __a = output_path.read_text(encoding='''utf-8''' ) __a = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): import tarfile __a = tmp_path / "data_dot_dot" directory.mkdir() __a = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__lowerCAmelCase , '''w''' ) as f: f.add(__lowerCAmelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def __snake_case ( _UpperCAmelCase ): import tarfile __a = tmp_path / "data_sym_link" directory.mkdir() __a = directory / "tar_file_with_sym_link.tar" os.symlink('''..''' , directory / '''subdir''' , target_is_directory=__lowerCAmelCase ) with tarfile.TarFile(__lowerCAmelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } __a = insecure_tar_files[insecure_tar_file] __a = tmp_path / "extracted" TarExtractor.extract(__lowerCAmelCase , __lowerCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __snake_case ( _UpperCAmelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __a = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 __a = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open('''wb''' ) as f: f.write(__lowerCAmelCase ) assert zipfile.is_zipfile(str(__lowerCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowerCAmelCase ) # but we're right
49
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
234
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ (__lowercase ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class __magic_name__ (__lowercase , __lowercase ): lowerCamelCase__ = 1 @register_to_config def __init__( self , _a = 2000 , _a = 0.1_5 , _a = 0.0_1 , _a = 1348.0 , _a = 1E-5 , _a = 1 , ) -> Tuple: # standard deviation of the initial noise distribution lowerCAmelCase_ = sigma_max # setable values lowerCAmelCase_ = None self.set_sigmas(_a , _a , _a , _a ) def __a ( self , _a , _a = None ) -> torch.FloatTensor: return sample def __a ( self , _a , _a = None , _a = None ) -> Any: lowerCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase_ = torch.linspace(1 , _a , _a , device=_a ) def __a ( self , _a , _a = None , _a = None , _a = None ) -> Optional[int]: lowerCAmelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_a , _a ) lowerCAmelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase_ = torch.exp(torch.linspace(math.log(_a ) , math.log(_a ) , _a ) ) lowerCAmelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __a ( self , _a , _a ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __a ( self , _a , _a , _a , _a = None , _a = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) lowerCAmelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase_ = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase_ = self.get_adjacent_sigma(_a , _a ).to(sample.device ) lowerCAmelCase_ = torch.zeros_like(_a ) lowerCAmelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase_ = diffusion.unsqueeze(-1 ) lowerCAmelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_a , device=sample.device , dtype=sample.dtype ) lowerCAmelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_a , prev_sample_mean=_a ) def __a ( self , _a , _a , _a = None , _a = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase_ = step_size.unsqueeze(-1 ) lowerCAmelCase_ = sample + step_size * model_output lowerCAmelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __a ( self , _a , _a , _a , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase_ = timesteps.to(original_samples.device ) lowerCAmelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_a ) * sigmas[:, None, None, None] ) lowerCAmelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) _lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) _lowerCAmelCase = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) _lowerCAmelCase = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) _lowerCAmelCase = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior _lowerCAmelCase = text_classifier("""This is great !""" , return_all_scores=_snake_case ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) _lowerCAmelCase = text_classifier("""This is great !""" , return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) _lowerCAmelCase = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) _lowerCAmelCase = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def snake_case ( self ): """simple docstring""" import torch _lowerCAmelCase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) _lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) _lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = pipeline("""text-classification""" ) _lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) _lowerCAmelCase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) _lowerCAmelCase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = pipeline("""text-classification""" , framework="""tf""" ) _lowerCAmelCase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) _lowerCAmelCase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) _lowerCAmelCase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TextClassificationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _lowerCAmelCase = """HuggingFace is in""" _lowerCAmelCase = text_classifier(_snake_case ) self.assertEqual(nested_simplify(_snake_case ) , [{"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) _lowerCAmelCase = ["""HuggingFace is in """, """Paris is in France"""] _lowerCAmelCase = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) , [{"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}, {"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _lowerCAmelCase = text_classifier(_snake_case , top_k=_snake_case ) _lowerCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_snake_case ) , [[{"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}] * N, [{"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}] * N] , ) _lowerCAmelCase = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} _lowerCAmelCase = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) , {"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _lowerCAmelCase = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(_snake_case ): text_classifier(_snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _lowerCAmelCase = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(_snake_case ) , [{"""label""": ANY(_snake_case ), """score""": ANY(_snake_case )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
82
from __future__ import annotations def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) return n == n[::-1] def _UpperCAmelCase ( snake_case = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
82
1
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ , keep_in_memory=A__ ).read() _check_sql_dataset(A__ , A__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=A__ , cache_dir=A__ ).read() _check_sql_dataset(A__ , A__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with contextlib.closing(sqlitea.connect(A__ ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _UpperCAmelCase = iter_sql_file(A__ ) _UpperCAmelCase = iter_sql_file(A__ ) for rowa, rowa in zip(A__ , A__ ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _UpperCAmelCase = iter_sql_file(A__ ) _UpperCAmelCase = iter_sql_file(A__ ) for rowa, rowa in zip(A__ , A__ ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() with pytest.raises(A__ ): SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : int = ['''input_features''', '''attention_mask'''] def __init__( self : int , a_ : List[Any]=80 , a_ : Union[str, Any]=1_60_00 , a_ : List[str]=80 , a_ : str=0.0 , a_ : Union[str, Any]=True , a_ : List[Any]=True , a_ : Union[str, Any]=True , **a_ : Tuple , ): super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCAmelCase_ : Any = num_mel_bins lowerCAmelCase_ : List[str] = do_ceptral_normalize lowerCAmelCase_ : Any = normalize_means lowerCAmelCase_ : Dict = normalize_vars lowerCAmelCase_ : Any = True def lowerCamelCase ( self : str , a_ : np.ndarray , ): lowerCAmelCase_ : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase_ : str = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) lowerCAmelCase_ : Union[str, Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase ( a_ : np.ndarray , a_ : int , a_ : Optional[bool] = True , a_ : Optional[bool] = True , a_ : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: lowerCAmelCase_ : int = x[:input_length].mean(axis=0 ) lowerCAmelCase_ : List[str] = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: lowerCAmelCase_ : Optional[int] = x[:input_length].std(axis=0 ) lowerCAmelCase_ : Union[str, Any] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: lowerCAmelCase_ : Tuple = padding_value # make sure array is in float32 lowerCAmelCase_ : Union[str, Any] = x.astype(np.floataa ) return x def lowerCamelCase ( self : str , a_ : List[np.ndarray] , a_ : Optional[np.ndarray] = None ): lowerCAmelCase_ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self : int , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Optional[int] = None , a_ : bool = False , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , **a_ : int , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Tuple = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : List[str] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowerCAmelCase_ : Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Optional[Any] = [raw_speech] # extract fbank features lowerCAmelCase_ : Dict = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase_ : Tuple = BatchFeature({"input_features": features} ) lowerCAmelCase_ : Tuple = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format lowerCAmelCase_ : str = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): lowerCAmelCase_ : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] lowerCAmelCase_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCAmelCase_ : Tuple = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase_ : Tuple = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase_ : List[str] = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : Dict = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
241
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
251
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCAmelCase : Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : Any = [1, 10_24, 7, 7] # Image classification docstring lowerCAmelCase : Optional[Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : List[str] = 'tabby, tabby cat' lowerCAmelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=None): UpperCamelCase = {} if isinstance(A , A): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = 'MobilenetV1/Conv2d_0/' UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(A , A): UpperCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def A_( A : int , A : str , A : Optional[int]): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''') UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(A , A , A) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''') if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''') continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase = np.transpose(A , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(A , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(f'''Initialize PyTorch weight {name} {array.shape}''') UpperCamelCase = torch.from_numpy(A) tf_weights.pop(A , A) tf_weights.pop(name + '/RMSProp' , A) tf_weights.pop(name + '/RMSProp_1' , A) tf_weights.pop(name + '/ExponentialMovingAverage' , A) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def A_( A : torch.Tensor , A : nn.Convad): UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A , A , 'constant' , 0.0) class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ , A_ , A_ , A_ , A_ = 1 , A_ = 1 , A_ = False , A_ = True , A_ = True , )-> None: '''simple docstring''' super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=A_ , out_channels=A_ , kernel_size=A_ , stride=A_ , padding=A_ , groups=A_ , bias=A_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=A_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=A_ , track_running_stats=A_ , ) else: UpperCamelCase = None if use_activation: if isinstance(A_ , A_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , A_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCamelCase = apply_tf_padding(A_ , self.convolution ) UpperCamelCase = self.convolution(A_ ) if self.normalization is not None: UpperCamelCase = self.normalization(A_ ) if self.activation is not None: UpperCamelCase = self.activation(A_ ) return features class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = """mobilenet_v1""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if isinstance(A_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = True )-> Union[str, Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( A_ , in_channels=config.num_channels , out_channels=A_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=3 , stride=strides[i] , groups=A_ , ) ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase = self.conv_stem(A_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(A_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(A_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=A_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> None: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(A_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=A_ ) UpperCamelCase = nn.Linear(A_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(A_ , output_hidden_states=A_ , return_dict=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(A_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = 'single_label_classification' else: UpperCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(A_ , A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A_ , logits=A_ , hidden_states=outputs.hidden_states , )
251
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[str] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE : Any = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE : Any = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict['model.post_net.linear.bias'] return model def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE : Tuple = downstream_dict['model.linear.bias'] return model def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaForXVector.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE : List[str] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] SCREAMING_SNAKE_CASE : List[str] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] SCREAMING_SNAKE_CASE : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE : int = downstream_dict['objective.W'] return model @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(__UpperCamelCase ,map_location='cpu' ) SCREAMING_SNAKE_CASE : str = checkpoint['Downstream'] SCREAMING_SNAKE_CASE : Dict = WavaVecaConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase ,return_attention_mask=__UpperCamelCase ,do_normalize=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE : str = convert_classification(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE : Tuple = convert_diarization(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE : List[str] = convert_xvector(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE : List[Any] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
251
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE : Optional[int] = len(A ) - 1 def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ), 5 ) == 1 return output_values def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : str = self.basis_function(A ) SCREAMING_SNAKE_CASE : str = 0.0 SCREAMING_SNAKE_CASE : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase_ ( self, A = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE : List[str] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE : Optional[int] = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( A, A, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(A, A, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
251
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class A ( A_ ): UpperCamelCase_ : str =field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : ClassVar[Features] =Features({'''text''': Value('''string''' )} ) UpperCamelCase_ : ClassVar[Features] =Features({} ) UpperCamelCase_ : str ="text" @property def _A (self ): return {self.text_column: "text"}
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase__( ): lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__lowercase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__lowercase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__lowercase , help='where to store parsed gold_data_path file' , ) lowercase_ : Optional[Any] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase_ : Union[str, Any] = json.load(__lowercase ) for dpr_record in tqdm(__lowercase ): lowercase_ : int = dpr_record['question'] lowercase_ : int = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__lowercase ) + '\n' ) if __name__ == "__main__": main()
213
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __SCREAMING_SNAKE_CASE :List[str] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> int: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase_ ( __lowercase : int , __lowercase : str ) -> Optional[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = simple_accuracy(__lowercase , __lowercase ) _UpperCAmelCase = fa_score(y_true=__lowercase , y_pred=__lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[str] ) -> List[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = pearsonr(__lowercase , __lowercase )[0] _UpperCAmelCase = spearmanr(__lowercase , __lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) assert len(__lowercase ) == len(__lowercase ), f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(__lowercase , __lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mrpc": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "sts-b": return pearson_and_spearman(__lowercase , __lowercase ) elif task_name == "qqp": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) if len(__lowercase ) != len(__lowercase ): raise ValueError(f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase )
22
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : str = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } lowerCamelCase : Union[str, Any] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } lowerCamelCase : str = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char lowerCamelCase_ = set(_lowerCamelCase ) return pairs class A( __lowercase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , A_ : Dict , A_ : Tuple , A_ : Optional[Any]="<s>" , A_ : Dict="</s>" , A_ : Any="</s>" , A_ : Dict="<s>" , A_ : Union[str, Any]="<unk>" , A_ : Union[str, Any]="<pad>" , A_ : List[str]="<mask>" , **A_ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , **A_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = merges_file lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 self.add_from_file(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[:-1] lowerCamelCase_ = [tuple(merge.split()[:-1] ) for merge in merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self : List[str] , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : Any , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : int , A_ : List[Any] ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = """@@ """.join(A_ ) lowerCamelCase_ = word[:-4] lowerCamelCase_ = word return word def a__ ( self : List[str] , A_ : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def a__ ( self : str , A_ : Optional[int] ) -> str: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Any , A_ : List[Any] ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def a__ ( self : int , A_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = """ """.join(A_ ).replace('@@ ' , '' ).strip() return out_string def a__ ( self : Optional[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(A_ ): copyfile(self.merges_file , A_ ) return out_vocab_file, out_merge_file def a__ ( self : str , A_ : Optional[int] ) -> Optional[int]: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return lowerCamelCase_ = f.readlines() for lineTmp in lines: lowerCamelCase_ = lineTmp.strip() lowerCamelCase_ = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) lowerCamelCase_ = line[:idx] lowerCamelCase_ = len(self.encoder )
363
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : int , lowercase : List[Any] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase_ = TOKENIZER_CLASSES else: lowerCamelCase_ = {tokenizer_name: getattr(lowercase , tokenizer_name + 'Fast' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase_ = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase_ = True if checkpoint_name is None: lowerCamelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase_ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase_ = tokenizer_class.from_pretrained(lowercase , force_download=lowercase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase_ , lowerCamelCase_ = checkpoint.split('/' ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) elif add_prefix: lowerCamelCase_ = checkpoint lowerCamelCase_ = dump_path else: lowerCamelCase_ = None lowerCamelCase_ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase_ = file_path.split(lowercase )[-1][0] if next_char == "/": lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase_ = tokenizer.save_pretrained( lowercase , legacy_format=lowercase , filename_prefix=lowercase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowercase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
208
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 ) -> Any: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 _a : Tuple = torch.tensor(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 _a : Union[str, Any] = model(lowerCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple _a : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _a : str = logits[0, masked_index, :] _a : int = logits.softmax(dim=0 ) _a , _a : Dict = prob.topk(k=lowerCAmelCase_ , dim=0 ) _a : str = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase_ ) )] ) _a : Optional[int] = tokenizer.mask_token _a : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _a : Optional[Any] = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(lowerCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(lowerCAmelCase_ ) , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase_ , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowerCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __lowerCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __lowerCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
89
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase__ = parser.parse_args() return args.f class a_ ( __snake_case ): '''simple docstring''' def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(lowercase__) def __snake_case ( self : Optional[int] , lowercase__ : str): '''simple docstring''' lowerCAmelCase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(lowercase__ , 'argv' , lowercase__): lowerCAmelCase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase__ , 0.666) @slow @require_torch_non_multi_gpu def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowercase__) lowerCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowercase__) lowerCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowercase__)
362
import argparse from collections import defaultdict import yaml lowerCAmelCase__ = 'docs/source/en/_toctree.yml' def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = defaultdict(lowerCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase__ = [key for key, value in counts.items() if value > 1] lowerCAmelCase__ = [] for duplicate_key in duplicates: lowerCAmelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) def __lowerCamelCase ( lowerCAmelCase__=False ): with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowerCAmelCase__ = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase__ = content[api_idx]['sections'] # Then to the model doc lowerCAmelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase__ = api_doc[model_idx]['sections'] lowerCAmelCase__ = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if 'sections' in section] lowerCAmelCase__ = False for idx, modality_doc in modalities_docs: lowerCAmelCase__ = modality_doc['sections'] lowerCAmelCase__ = clean_model_doc_toc(lowerCAmelCase__ ) if old_modality_doc != new_modality_doc: lowerCAmelCase__ = True if overwrite: lowerCAmelCase__ = new_modality_doc if diff: if overwrite: lowerCAmelCase__ = model_doc lowerCAmelCase__ = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
119
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCamelCase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _a ( nn.Module ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = torchvision.models.resnetaaa(pretrained=A ) SCREAMING_SNAKE_CASE : Optional[int] = list(model.children() )[:-2] SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential(*A ) SCREAMING_SNAKE_CASE : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.pool(self.model(A ) ) SCREAMING_SNAKE_CASE : Any = torch.flatten(A, start_dim=2 ) SCREAMING_SNAKE_CASE : Dict = out.transpose(1, 2 ).contiguous() return out # BxNx2048 class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [json.loads(A ) for l in open(A )] SCREAMING_SNAKE_CASE : List[Any] = os.path.dirname(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Dict = labels SCREAMING_SNAKE_CASE : Tuple = len(A ) SCREAMING_SNAKE_CASE : Any = max_seq_length SCREAMING_SNAKE_CASE : Tuple = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'], add_special_tokens=A ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE : Dict = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE : Dict = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Tuple = Image.open(os.path.join(self.data_dir, self.data[index]['img'] ) ).convert('RGB' ) SCREAMING_SNAKE_CASE : Optional[int] = self.transforms(A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowercase__( __UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [len(row['sentence'] ) for row in batch] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = len(__UpperCamelCase ), max(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros(__UpperCamelCase ,__UpperCamelCase ,dtype=torch.long ) SCREAMING_SNAKE_CASE : int = torch.zeros(__UpperCamelCase ,__UpperCamelCase ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__UpperCamelCase ,__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : int = input_row['sentence'] SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Any = torch.stack([row['image'] for row in batch] ) SCREAMING_SNAKE_CASE : Dict = torch.stack([row['label'] for row in batch] ) SCREAMING_SNAKE_CASE : Any = torch.stack([row['image_start_token'] for row in batch] ) SCREAMING_SNAKE_CASE : List[Any] = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowercase__( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowercase__( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] ,std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] ,), ] )
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _snake_case ( _lowercase ): lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__: Optional[Union[str, Path, GenerationConfig]] = field( default=_lowercase , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = v.to_dict() return d
342
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
1
def lowerCAmelCase__ ( ): """simple docstring""" for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = 1 __a = 2 while i * i <= n: __a = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_SCREAMING_SNAKE_CASE ) > 500 ) if __name__ == "__main__": print(solution())
302
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __a = logging.get_logger(__name__) @dataclass class __a: """simple docstring""" lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) lowerCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowerCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = self.task_name.lower() class __a( _a ): """simple docstring""" lowerCAmelCase = '''train''' lowerCAmelCase = '''dev''' lowerCAmelCase = '''test''' class __a( _a ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = Split.train ,_SCREAMING_SNAKE_CASE = None ,) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ,_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Union[str, Any] = args UpperCAmelCase_ : Optional[Any] = glue_processors[args.task_name]() UpperCAmelCase_ : List[Any] = glue_output_modes[args.task_name] if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): try: UpperCAmelCase_ : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file UpperCAmelCase_ : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' ,) UpperCAmelCase_ : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ : Any = label_list[2], label_list[1] UpperCAmelCase_ : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: UpperCAmelCase_ : List[str] = time.time() UpperCAmelCase_ : int = torch.load(_SCREAMING_SNAKE_CASE ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase_ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase_ : List[Any] = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase_ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase_ : Optional[Any] = examples[:limit_length] UpperCAmelCase_ : Optional[Any] = glue_convert_examples_to_features( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,max_length=args.max_seq_length ,label_list=_SCREAMING_SNAKE_CASE ,output_mode=self.output_mode ,) UpperCAmelCase_ : List[str] = time.time() torch.save(self.features ,_SCREAMING_SNAKE_CASE ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Optional[Any]: return len(self.features ) def __getitem__( self ,_SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i] def a__ ( self ) -> Tuple: return self.label_list
355
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = r'''\w+[.]\d+''' UpperCAmelCase_ : int = re.findall(_lowercase , _lowercase ) for pat in pats: UpperCAmelCase_ : List[Any] = key.replace(_lowercase , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=42 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : str = flax_model.init_weights(PRNGKey(_lowercase ) ) UpperCAmelCase_ : List[Any] = flatten_dict(_lowercase ) UpperCAmelCase_ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Optional[int] = rename_key(_lowercase ) UpperCAmelCase_ : List[str] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_, UpperCAmelCase_ : Any = rename_key_and_reshape_tensor(_lowercase , _lowercase , _lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : int = jnp.asarray(_lowercase ) return unflatten_dict(_lowercase )
235
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase_ = { '''b0''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_24, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_40, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 14_08, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_60, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 15_36, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_00, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 17_92, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_80, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 20_48, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_56, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 23_04, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_28, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 25_60, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_00, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = EfficientNetConfig() snake_case_ = CONFIG_MAP[model_name]['''hidden_dim'''] snake_case_ = CONFIG_MAP[model_name]['''width_coef'''] snake_case_ = CONFIG_MAP[model_name]['''depth_coef'''] snake_case_ = CONFIG_MAP[model_name]['''image_size'''] snake_case_ = CONFIG_MAP[model_name]['''dropout_rate'''] snake_case_ = CONFIG_MAP[model_name]['''dw_padding'''] snake_case_ = '''huggingface/label-files''' snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = 1000 snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE (): snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = CONFIG_MAP[model_name]['''image_size'''] snake_case_ = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=SCREAMING_SNAKE_CASE__ , ) return preprocessor def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] snake_case_ = sorted(set(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = len(SCREAMING_SNAKE_CASE__ ) snake_case_ = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__ , range(SCREAMING_SNAKE_CASE__ ) )} snake_case_ = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: snake_case_ = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) snake_case_ = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ = '''efficientnet.''' + item[1] snake_case_ = '''classifier.weight''' snake_case_ = '''classifier.bias''' return key_mapping def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) ) else: snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE__ , weights='''imagenet''' , input_tensor=SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , pooling=SCREAMING_SNAKE_CASE__ , classes=1000 , classifier_activation='''softmax''' , ) snake_case_ = original_model.trainable_variables snake_case_ = original_model.non_trainable_variables snake_case_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ = param.numpy() snake_case_ = list(tf_params.keys() ) # Load HuggingFace model snake_case_ = get_efficientnet_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() snake_case_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) snake_case_ = rename_keys(SCREAMING_SNAKE_CASE__ ) replace_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Initialize preprocessor and preprocess input image snake_case_ = convert_image_processor(SCREAMING_SNAKE_CASE__ ) snake_case_ = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ = hf_model(**SCREAMING_SNAKE_CASE__ ) snake_case_ = outputs.logits.detach().numpy() # Original model inference snake_case_ = False snake_case_ = CONFIG_MAP[model_name]['''image_size'''] snake_case_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ = image.img_to_array(SCREAMING_SNAKE_CASE__ ) snake_case_ = np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case_ = original_model.predict(SCREAMING_SNAKE_CASE__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.mkdir(SCREAMING_SNAKE_CASE__ ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) snake_case_ = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
8
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : __snake_case : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __snake_case : bool = field(default=_UpperCAmelCase ,metadata={"help": "Whether tp freeze the encoder."} ) __snake_case : bool = field(default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class __UpperCAmelCase : __snake_case : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __snake_case : Optional[str] = field( default="summarization" ,metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} ,) __snake_case : Optional[int] = field( default=1024 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __snake_case : Optional[int] = field( default=128 ,metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __snake_case : Optional[int] = field( default=142 ,metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } ,) __snake_case : Optional[int] = field( default=142 ,metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __snake_case : Optional[int] = field(default=-1 ,metadata={"help": "# training examples. -1 means use all."} ) __snake_case : Optional[int] = field(default=-1 ,metadata={"help": "# validation examples. -1 means use all."} ) __snake_case : Optional[int] = field(default=-1 ,metadata={"help": "# test examples. -1 means use all."} ) __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Source language id for translation."} ) __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Target language id for translation."} ) __snake_case : Optional[int] = field(default=_UpperCAmelCase ,metadata={"help": "# num_beams to use for evaluation."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(snake_case__ ,os.path.join(snake_case__ ,F'{split}_results.json' ) ) def __lowerCamelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" ,snake_case__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case__ ,snake_case__ ,snake_case__ ): assert hasattr(snake_case__ ,snake_case__ ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(snake_case__ ,snake_case__ ,getattr(snake_case__ ,snake_case__ ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf=""".ckpt""" in model_args.model_name_or_path ,config=snake_case__ ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(snake_case__ ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case__ ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets _SCREAMING_SNAKE_CASE = ( dataset_class( snake_case__ ,type_path="""train""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE = ( dataset_class( snake_case__ ,type_path="""val""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _SCREAMING_SNAKE_CASE = ( dataset_class( snake_case__ ,type_path="""test""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_predict else None ) # Initialize our Trainer _SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task ,snake_case__ ) if training_args.predict_with_generate else None ) _SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=snake_case__ ,args=snake_case__ ,data_args=snake_case__ ,train_dataset=snake_case__ ,eval_dataset=snake_case__ ,data_collator=SeqaSeqDataCollator( snake_case__ ,snake_case__ ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) _SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _SCREAMING_SNAKE_CASE = train_result.metrics _SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" ,snake_case__ ,training_args.output_dir ) all_metrics.update(snake_case__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="""val""" ) _SCREAMING_SNAKE_CASE = data_args.n_val _SCREAMING_SNAKE_CASE = round(metrics["""val_loss"""] ,4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" ,snake_case__ ,training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=snake_case__ ,metric_key_prefix="""test""" ) _SCREAMING_SNAKE_CASE = test_output.metrics _SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): _SCREAMING_SNAKE_CASE = round(metrics["""test_loss"""] ,4 ) handle_metrics("""test""" ,snake_case__ ,training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.predict_with_generate: _SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=snake_case__ ,clean_up_tokenization_spaces=snake_case__ ) _SCREAMING_SNAKE_CASE = lmap(str.strip ,snake_case__ ) write_txt_file(snake_case__ ,os.path.join(training_args.output_dir ,"""test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case__ ,os.path.join(training_args.output_dir ,"""all_results.json""" ) ) return all_metrics def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
125
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase = get_logger(__name__) class __UpperCAmelCase : __snake_case : Tuple = "dummy_data" __snake_case : List[Any] = "datasets" __snake_case : List[Any] = False def __init__( self: Any , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Union[Version, str] , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[List[Callable]] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = dataset_name _SCREAMING_SNAKE_CASE = cache_dir _SCREAMING_SNAKE_CASE = use_local_dummy_data _SCREAMING_SNAKE_CASE = config # download_callbacks take a single url as input _SCREAMING_SNAKE_CASE = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _SCREAMING_SNAKE_CASE = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _SCREAMING_SNAKE_CASE = str(UpperCAmelCase_ ) # to be downloaded _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if self._dummy_file is None: _SCREAMING_SNAKE_CASE = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _SCREAMING_SNAKE_CASE = cached_path( UpperCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCAmelCase_ , force_extract=UpperCAmelCase_ ) return os.path.join(UpperCAmelCase_ , self.dummy_file_name ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' if self._bucket_url is None: _SCREAMING_SNAKE_CASE = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def UpperCamelCase ( self: str , UpperCAmelCase_: str , *UpperCAmelCase_: Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _SCREAMING_SNAKE_CASE = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _SCREAMING_SNAKE_CASE = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return self.create_dummy_data_dict(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCAmelCase_ , UpperCAmelCase_ ) else: return self.create_dummy_data_single(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Any ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Dict , *UpperCAmelCase_: Tuple , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' return path def UpperCamelCase ( self: str ): '''simple docstring''' return {} def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for single_url in single_urls: download_callback(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = single_urls download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) for x in single_urls] else: _SCREAMING_SNAKE_CASE = single_urls _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) _SCREAMING_SNAKE_CASE = value # make sure that values are unique if all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _SCREAMING_SNAKE_CASE = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _SCREAMING_SNAKE_CASE = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCAmelCase_ ) ) for url in data_url ) _SCREAMING_SNAKE_CASE = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _SCREAMING_SNAKE_CASE = [data_url[0]] * len(UpperCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCAmelCase_ ) return dummy_data_list def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' def _iter_archive_members(UpperCAmelCase_: Any ): # this preserves the order of the members inside the ZIP archive _SCREAMING_SNAKE_CASE = Path(self.dummy_file ).parent _SCREAMING_SNAKE_CASE = path.relative_to(UpperCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _SCREAMING_SNAKE_CASE = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = Path(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = _iter_archive_members(UpperCAmelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCAmelCase_ ).as_posix(), file_path.open("""rb""" ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[Any] ): '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [paths] for path in paths: if os.path.isfile(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCAmelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __SCREAMING_SNAKE_CASE : Any = """bert-base-cased""" __SCREAMING_SNAKE_CASE : Any = """fp16""" __SCREAMING_SNAKE_CASE : Optional[Any] = """bf16""" __SCREAMING_SNAKE_CASE : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().setUp() _UpperCAmelCase : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Any = F"""{i + 1}""" _UpperCAmelCase : str = strategy with mockenv_context(**A ): _UpperCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _A ( self : Any ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Optional[Any] = prefetch_policy with mockenv_context(**A ): _UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _A ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A ): _UpperCAmelCase : Optional[int] = self.dist_env.copy() _UpperCAmelCase : Tuple = state_dict_type with mockenv_context(**A ): _UpperCAmelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _A ( self : List[str] ): _UpperCAmelCase : List[str] = AutoModel.from_pretrained(A ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Optional[int] = policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCAmelCase : Optional[Any] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _UpperCAmelCase : Any = "2000" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Tuple = "TRANSFORMER_BASED_WRAP" _UpperCAmelCase : Tuple = "T5Layer" with mockenv_context(**A ): _UpperCAmelCase : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(A ) as cm: fsdp_plugin.set_auto_wrap_policy(A ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Optional[int] = "SIZE_BASED_WRAP" _UpperCAmelCase : List[str] = "0" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _A ( self : List[str] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : str = mp_dtype with mockenv_context(**A ): _UpperCAmelCase : int = Accelerator() if mp_dtype == "fp16": _UpperCAmelCase : Union[str, Any] = torch.floataa elif mp_dtype == "bf16": _UpperCAmelCase : Union[str, Any] = torch.bfloataa _UpperCAmelCase : Optional[int] = MixedPrecision(param_dtype=A , reduce_dtype=A , buffer_dtype=A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(A ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Dict = str(A ).lower() with mockenv_context(**A ): _UpperCAmelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : List[Any] ): super().setUp() _UpperCAmelCase : Optional[int] = 0.82 _UpperCAmelCase : int = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _UpperCAmelCase : Tuple = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCAmelCase : Tuple = 160 _UpperCAmelCase : Any = 160 _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _UpperCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _UpperCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(A ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _UpperCAmelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(A ): _UpperCAmelCase : Optional[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _UpperCAmelCase : Optional[Any] = len(A ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCAmelCase : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) _UpperCAmelCase : Optional[int] = cmd_config[:-1] _UpperCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : str = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _UpperCAmelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCAmelCase : str = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(A ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() )
31
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> Union[str, Any]: UpperCamelCase : str = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : int = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Optional[int] = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : List[Any] = size UpperCamelCase : int = do_normalize def snake_case_ ( self ) -> Tuple: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = ImageGPTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> int: UpperCamelCase : str = ImageGPTImageProcessingTester(self ) @property def snake_case_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> str: UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'clusters' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase : int = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, obj[key] ) ) else: self.assertEqual(obj[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE_, 'image_processor.json' ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : List[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def snake_case_ ( self ) -> str: pass def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) UpperCamelCase : int = Image.open(dataset[4]['file'] ) UpperCamelCase : Optional[Any] = Image.open(dataset[5]['file'] ) UpperCamelCase : str = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : List[str] = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) UpperCamelCase : List[str] = prepare_images() # test non-batched UpperCamelCase : int = image_processing(images[0], return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (1, 1024) ) UpperCamelCase : Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), SCREAMING_SNAKE_CASE_ ) # test batched UpperCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (2, 1024) ) UpperCamelCase : Optional[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), SCREAMING_SNAKE_CASE_ )
119
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[int] = ['input_features', 'attention_mask'] def __init__( self ,__UpperCAmelCase=80 ,__UpperCAmelCase=1_60_00 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=10 ,__UpperCAmelCase=25 ,__UpperCAmelCase="hamming_window" ,__UpperCAmelCase=3_2_7_6_8.0 ,__UpperCAmelCase=0.9_7 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__(feature_size=__UpperCAmelCase ,sampling_rate=__UpperCAmelCase ,padding_value=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = feature_size A__ = sampling_rate A__ = padding_value A__ = hop_length A__ = win_length A__ = frame_signal_scale A__ = preemphasis_coeff A__ = mel_floor A__ = normalize_means A__ = normalize_vars A__ = win_function A__ = return_attention_mask A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 def snake_case__ ( self ,__UpperCAmelCase ) -> np.ndarray: if self.win_function == "hamming_window": A__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=__UpperCAmelCase ) else: A__ = window_function(window_length=self.sample_size ,name=self.win_function ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) A__ = spectrogram( one_waveform * self.frame_signal_scale ,window=__UpperCAmelCase ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=__UpperCAmelCase ,preemphasis=self.preemphasis_coeff ,mel_filters=__UpperCAmelCase ,mel_floor=self.mel_floor ,log_mel='log' ,) return msfc_features.T def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: # make sure we normalize float32 arrays if self.normalize_means: A__ = x[:input_length].mean(axis=0 ) A__ = np.subtract(__UpperCAmelCase ,__UpperCAmelCase ) if self.normalize_vars: A__ = x[:input_length].std(axis=0 ) A__ = np.divide(__UpperCAmelCase ,__UpperCAmelCase ) if input_length < x.shape[0]: A__ = padding_value # make sure array is in float32 A__ = x.astype(np.floataa ) return x def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[np.ndarray]: A__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCAmelCase ,__UpperCAmelCase ,self.padding_value ) for x, n in zip(__UpperCAmelCase ,__UpperCAmelCase )] def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = None ,__UpperCAmelCase = False ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) A__ = isinstance(__UpperCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(__UpperCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(__UpperCAmelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase ,np.ndarray ): A__ = np.asarray(__UpperCAmelCase ,dtype=np.floataa ) elif isinstance(__UpperCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [raw_speech] # extract fbank features A__ = [self._extract_mfsc_features(__UpperCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding A__ = BatchFeature({'input_features': features} ) A__ = self.pad( __UpperCAmelCase ,padding=__UpperCAmelCase ,max_length=__UpperCAmelCase ,truncation=__UpperCAmelCase ,pad_to_multiple_of=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ,) # make sure list is in array format A__ = padded_inputs.get('input_features' ) if isinstance(input_features[0] ,__UpperCAmelCase ): A__ = [np.asarray(__UpperCAmelCase ,dtype=np.floataa ) for feature in input_features] A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(__UpperCAmelCase ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A__ = ( np.array(__UpperCAmelCase ,dtype=np.intaa ) if self._get_padding_strategies(__UpperCAmelCase ,max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A__ = self.normalize( padded_inputs['input_features'] ,attention_mask=__UpperCAmelCase ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs
154
"""simple docstring""" import os def UpperCAmelCase ( ): """simple docstring""" with open(os.path.dirname(UpperCamelCase__ ) + '/grid.txt' ) as f: A__ = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase__ ) for x in f.readline().split()] ) A__ = 0 # right for i in range(20 ): for j in range(17 ): A__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A__ = temp # down for i in range(17 ): for j in range(20 ): A__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A__ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): A__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A__ = temp return maximum if __name__ == "__main__": print(solution())
154
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __magic_name__: List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowercase__ : bool = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowercase__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowercase__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowercase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=_lowerCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Dict = v.to_dict() return d
342
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = 'audio-spectrogram-transformer' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=128 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Any = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Optional[Any] = initializer_range lowercase : str = layer_norm_eps lowercase : Any = patch_size lowercase : Tuple = qkv_bias lowercase : str = frequency_stride lowercase : Union[str, Any] = time_stride lowercase : Dict = max_length lowercase : List[str] = num_mel_bins
173
import os import pytest from attr import dataclass __a = '''us-east-1''' # defaults region @dataclass class __SCREAMING_SNAKE_CASE : A : str A : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A : Union[str, Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } A : str = {**hyperparameters, 'max_steps': 1000} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def __lowerCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
173
1
def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Optional[Any] ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__a ): for j in range(__a ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) ,end='''\t''' ) else: print('''INF''' ,end='''\t''' ) print() def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Optional[Any] ): __lowerCamelCase = [[float('''inf''' ) for _ in range(__a )] for _ in range(__a )] for i in range(__a ): for j in range(__a ): __lowerCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__a ): # looping through rows of graph array for i in range(__a ): # looping through columns of graph array for j in range(__a ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowerCamelCase = dist[i][k] + dist[k][j] _print_dist(__a ,__a ) return dist, v if __name__ == "__main__": a_ = int(input("""Enter number of vertices: """)) a_ = int(input("""Enter number of edges: """)) a_ = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): a_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) a_ = int(input("""Enter source:""")) a_ = int(input("""Enter destination:""")) a_ = float(input("""Enter weight:""")) a_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
330
import operator as op a__ = '''scaler.pt''' a__ = '''pytorch_model''' a__ = '''random_states''' a__ = '''optimizer''' a__ = '''scheduler''' a__ = '''pytorch_model.bin''' a__ = '''pytorch_model.bin.index.json''' a__ = '''model.safetensors''' a__ = '''model.safetensors.index.json''' a__ = '''1.10.2''' a__ = '''py38''' a__ = '''4.17.0''' a__ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] a__ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] a__ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] a__ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] a__ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] a__ = '''2.0.1''' a__ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] a__ = ['''default''', '''reduce-overhead''', '''max-autotune'''] a__ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a__ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] a__ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] a__ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
235
0
from string import ascii_lowercase, ascii_uppercase def _UpperCamelCase ( snake_case__ ) -> str: if not sentence: return "" __UpperCAmelCase : Optional[Any] = dict(zip(snake_case__, snake_case__ ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case_ : int = "bart" snake_case_ : Union[str, Any] = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) UpperCAmelCase_ : Optional[Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) UpperCAmelCase_ : Tuple = qar_model.eval() else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) UpperCAmelCase_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) UpperCAmelCase_ : Dict = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) UpperCAmelCase_ : Any = sas_model.eval() else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> List[str]: if LOAD_DENSE_INDEX: UpperCAmelCase_ : List[str] = faiss.StandardGpuResources() UpperCAmelCase_ : Optional[int] = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] UpperCAmelCase_ : Optional[Any] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 128), ) UpperCAmelCase_ : Any = faiss.IndexFlatIP(128 ) UpperCAmelCase_ : Any = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE__, 1, SCREAMING_SNAKE_CASE__ ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE__ ) # TODO fix for larger GPU else: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = (None, None) UpperCAmelCase_ : Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Tuple: UpperCAmelCase_ : List[Any] = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) UpperCAmelCase_ : Optional[Any] = elia['''train_eli5'''] UpperCAmelCase_ : Any = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 128) ) UpperCAmelCase_ : Optional[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE__ ) return (elia_train, eli5_train_q_index) snake_case_ ,snake_case_ ,snake_case_ : Any = load_indexes() snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : str = load_models() snake_case_ ,snake_case_ : Optional[int] = load_train_data() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple=10 ) -> Optional[int]: UpperCAmelCase_ : List[str] = embed_questions_for_retrieval([question], SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = eli5_train_q_index.search(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = [elia_train[int(SCREAMING_SNAKE_CASE__ )] for i in I[0]] return nn_examples def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Union[str, Any]="wiki40b", SCREAMING_SNAKE_CASE__ : Any="dense", SCREAMING_SNAKE_CASE__ : Optional[int]=10 ) -> str: if source == "none": UpperCAmelCase_ , UpperCAmelCase_ : int = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = query_qa_dense_index( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase_ , UpperCAmelCase_ : Dict = query_es_index( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index_name='''english_wiki40b_snippets_100w''', n_results=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : str = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] UpperCAmelCase_ : Any = '''question: {} context: {}'''.format(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE__ : None), } ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict=64, SCREAMING_SNAKE_CASE__ : Tuple=256, SCREAMING_SNAKE_CASE__ : str=False, SCREAMING_SNAKE_CASE__ : Optional[Any]=2, SCREAMING_SNAKE_CASE__ : List[Any]=0.95, SCREAMING_SNAKE_CASE__ : List[str]=0.8 ) -> int: with torch.no_grad(): UpperCAmelCase_ : List[str] = qa_sas_generate( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, num_answers=1, num_beams=SCREAMING_SNAKE_CASE__, min_len=SCREAMING_SNAKE_CASE__, max_len=SCREAMING_SNAKE_CASE__, do_sample=SCREAMING_SNAKE_CASE__, temp=SCREAMING_SNAKE_CASE__, top_p=SCREAMING_SNAKE_CASE__, top_k=SCREAMING_SNAKE_CASE__, max_input_length=1024, device='''cuda:0''', )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar snake_case_ : int = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" snake_case_ : Tuple = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case_ : Dict = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) snake_case_ : Any = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] snake_case_ : Optional[Any] = st.sidebar.checkbox("Demo options") if demo_options: snake_case_ : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) snake_case_ : Optional[Any] = action_list.index(action_st) snake_case_ : Dict = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) snake_case_ : str = show_type == "Show full text of passages" else: snake_case_ : str = 3 snake_case_ : str = True snake_case_ : Optional[Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: snake_case_ : Any = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) snake_case_ : List[str] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) snake_case_ : Tuple = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: snake_case_ : List[Any] = "wiki40b" snake_case_ : str = "dense" snake_case_ : Tuple = "beam" snake_case_ : Dict = 2 snake_case_ : str = 64 snake_case_ : str = 2_56 snake_case_ : int = None snake_case_ : str = None snake_case_ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: snake_case_ : Union[str, Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) snake_case_ : Optional[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) snake_case_ : Union[str, Any] = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) snake_case_ : Dict = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": snake_case_ : List[Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case_ : str = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case_ : Optional[int] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case_ : Optional[int] = None # start main text snake_case_ : int = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] snake_case_ : Union[str, Any] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case_ : Optional[Any] = st.text_input("Enter your question here:", "") else: snake_case_ : Any = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": snake_case_ ,snake_case_ : List[str] = make_support(question, source=wiki_source, method="dense", n_results=10) snake_case_ ,snake_case_ : int = make_support(question, source=wiki_source, method="sparse", n_results=10) snake_case_ : List[str] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case_ : Optional[Any] = support_list[:10] snake_case_ : List[str] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: snake_case_ ,snake_case_ : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case_ ,snake_case_ : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): snake_case_ : int = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) snake_case_ : Union[str, Any] = res[1].strip() if sec_titles == "": snake_case_ : Optional[int] = "[{}]({})".format(res[0], wiki_url) else: snake_case_ : List[Any] = sec_titles.split(" & ") snake_case_ : Union[str, Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: snake_case_ : Optional[int] = find_nearest_training(question) snake_case_ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) snake_case_ : List[str] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) snake_case_ : Dict = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
125
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
0
import random def __UpperCamelCase ( _A : int ) ->bool: """simple docstring""" lowerCamelCase_ =num - 1 lowerCamelCase_ =0 while s % 2 == 0: lowerCamelCase_ =s // 2 t += 1 for _ in range(5 ): lowerCamelCase_ =random.randrange(2 , num - 1 ) lowerCamelCase_ =pow(_A , _A , _A ) if v != 1: lowerCamelCase_ =0 while v != (num - 1): if i == t - 1: return False else: lowerCamelCase_ =i + 1 lowerCamelCase_ =(v**2) % num return True def __UpperCamelCase ( _A : int ) ->bool: """simple docstring""" if num < 2: return False lowerCamelCase_ =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_A ) def __UpperCamelCase ( _A : int = 1024 ) ->int: """simple docstring""" while True: lowerCamelCase_ =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_A ): return num if __name__ == "__main__": __A : Union[str, Any] = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
154
from __future__ import annotations import math def __UpperCamelCase ( _A : int , _A : int , _A : bool , _A : list[int] , _A : float ) ->int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_A ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) return min( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase_ =math.log(len(_A ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , _A , _A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
154
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a : Dict = logging.get_logger(__name__) _a : Tuple = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple ="""deformable_detr""" a : int ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict,__SCREAMING_SNAKE_CASE : List[str]=True,__SCREAMING_SNAKE_CASE : int=None,__SCREAMING_SNAKE_CASE : Optional[Any]=3,__SCREAMING_SNAKE_CASE : Union[str, Any]=3_00,__SCREAMING_SNAKE_CASE : List[Any]=10_24,__SCREAMING_SNAKE_CASE : str=6,__SCREAMING_SNAKE_CASE : Optional[int]=10_24,__SCREAMING_SNAKE_CASE : Optional[Any]=8,__SCREAMING_SNAKE_CASE : int=6,__SCREAMING_SNAKE_CASE : Dict=10_24,__SCREAMING_SNAKE_CASE : str=8,__SCREAMING_SNAKE_CASE : Any=0.0,__SCREAMING_SNAKE_CASE : Union[str, Any]=True,__SCREAMING_SNAKE_CASE : Dict="relu",__SCREAMING_SNAKE_CASE : Union[str, Any]=2_56,__SCREAMING_SNAKE_CASE : Tuple=0.1,__SCREAMING_SNAKE_CASE : Tuple=0.0,__SCREAMING_SNAKE_CASE : List[str]=0.0,__SCREAMING_SNAKE_CASE : Tuple=0.02,__SCREAMING_SNAKE_CASE : Dict=1.0,__SCREAMING_SNAKE_CASE : Union[str, Any]=True,__SCREAMING_SNAKE_CASE : Dict=False,__SCREAMING_SNAKE_CASE : List[str]="sine",__SCREAMING_SNAKE_CASE : List[Any]="resnet50",__SCREAMING_SNAKE_CASE : Tuple=True,__SCREAMING_SNAKE_CASE : Dict=False,__SCREAMING_SNAKE_CASE : Optional[int]=4,__SCREAMING_SNAKE_CASE : Optional[Any]=4,__SCREAMING_SNAKE_CASE : int=4,__SCREAMING_SNAKE_CASE : str=False,__SCREAMING_SNAKE_CASE : List[Any]=3_00,__SCREAMING_SNAKE_CASE : Tuple=False,__SCREAMING_SNAKE_CASE : Dict=1,__SCREAMING_SNAKE_CASE : str=5,__SCREAMING_SNAKE_CASE : List[str]=2,__SCREAMING_SNAKE_CASE : int=1,__SCREAMING_SNAKE_CASE : int=1,__SCREAMING_SNAKE_CASE : List[Any]=5,__SCREAMING_SNAKE_CASE : int=2,__SCREAMING_SNAKE_CASE : Any=0.1,__SCREAMING_SNAKE_CASE : Optional[int]=0.25,__SCREAMING_SNAKE_CASE : Optional[Any]=False,**__SCREAMING_SNAKE_CASE : Any,): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = backbone_config.get("""model_type""" ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = use_timm_backbone __lowerCAmelCase = backbone_config __lowerCAmelCase = num_channels __lowerCAmelCase = num_queries __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = auxiliary_loss __lowerCAmelCase = position_embedding_type __lowerCAmelCase = backbone __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = dilation # deformable attributes __lowerCAmelCase = num_feature_levels __lowerCAmelCase = encoder_n_points __lowerCAmelCase = decoder_n_points __lowerCAmelCase = two_stage __lowerCAmelCase = two_stage_num_proposals __lowerCAmelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __lowerCAmelCase = class_cost __lowerCAmelCase = bbox_cost __lowerCAmelCase = giou_cost # Loss coefficients __lowerCAmelCase = mask_loss_coefficient __lowerCAmelCase = dice_loss_coefficient __lowerCAmelCase = bbox_loss_coefficient __lowerCAmelCase = giou_loss_coefficient __lowerCAmelCase = eos_coefficient __lowerCAmelCase = focal_alpha __lowerCAmelCase = disable_custom_kernels super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self.d_model def lowerCamelCase__ ( self : int ): '''simple docstring''' __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
354
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a : List[Any] = logging.get_logger(__name__) _a : Union[str, Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCAmelCase = model __lowerCAmelCase = kwargs.get("""model_save_dir""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.get("""latest_model_name""",__SCREAMING_SNAKE_CASE ) def __call__( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {k: np.array(__SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()} return self.model.run(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCAmelCase = """CPUExecutionProvider""" return ort.InferenceSession(__SCREAMING_SNAKE_CASE,providers=[provider],sess_options=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCAmelCase = self.model_save_dir.joinpath(__SCREAMING_SNAKE_CASE ) if src_path.exists(): __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' if os.path.isfile(__SCREAMING_SNAKE_CASE ): logger.error(f'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) # saving model weights/files self._save_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),provider=__SCREAMING_SNAKE_CASE,sess_options=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ) # load model from hub else: # download model __lowerCAmelCase = hf_hub_download( repo_id=__SCREAMING_SNAKE_CASE,filename=__SCREAMING_SNAKE_CASE,use_auth_token=__SCREAMING_SNAKE_CASE,revision=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,force_download=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).parent __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).name __lowerCAmelCase = OnnxRuntimeModel.load_model(__SCREAMING_SNAKE_CASE,provider=__SCREAMING_SNAKE_CASE,sess_options=__SCREAMING_SNAKE_CASE ) return cls(model=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = None if len(str(__SCREAMING_SNAKE_CASE ).split("""@""" ) ) == 2: __lowerCAmelCase , __lowerCAmelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=__SCREAMING_SNAKE_CASE,revision=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,force_download=__SCREAMING_SNAKE_CASE,use_auth_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
46
0
"""simple docstring""" import argparse import os import re import packaging.version _UpperCAmelCase = """examples/""" _UpperCAmelCase = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _UpperCAmelCase = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _UpperCAmelCase = """README.md""" def __magic_name__ ( lowercase , lowercase , lowercase ): with open(lowercase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] =f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_: Dict =replace.replace("""VERSION""" , lowercase ) SCREAMING_SNAKE_CASE_: List[str] =re_pattern.sub(lowercase , lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowercase ) def __magic_name__ ( lowercase ): for folder, directories, fnames in os.walk(lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowercase , lowercase ) , lowercase , pattern="""examples""" ) def __magic_name__ ( lowercase , lowercase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase , lowercase , lowercase ) if not patch: update_version_in_examples(lowercase ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""🤗 Transformers currently provides the following architectures""" SCREAMING_SNAKE_CASE_: Any ="""1. Want to contribute a new model?""" with open(lowercase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE_: int =f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_: List[str] =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_: List[str] =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): SCREAMING_SNAKE_CASE_: List[Any] =lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(lowercase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowercase ) def __magic_name__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: SCREAMING_SNAKE_CASE_: Union[str, Any] =f.read() SCREAMING_SNAKE_CASE_: Optional[int] =REPLACE_PATTERNS["""init"""][0].search(lowercase ).groups()[0] return packaging.version.parse(lowercase ) def __magic_name__ ( lowercase=False ): SCREAMING_SNAKE_CASE_: int =get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_: List[str] =default_version.base_version elif patch: SCREAMING_SNAKE_CASE_: str =f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE_: int =f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_: Any =input(f'''Which version are you releasing? [{default_version}]''' ) if len(lowercase ) == 0: SCREAMING_SNAKE_CASE_: Optional[Any] =default_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase , patch=lowercase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[str] =get_version() SCREAMING_SNAKE_CASE_: str =f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE_: Optional[Any] =current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_: str =input(f'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase ) == 0: SCREAMING_SNAKE_CASE_: Any =dev_version print(f'''Updating version to {version}.''' ) global_version_update(lowercase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
173
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE_: Tuple =[(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __magic_name__ ( lowercase , lowercase , lowercase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: Dict ="""""" else: SCREAMING_SNAKE_CASE_: Dict ="""deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: int =in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: List[str] =in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: Optional[int] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: int =in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: str =in_proj_bias[-config.hidden_size :] def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =dct.pop(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =val def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: Dict =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE_: Optional[int] =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_: Dict =1000 SCREAMING_SNAKE_CASE_: Tuple ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: int ="""imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE_: Optional[int] =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Dict ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: int =idalabel SCREAMING_SNAKE_CASE_: List[str] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any =int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE_: int =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): SCREAMING_SNAKE_CASE_: str =192 SCREAMING_SNAKE_CASE_: str =768 SCREAMING_SNAKE_CASE_: str =12 SCREAMING_SNAKE_CASE_: List[str] =3 elif deit_name[9:].startswith("""small""" ): SCREAMING_SNAKE_CASE_: List[str] =384 SCREAMING_SNAKE_CASE_: Optional[Any] =1536 SCREAMING_SNAKE_CASE_: Dict =12 SCREAMING_SNAKE_CASE_: List[Any] =6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): SCREAMING_SNAKE_CASE_: str =1024 SCREAMING_SNAKE_CASE_: Any =4096 SCREAMING_SNAKE_CASE_: str =24 SCREAMING_SNAKE_CASE_: str =16 # load original model from timm SCREAMING_SNAKE_CASE_: int =timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: List[Any] =timm_model.state_dict() SCREAMING_SNAKE_CASE_: int =create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , lowercase ) # load HuggingFace model SCREAMING_SNAKE_CASE_: List[Any] =DeiTForImageClassificationWithTeacher(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE_: Tuple =int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE_: Optional[int] =DeiTImageProcessor(size=lowercase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE_: List[Any] =image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =encoding["""pixel_values"""] SCREAMING_SNAKE_CASE_: Tuple =model(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
173
1
'''simple docstring''' def __UpperCAmelCase ( a_: list[int] ): if not numbers: return 0 if not isinstance(a_, (list, tuple) ) or not all( isinstance(a_, a_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) _UpperCAmelCase : Any = numbers[0] for i in range(1, len(a_ ) ): # update the maximum and minimum subarray products _UpperCAmelCase : int = numbers[i] if number < 0: _UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now _UpperCAmelCase : str = max(a_, max_till_now * number ) _UpperCAmelCase : List[str] = min(a_, min_till_now * number ) # update the maximum product found till now _UpperCAmelCase : int = max(a_, a_ ) return max_prod
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
from __future__ import annotations from random import choice def __lowercase ( _A ) -> List[str]: return choice(_A ) def __lowercase ( _A , _A ) -> int: SCREAMING_SNAKE_CASE : int = random_pivot(_A ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE : List[str] = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
245
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase__ = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase ( cls : Any ): lowerCAmelCase_ : Optional[int] = TOKEN HfFolder.save_token(a_ ) @classmethod def lowerCamelCase ( cls : Dict ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowerCAmelCase_ : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a_ , repo_id="test-config" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : int = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ , getattr(a_ , a_ ) ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowerCAmelCase_ : Dict = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a_ , repo_id="valid_org/test-config-org" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ , getattr(a_ , a_ ) ) def lowerCamelCase ( self : Any ): CustomConfig.register_for_auto_class() lowerCAmelCase_ : Optional[int] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCAmelCase_ : Union[str, Any] = c.n_embd + 1 # int lowerCAmelCase_ : Dict = c.resid_pdrop + 1.0 # float lowerCAmelCase_ : List[str] = not c.scale_attn_weights # bool lowerCAmelCase_ : Dict = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(a_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(a_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(a_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(a_ , c.summary_type , "mismatch for key: summary_type" ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : List[Any] = PretrainedConfig() lowerCAmelCase_ : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( a_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowerCAmelCase_ : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(a_ , a_ )] if len(a_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {", ".join(a_ )}.''' ) def lowerCamelCase ( self : Optional[int] ): with self.assertRaises(a_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowerCAmelCase_ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(a_ ) def lowerCamelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : Union[str, Any] = mock.Mock() lowerCAmelCase_ : List[Any] = 5_00 lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Dict = HTTPError lowerCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: lowerCAmelCase_ : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : Any ): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ : Optional[Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) lowerCAmelCase_ : List[Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(a_ ) lowerCAmelCase_ : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(a_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(a_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCAmelCase_ : int = ["config.42.0.0.json"] lowerCAmelCase_ : List[Any] = 7_68 configuration.save_pretrained(a_ ) shutil.move(os.path.join(a_ , "config.4.0.0.json" ) , os.path.join(a_ , "config.42.0.0.json" ) ) lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(a_ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCamelCase ( self : Optional[int] ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCAmelCase_ : Any = "hf-internal-testing/test-two-configs" import transformers as new_transformers lowerCAmelCase_ : Any = "v4.0.0" lowerCAmelCase_ : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( a_ , return_unused_kwargs=a_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(a_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCAmelCase_ : str = "v3.0.0" lowerCAmelCase_ : str = old_transformers.models.auto.AutoConfig.from_pretrained(a_ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
358
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) lowerCAmelCase_ : str = np.array(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = (1, 2, 1) lowerCAmelCase_ : str = (1, 1, 0, 7) lowerCAmelCase_ : List[Any] = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = model.fit(disp=__UpperCamelCase , maxiter=600 , method="nm" ) lowerCAmelCase_ : Optional[Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : int = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __UpperCamelCase ) -> float: """simple docstring""" train_user.sort() lowerCAmelCase_ : Optional[Any] = np.percentile(__UpperCamelCase , 25 ) lowerCAmelCase_ : List[Any] = np.percentile(__UpperCamelCase , 75 ) lowerCAmelCase_ : Union[str, Any] = qa - qa lowerCAmelCase_ : List[Any] = qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: lowerCAmelCase_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase__ = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ = normalize_df[:, 2].tolist() lowercase__ = normalize_df[:, 0].tolist() lowercase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ = normalize_df[:, [1, 2]].tolist() lowercase__ = x[: len(x) - 1] lowercase__ = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ = total_date[: len(total_date) - 1] lowercase__ = total_user[: len(total_user) - 1] lowercase__ = total_match[: len(total_match) - 1] lowercase__ = total_date[len(total_date) - 1 :] lowercase__ = total_user[len(total_user) - 1 :] lowercase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
161
0
"""simple docstring""" lowerCAmelCase__ = range(2, 20 + 1) lowerCAmelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : int = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase , lowerCAmelCase : List[Any] = 0, 0 lowerCAmelCase : int = n - i lowerCAmelCase : Optional[Any] = memo.get(SCREAMING_SNAKE_CASE ) if sub_memo is not None: lowerCAmelCase : Dict = sub_memo.get(SCREAMING_SNAKE_CASE ) if jumps is not None and len(SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over lowerCAmelCase : int = -1 for _k in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase : str = _k break if max_jump >= 0: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase : Optional[int] = diff + c for j in range(min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ): lowerCAmelCase , lowerCAmelCase : Any = divmod(SCREAMING_SNAKE_CASE , 1_0 ) if new_c > 0: add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Dict = [] else: lowerCAmelCase : Union[str, Any] = {c: []} lowerCAmelCase : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase , lowerCAmelCase : Any = next_term(SCREAMING_SNAKE_CASE , k - 1 , i + dn , SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase , lowerCAmelCase : Dict = compute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , i + dn , SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped lowerCAmelCase : Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase : Optional[Any] = 0 while j < len(SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase : int = i lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase : Dict = ds_c + ds_b diff += addend lowerCAmelCase : str = 0 for j in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = a_i[j] + addend lowerCAmelCase , lowerCAmelCase : Any = divmod(SCREAMING_SNAKE_CASE , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return diff, i - start_i def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase : Optional[int] = digits[j] + addend if s >= 1_0: lowerCAmelCase , lowerCAmelCase : Dict = divmod(SCREAMING_SNAKE_CASE , 1_0 ) lowerCAmelCase : str = addend // 1_0 + quotient else: lowerCAmelCase : List[Any] = s lowerCAmelCase : Dict = addend // 1_0 if addend == 0: break while addend > 0: lowerCAmelCase , lowerCAmelCase : List[str] = divmod(SCREAMING_SNAKE_CASE , 1_0 ) digits.append(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int = 1_0**1_5 ): '''simple docstring''' lowerCAmelCase : Any = [1] lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Optional[Any] = 0 while True: lowerCAmelCase , lowerCAmelCase : Any = next_term(SCREAMING_SNAKE_CASE , 2_0 , i + dn , SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break lowerCAmelCase : Any = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F"{solution() = }")
108
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
from collections.abc import Callable def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" A__ = a A__ = b if function(lowercase_ ) == 0: # one of the a or b is a root for the function return a elif function(lowercase_ ) == 0: return b elif ( function(lowercase_ ) * function(lowercase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: A__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase_ ) == 0: return mid elif function(lowercase_ ) * function(lowercase_ ) < 0: A__ = mid else: A__ = mid A__ = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
231
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , )->Optional[int]: '''simple docstring''' A_ : List[Any] = parent A_ : Dict = 13 A_ : Dict = 7 A_ : str = True A_ : List[str] = True A_ : Dict = False A_ : Optional[int] = True A_ : Optional[int] = 99 A_ : List[Any] = 32 A_ : Tuple = 2 A_ : Tuple = 4 A_ : List[str] = 37 A_ : Any = '''gelu''' A_ : Tuple = 0.1 A_ : int = 0.1 A_ : str = 512 A_ : str = 16 A_ : List[str] = 2 A_ : Dict = 0.0_2 A_ : Optional[int] = 3 A_ : Union[str, Any] = 4 A_ : str = None def _snake_case ( self )->str: '''simple docstring''' A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None A_ : Tuple = None A_ : List[str] = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = TFDistilBertModel(config=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) A_ : int = [input_ids, input_mask] A_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : List[str] = TFDistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) A_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : List[Any] = TFDistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } A_ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.num_labels A_ : Optional[int] = TFDistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : str = self.num_choices A_ : Tuple = TFDistilBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) A_ : List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ : Tuple = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } A_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Dict = self.num_labels A_ : Any = TFDistilBertForTokenClassification(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A_ : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Any = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : Tuple = config_and_inputs A_ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def _snake_case ( self )->Dict: '''simple docstring''' A_ : int = TFDistilBertModelTester(self ) A_ : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def _snake_case ( self )->str: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->str: '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->List[str]: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A_ : str = TFDistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->Any: '''simple docstring''' A_ : Any = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) A_ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE )[0] A_ : Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A_ : List[str] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
186
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : def __init__( self , lowercase , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def _snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertModel(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = TFDistilBertForMaskedLM(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertForQuestionAnswering(config=lowercase ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForSequenceClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFDistilBertForMultipleChoice(lowercase ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForTokenClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Dict: lowerCAmelCase = TFDistilBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 ) def _snake_case ( self ) -> str: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def _snake_case ( self ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: lowerCAmelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , lowercase ) lowerCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
46
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _SCREAMING_SNAKE_CASE ( A__ ): def __lowerCAmelCase ( self , __A ) -> Optional[Any]: os.makedirs(__A , exist_ok=__A ) lowerCAmelCase_ :Union[str, Any] = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase_ :Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase_ :Optional[Any] = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__A , f"""{split}.{field}""" ) , """w""" ) as f: f.write(__A ) def __lowerCAmelCase ( self , __A , __A = "pytorch" ) -> Optional[Any]: lowerCAmelCase_ :Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ :Optional[Any] = os.path.join(__A , """output""" ) lowerCAmelCase_ :str = os.path.join(__A , """data""" ) self._create_dummy_data(data_dir=__A ) lowerCAmelCase_ :Optional[Any] = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase_ :List[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__A , env=self.get_env() ) lowerCAmelCase_ :str = os.path.join(__A , """metrics.json""" ) with open(__A ) as f: lowerCAmelCase_ :List[Any] = json.load(__A ) return result @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :int = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
1
"""simple docstring""" import itertools import math def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = 2 while True: if is_prime(lowercase__ ): yield num num += 1 def _snake_case ( lowercase__ : int = 1_0_0_0_1 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowercase__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
1
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Dict = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCamelCase_ ( __magic_name__ ): lowercase = "glpn" def __init__( self , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[32, 64, 160, 256] , A=[7, 3, 3, 3] , A=[4, 2, 2, 2] , A=[1, 2, 5, 8] , A=[4, 4, 4, 4] , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=0.1 , A=1e-6 , A=64 , A=10 , A=-1 , **A , ) -> Optional[Any]: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase : Dict = num_channels UpperCAmelCase : Optional[Any] = num_encoder_blocks UpperCAmelCase : List[Any] = depths UpperCAmelCase : List[str] = sr_ratios UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : List[Any] = patch_sizes UpperCAmelCase : Dict = strides UpperCAmelCase : Tuple = mlp_ratios UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Optional[int] = drop_path_rate UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Union[str, Any] = decoder_hidden_size UpperCAmelCase : Any = max_depth UpperCAmelCase : str = head_in_index
265
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __A = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = VOCAB_FILES_NAMES __magic_name__ :Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Optional[int] = ["""input_ids""", """attention_mask"""] __magic_name__ :List[str] = TaTokenizer __magic_name__ :List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ :Any = [F"<extra_id_{i}>" for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase__ :Optional[int] = len(set(filter(lambda __UpperCAmelCase : bool('extra_id_' in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :List[str] = vocab_file lowerCAmelCase__ :List[Any] = False if not self.vocab_file else True lowerCAmelCase__ :List[Any] = extra_ids @staticmethod def snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase__ :Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , __UpperCAmelCase , ) return max_model_length def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ :Dict = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(F"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase__ :Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case ( self ): '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(R'<extra_id_\d+>' , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def snake_case ( self ): '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
254
1
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( lowercase__ : Dict , lowercase__ : Optional[Any] ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase__ , lowercase__ ) ) ) def _snake_case ( lowercase__ : Any , lowercase__ : Any ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase_ :List[str] = ( """Wrong input data\'s dimensions... """ f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowercase__ ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase_ :List[str] = ( """Wrong input data\'s shape... """ f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowercase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowerCAmelCase_ :Any = ( """Input data have different datatype... """ f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowercase__ ) lowerCAmelCase_ :Optional[Any] = [] for value in value_array: lowerCAmelCase_ :Union[str, Any] = euclidean(lowercase__ , dataset[0] ) lowerCAmelCase_ :int = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase_ :Union[str, Any] = euclidean(lowercase__ , lowercase__ ) if dist > temp_dist: lowerCAmelCase_ :Dict = temp_dist lowerCAmelCase_ :Any = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( lowercase__ : List[str] , lowercase__ : Optional[int] ) -> float: '''simple docstring''' return np.dot(lowercase__ , lowercase__ ) / (norm(lowercase__ ) * norm(lowercase__ )) if __name__ == "__main__": import doctest doctest.testmod()
84
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = torch.exp(UpperCAmelCase ) __A = torch.sum(UpperCAmelCase , dim=1 ) # sum of exp(x_i) __A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCAmelCase ) - B / A class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :int ) -> Union[str, Any]: '''simple docstring''' super().__init__() __A = config.output_attentions __A = config.output_hidden_states __A = nn.ModuleList([BertLayer(_A ) for _ in range(config.num_hidden_layers )] ) __A = nn.ModuleList([BertHighway(_A ) for _ in range(config.num_hidden_layers )] ) __A = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self :Any , _A :List[Any] ) -> Tuple: '''simple docstring''' if (type(_A ) is float) or (type(_A ) is int): for i in range(len(self.early_exit_entropy ) ): __A = x else: __A = x def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Dict: '''simple docstring''' __A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None , _A :int=None , _A :List[Any]=None , _A :str=None , ) -> Tuple: '''simple docstring''' __A = () __A = () __A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = layer_module( _A , _A , head_mask[i] , _A , _A ) __A = layer_outputs[0] if self.output_attentions: __A = all_attentions + (layer_outputs[1],) __A = (hidden_states,) if self.output_hidden_states: __A = current_outputs + (all_hidden_states,) if self.output_attentions: __A = current_outputs + (all_attentions,) __A = self.highway[i](_A ) # logits, pooled_output if not self.training: __A = highway_exit[0] __A = entropy(_A ) __A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_A , i + 1 ) else: __A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = (hidden_states,) if self.output_hidden_states: __A = outputs + (all_hidden_states,) if self.output_attentions: __A = outputs + (all_attentions,) __A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , _A :List[str] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config __A = BertEmbeddings(_A ) __A = DeeBertEncoder(_A ) __A = BertPooler(_A ) self.init_weights() def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' return self.embeddings.word_embeddings def lowercase_ ( self :Tuple , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' __A = value def lowercase_ ( self :int , _A :int ) -> Tuple: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_A ) @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :int=None , _A :List[Any]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Any=None , _A :List[str]=None , _A :Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __A = input_ids.size() elif inputs_embeds is not None: __A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A = torch.ones(_A , device=_A ) if encoder_attention_mask is None: __A = torch.ones(_A , device=_A ) if token_type_ids is None: __A = torch.zeros(_A , dtype=torch.long , device=_A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A = self.get_extended_attention_mask(_A , _A , _A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __A = encoder_attention_mask[:, None, None, :] __A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __A = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A = self.get_head_mask(_A , self.config.num_hidden_layers ) __A = self.embeddings( input_ids=_A , position_ids=_A , token_type_ids=_A , inputs_embeds=_A ) __A = self.encoder( _A , attention_mask=_A , head_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A = encoder_outputs[0] __A = self.pooler(_A ) __A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[Any] , _A :str , _A :List[str] ) -> Optional[int]: '''simple docstring''' __A = message __A = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :Dict ) -> Tuple: '''simple docstring''' super().__init__() __A = BertPooler(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self :List[Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = encoder_outputs[0] __A = self.pooler(_A ) # "return" pooler_output # BertModel __A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __A = bmodel_output[1] __A = self.dropout(_A ) __A = self.classifier(_A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :str , _A :Optional[Any] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = config.num_hidden_layers __A = DeeBertModel(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :str=None , _A :Optional[int]=None , _A :Any=None , _A :str=None , _A :int=None , _A :Tuple=None , _A :Any=None , _A :List[str]=-1 , _A :Optional[Any]=False , ) -> List[str]: '''simple docstring''' __A = self.num_layers try: __A = self.bert( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __A = outputs[1] __A = self.dropout(_A ) __A = self.classifier(_A ) __A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A = e.message __A = e.exit_layer __A = outputs[0] if not self.training: __A = entropy(_A ) __A = [] __A = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __A = [] for highway_exit in outputs[-1]: __A = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __A = (loss,) + outputs if not self.training: __A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A (self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): A = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) A = VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2 ) A = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): for example in examples: A = video_classifier(_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {"""score""": ANY(_lowerCAmelCase ), """label""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """label""": ANY(_lowerCAmelCase )}, ] , ) @require_torch def A (self : Optional[Any] ): A = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" A = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) A = pipeline( """video-classification""" , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4 ) A = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) A = video_classifier(_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) A = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def A (self : Union[str, Any] ): pass
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
from __future__ import annotations _A = 10 def lowerCamelCase__ ( __lowerCAmelCase : list[int] ): """simple docstring""" lowerCAmelCase_ = 1 lowerCAmelCase_ = max(__lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(__lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCAmelCase ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(__lowerCAmelCase ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
231
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( __a ): _lowercase ='''megatron-bert''' def __init__( self , _UpperCamelCase=29_056 , _UpperCamelCase=1_024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4_096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=True , **_UpperCamelCase , ) -> int: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache
231
1
"""simple docstring""" import os def UpperCAmelCase ( ) -> List[str]: with open(os.path.dirname(UpperCAmelCase ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( lowercase__): UpperCamelCase__ : Tuple =["""image_processor""", """tokenizer"""] UpperCamelCase__ : Any ="""Pix2StructImageProcessor""" UpperCamelCase__ : Tuple =("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Tuple, __lowercase : Optional[int], __lowercase : Dict ): lowercase__ = False super().__init__(__lowercase, __lowercase ) def __call__( self : List[Any], __lowercase : List[Any]=None, __lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, __lowercase : bool = True, __lowercase : Union[bool, str, PaddingStrategy] = False, __lowercase : Union[bool, str, TruncationStrategy] = None, __lowercase : Optional[int] = None, __lowercase : Optional[int] = 2048, __lowercase : int = 0, __lowercase : Optional[int] = None, __lowercase : Optional[bool] = None, __lowercase : bool = False, __lowercase : bool = False, __lowercase : bool = False, __lowercase : bool = False, __lowercase : bool = False, __lowercase : bool = True, __lowercase : Optional[Union[str, TensorType]] = None, **__lowercase : Tuple, ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=__lowercase, add_special_tokens=__lowercase, padding=__lowercase, truncation=__lowercase, max_length=__lowercase, stride=__lowercase, pad_to_multiple_of=__lowercase, return_attention_mask=__lowercase, return_overflowing_tokens=__lowercase, return_special_tokens_mask=__lowercase, return_offsets_mapping=__lowercase, return_token_type_ids=__lowercase, return_length=__lowercase, verbose=__lowercase, return_tensors=__lowercase, **__lowercase, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase__ = self.image_processor( __lowercase, return_tensors=__lowercase, max_patches=__lowercase, **__lowercase ) else: # add pixel_values and bbox lowercase__ = self.image_processor( __lowercase, return_tensors=__lowercase, max_patches=__lowercase, header_text=__lowercase, **__lowercase ) if text is not None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer( text=__lowercase, add_special_tokens=__lowercase, padding=__lowercase, truncation=__lowercase, max_length=__lowercase, stride=__lowercase, pad_to_multiple_of=__lowercase, return_attention_mask=__lowercase, return_overflowing_tokens=__lowercase, return_special_tokens_mask=__lowercase, return_offsets_mapping=__lowercase, return_token_type_ids=__lowercase, return_length=__lowercase, verbose=__lowercase, return_tensors=__lowercase, **__lowercase, ) if "attention_mask" in text_encoding: lowercase__ = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase__ = text_encoding.pop("input_ids" ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(__lowercase ) return encoding_image_processor def A__ ( self : List[str], *__lowercase : Union[str, Any], **__lowercase : Optional[Any] ): return self.tokenizer.batch_decode(*__lowercase, **__lowercase ) def A__ ( self : Tuple, *__lowercase : List[Any], **__lowercase : int ): return self.tokenizer.decode(*__lowercase, **__lowercase ) @property def A__ ( self : int ): lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
224
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowercase_ = 2_9979_2458 # Symbols lowercase_ , lowercase_ , lowercase_ , lowercase_ = symbols("""ct x y z""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE_ ) ** 2 ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return np.array( [ [gamma(SCREAMING_SNAKE_CASE_ ), -gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), gamma(SCREAMING_SNAKE_CASE_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): # Ensure event is not empty if event is None: lowercase__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowercase_ = transform(2997_9245) print("""Example of four vector: """) print(F'ct\' = {four_vector[0]}') print(F'x\' = {four_vector[1]}') print(F'y\' = {four_vector[2]}') print(F'z\' = {four_vector[3]}') # Substitute symbols with numerical values lowercase_ = {ct: c, x: 1, y: 1, z: 1} lowercase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'\n{numerical_vector}')
224
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
254
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __UpperCAmelCase : Optional[Any] = quote(lowerCAmelCase__ ) return hfh.hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" , revision=lowerCAmelCase__ )
254
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = parent def _a (self ): """simple docstring""" return {} def a__ ( ) -> str: UpperCAmelCase__ : Dict = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" UpperCAmelCase__ : Any = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def _a (self ): """simple docstring""" UpperCAmelCase__ : str = MarkupLMFeatureExtractionTester(self ) @property def _a (self ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Union[str, Any] = get_html_strings()[0] UpperCAmelCase__ : Tuple = feature_extractor(_lowerCamelCase ) # fmt: off UpperCAmelCase__ : Dict = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] UpperCAmelCase__ : int = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , _lowerCamelCase ) self.assertEqual(encoding.xpaths , _lowerCamelCase ) # Test batched UpperCAmelCase__ : Union[str, Any] = get_html_strings() UpperCAmelCase__ : Tuple = feature_extractor(_lowerCamelCase ) # fmt: off UpperCAmelCase__ : Tuple = expected_nodes + [["""My First Heading""", """My first paragraph."""]] UpperCAmelCase__ : List[Any] = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _lowerCamelCase ) self.assertEqual(encoding.xpaths , _lowerCamelCase )
166
"""simple docstring""" import numpy # List of input, output pairs _A = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _A = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _A = [2, 4, 1, 5] _A = len(train_data) _A = 0.009 def a__ ( lowerCAmelCase , lowerCAmelCase="train" ) -> int: return calculate_hypothesis_value(lowerCAmelCase , lowerCAmelCase ) - output( lowerCAmelCase , lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> int: UpperCAmelCase__ : Dict = 0 for i in range(len(lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( lowerCAmelCase , lowerCAmelCase=m ) -> List[str]: UpperCAmelCase__ : Optional[int] = 0 for i in range(lowerCAmelCase ): if index == -1: summation_value += _error(lowerCAmelCase ) else: summation_value += _error(lowerCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( lowerCAmelCase ) -> List[Any]: UpperCAmelCase__ : int = summation_of_cost_derivative(lowerCAmelCase , lowerCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[str]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase__ : Any = 0.00_0002 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = 0 while True: j += 1 UpperCAmelCase__ : str = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase ) ): UpperCAmelCase__ : List[Any] = get_cost_derivative(i - 1 ) UpperCAmelCase__ : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase , rtol=lowerCAmelCase , ): break UpperCAmelCase__ : Any = temp_parameter_vector print(("""Number of iterations:""", j) ) def a__ ( ) -> Optional[int]: for i in range(len(lowerCAmelCase ) ): print(("""Actual output value:""", output(lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
166
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): A : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowercase : Any = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , top_k=2 ) lowercase : List[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for example in examples: lowercase : List[Any] = video_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {'''score''': ANY(SCREAMING_SNAKE_CASE__ ), '''label''': ANY(SCREAMING_SNAKE_CASE__ )}, {'''score''': ANY(SCREAMING_SNAKE_CASE__ ), '''label''': ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) @require_torch def __lowerCamelCase ( self ): lowercase : Optional[Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowercase : Tuple = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) lowercase : List[str] = pipeline( '''video-classification''' , model=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , frame_sampling_rate=4 ) lowercase : Optional[int] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowercase : Optional[int] = video_classifier(SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __lowerCamelCase ( self ): pass
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCAmelCase , lowerCAmelCase ): @register_to_config def __init__( self ,snake_case ,snake_case = None ,snake_case = None ): '''simple docstring''' super().__init__() lowercase : Dict = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowercase : int = torch.zeros(snake_case ,snake_case ) else: lowercase : Tuple = None lowercase : List[str] = torch.nn.Parameter(snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= 42 _a : List[Any]= 42 _a : List[str]= 42 _a : List[Any]= 42 _a : Optional[int]= 42 _a : List[Any]= 42 def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case ,transformer=snake_case ,text_encoder=snake_case ,tokenizer=snake_case ,scheduler=snake_case ,learned_classifier_free_sampling_embeddings=snake_case ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = len(snake_case ) if isinstance(snake_case ,snake_case ) else 1 # get prompt text embeddings lowercase : Tuple = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) lowercase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowercase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] lowercase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowercase : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=snake_case ) # duplicate text embeddings for each generation per prompt lowercase : Optional[int] = prompt_embeds.repeat_interleave(snake_case ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowercase : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings lowercase : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case ,1 ,1 ) else: lowercase : Optional[int] = [''] * batch_size lowercase : Optional[int] = text_input_ids.shape[-1] lowercase : List[Any] = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=snake_case ,truncation=snake_case ,return_tensors="""pt""" ,) lowercase : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowercase : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase : List[str] = negative_prompt_embeds.shape[1] lowercase : int = negative_prompt_embeds.repeat(1 ,snake_case ,1 ) lowercase : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,snake_case ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self ,snake_case ,snake_case = 100 ,snake_case = 5.0 ,snake_case = 1.0 ,snake_case = 1 ,snake_case = None ,snake_case = None ,snake_case = "pil" ,snake_case = True ,snake_case = None ,snake_case = 1 ,): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : str = 1 elif isinstance(snake_case ,snake_case ): lowercase : List[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) lowercase : str = batch_size * num_images_per_prompt lowercase : List[Any] = guidance_scale > 1.0 lowercase : List[str] = self._encode_prompt(snake_case ,snake_case ,snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case ,snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get the initial completely masked latents unless the user supplied it lowercase : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowercase : Tuple = self.transformer.num_vector_embeds - 1 lowercase : List[Any] = torch.full(snake_case ,snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) lowercase : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case ,device=self.device ) lowercase : int = self.scheduler.timesteps.to(self.device ) lowercase : Tuple = latents for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the sample if we are doing classifier free guidance lowercase : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowercase : str = self.transformer(snake_case ,encoder_hidden_states=snake_case ,timestep=snake_case ).sample if do_classifier_free_guidance: lowercase : str = model_output.chunk(2 ) lowercase : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case ,dim=1 ,keepdim=snake_case ) lowercase : Dict = self.truncate(snake_case ,snake_case ) # remove `log(0)`'s (`-inf`s) lowercase : Optional[int] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowercase : Any = self.scheduler.step(snake_case ,timestep=snake_case ,sample=snake_case ,generator=snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case ,snake_case ,snake_case ) lowercase : Optional[int] = self.vqvae.config.vq_embed_dim lowercase : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowercase : Optional[int] = self.vqvae.quantize.get_codebook_entry(snake_case ,shape=snake_case ) lowercase : int = self.vqvae.decode(snake_case ,force_not_quantize=snake_case ).sample lowercase : Any = (image / 2 + 0.5).clamp(0 ,1 ) lowercase : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase : Union[str, Any] = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = torch.sort(snake_case ,1 ,descending=snake_case ) lowercase : int = torch.exp(snake_case ) lowercase : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowercase : List[str] = torch.full_like(keep_mask[:, 0:1, :] ,snake_case ) lowercase : Dict = torch.cat((all_true, keep_mask) ,dim=1 ) lowercase : List[Any] = keep_mask[:, :-1, :] lowercase : str = keep_mask.gather(1 ,indices.argsort(1 ) ) lowercase : List[str] = log_p_x_0.clone() lowercase : List[str] = -torch.inf # -inf = log(0) return rv
362
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: lowercase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase : str = load_original_entity_vocab(SCREAMING_SNAKE_CASE__ ) # add an entry for [MASK2] lowercase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase : List[Any] = AddedToken("""<ent>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) lowercase : int = AddedToken("""<ent2>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """MLukeTokenizer""" with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens lowercase : Dict = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase : Dict = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase : int = state_dict["""embeddings.word_embeddings.weight"""] lowercase : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) lowercase : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase : List[Any] = state_dict[bias_name] lowercase : Any = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase : int = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase : Union[str, Any] = f"encoder.layer.{layer_index}.attention.self." lowercase : List[str] = state_dict[prefix + matrix_name] lowercase : Any = state_dict[prefix + matrix_name] lowercase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase : Tuple = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase : Optional[Any] = state_dict["""entity_predictions.bias"""] lowercase : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase : List[str] = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase : List[Any] = state_dict[key] else: lowercase : Union[str, Any] = state_dict[key] lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if set(SCREAMING_SNAKE_CASE__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(SCREAMING_SNAKE_CASE__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task="""entity_classification""" ) lowercase : str = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase : str = (0, 9) lowercase : Dict = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : List[Any] = torch.Size((1, 33, 768) ) lowercase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : Optional[int] = torch.Size((1, 1, 768) ) lowercase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase : Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = """Tokyo is the capital of <mask>.""" lowercase : List[Any] = (24, 30) lowercase : int = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = encoding["""input_ids"""][0].tolist() lowercase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() lowercase : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase : List[str] = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in open(SCREAMING_SNAKE_CASE__ )] lowercase : int = {} for entry in data: lowercase : Optional[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase : Optional[Any] = entity_id break lowercase : List[Any] = f"{language}:{entity_name}" lowercase : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowercase : str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
285
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase_ ( ): lowercase__ : Dict = torch.nn.Linear(2 , 4) lowercase__ : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0) lowercase__ : Optional[int] = torch.optim.lr_scheduler.OneCycleLR(__UpperCamelCase , max_lr=0.01 , steps_per_epoch=2 , epochs=1) lowercase__ : Any = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) lowercase__ : Any = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def lowercase_ ( _lowerCamelCase : Tuple): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(__UpperCamelCase) class snake_case_ ( snake_case_ ): @require_cuda def __UpperCamelCase ( self : Any ) -> Optional[Any]: lowercase__ : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase_ ): lowercase__ : Any = Accelerator(cpu=lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ : Union[str, Any] = Accelerator() lowercase__ : Optional[int] = GradientState() assert state.num_steps == 1 lowercase__ : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase__ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Any = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = create_components() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCamelCase ( self : Dict ) -> Tuple: lowercase__ : Dict = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCamelCase ( self : List[str] ) -> Dict: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase_ : Dict , **lowercase_ : List[Any] ): pass with patch("torch.cuda.set_device" , lowercase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowercase__ : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : str = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = get_signature(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : List[str] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : int = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = get_signature(lowercase_ ) # saving hook def save_config(lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): lowercase__ : Union[str, Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowercase_ , "data.json" ) , "w" ) as f: json.dump(lowercase_ , lowercase_ ) # loading hook def load_config(lowercase_ : Optional[int] , lowercase_ : str ): with open(os.path.join(lowercase_ , "data.json" ) , "r" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Any = config["class_name"] lowercase__ : Optional[int] = accelerator.register_save_state_pre_hook(lowercase_ ) lowercase__ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ : Tuple = "random" # make sure loaded weights match with hooks accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ : List[str] = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : List[str] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = create_components() lowercase__ : Dict = None # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertTrue(dummy_obj is None ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : List[Any] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = create_components() lowercase__ : int = [1, 2, 3] # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __UpperCamelCase ( self : List[Any] ) -> Tuple: from transformers import AutoModelForCausalLM lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map={"": 0} , ) lowercase__ : int = Accelerator() # This should work lowercase__ : List[str] = accelerator.prepare(lowercase_ ) @slow @require_bnb def __UpperCamelCase ( self : List[str] ) -> List[str]: from transformers import AutoModelForCausalLM lowercase__ : Tuple = Accelerator() with init_empty_weights(): lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase__ : Dict = infer_auto_device_map(lowercase_ ) lowercase__ : Optional[Any] = "cpu" lowercase__ : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowercase_ , load_in_abit=lowercase_ , llm_inta_enable_fpaa_cpu_offload=lowercase_ ) # This should not work and get value error with self.assertRaises(lowercase_ ): lowercase__ : Union[str, Any] = accelerator.prepare(lowercase_ ) @slow @require_bnb @require_multi_gpu def __UpperCamelCase ( self : Any ) -> List[str]: from transformers import AutoModelForCausalLM lowercase__ : int = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase__ : Union[str, Any] = infer_auto_device_map(lowercase_ ) lowercase__ : List[Any] = 1 lowercase__ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map=lowercase_ , ) lowercase__ : str = Accelerator() # This should not work and get value error with self.assertRaises(lowercase_ ): lowercase__ : Tuple = accelerator.prepare(lowercase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase__ : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowercase__ : Any = infer_auto_device_map(lowercase_ ) lowercase__ : int = 1 lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map=lowercase_ , ) lowercase__ : str = Accelerator() # This should work lowercase__ : Optional[Any] = accelerator.prepare(lowercase_ ) @require_cuda def __UpperCamelCase ( self : List[Any] ) -> List[Any]: lowercase__ : Union[str, Any] = torch.nn.Linear(10 , 10 ) lowercase__ : int = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase__ : int = Accelerator(cpu=lowercase_ ) lowercase__ : List[Any] = accelerator.prepare(lowercase_ )
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Any , A : int , A : Optional[int]=7 , A : Dict=3 , A : Any=1_8 , A : List[str]=3_0 , A : int=4_0_0 , A : Any=True , A : List[str]=None , A : Optional[int]=True , A : Union[str, Any]=None , ) ->Optional[int]: lowerCamelCase__ : Dict = size if size is not None else {'''shortest_edge''': 2_0} lowerCamelCase__ : str = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCamelCase__ : Dict = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Dict = image_size lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : Optional[int] = max_resolution lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : Optional[int] = do_center_crop lowerCamelCase__ : List[Any] = crop_size def __lowerCamelCase ( self : Optional[int] ) ->Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = MobileNetVaImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : Optional[int] = MobileNetVaImageProcessingTester(self ) @property def __lowerCamelCase ( self : str ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_center_crop''' ) ) self.assertTrue(hasattr(A , '''crop_size''' ) ) def __lowerCamelCase ( self : Union[str, Any] ) ->Dict: lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) lowerCamelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __lowerCamelCase ( self : Tuple ) ->Any: pass def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: # Initialize image_processing lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase__ : Dict = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCamelCase ( self : List[str] ) ->List[Any]: # Initialize image_processing lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase__ : List[str] = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCamelCase ( self : Optional[Any] ) ->Any: # Initialize image_processing lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase__ : str = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
265
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Tuple = logging.get_logger(__name__) _A : List[str] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ): _UpperCAmelCase : Dict = "nat" _UpperCAmelCase : Tuple = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , A : Union[str, Any]=4 , A : str=3 , A : List[Any]=6_4 , A : Optional[Any]=[3, 4, 6, 5] , A : int=[2, 4, 8, 1_6] , A : Optional[int]=7 , A : List[Any]=3.0 , A : str=True , A : str=0.0 , A : Any=0.0 , A : int=0.1 , A : Tuple="gelu" , A : List[Any]=0.02 , A : str=1e-5 , A : Optional[int]=0.0 , A : Optional[Any]=None , A : Dict=None , **A : str , ) ->Union[str, Any]: super().__init__(**A ) lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : Any = embed_dim lowerCamelCase__ : str = depths lowerCamelCase__ : Union[str, Any] = len(A ) lowerCamelCase__ : int = num_heads lowerCamelCase__ : Optional[int] = kernel_size lowerCamelCase__ : Optional[int] = mlp_ratio lowerCamelCase__ : List[Any] = qkv_bias lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = drop_path_rate lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : List[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : str = int(embed_dim * 2 ** (len(A ) - 1) ) lowerCamelCase__ : Dict = layer_scale_init_value lowerCamelCase__ : Dict = ['''stem'''] + [F"stage{idx}" for idx in range(1 , len(A ) + 1 )] lowerCamelCase__ , lowerCamelCase__ : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
265
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase__ : List[str] = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : int = 4 lowerCAmelCase_ : Union[str, Any] = 3 lowerCAmelCase_ : List[str] = (3_2, 3_2) lowerCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = torch.tensor([1_0] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : int = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } lowerCAmelCase_ : List[str] = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = 4 lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Union[str, Any] = (3_2, 3_2) lowerCAmelCase_ : Any = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = torch.tensor([1_0] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return (4, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return (4, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : int = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowerCAmelCase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ ,lowerCAmelCase_ : Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def SCREAMING_SNAKE_CASE__ ( self : str ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowerCAmelCase_ ,lowerCAmelCase_ : int = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) model_accelerate.to(SCREAMING_SNAKE_CASE_ ) model_accelerate.eval() lowerCAmelCase_ : Optional[int] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase_ : Tuple = noise.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = torch.tensor([1_0] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model_accelerate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE_ ) model_normal_load.to(SCREAMING_SNAKE_CASE_ ) model_normal_load.eval() lowerCAmelCase_ : int = model_normal_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Tuple = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase_ : Union[str, Any] = noise.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = torch.tensor([1_0] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : Dict = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) ) class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict=(3_2, 3_2) ): lowerCAmelCase_ : str = 4 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowerCAmelCase_ : List[str] = self.dummy_input return init_dict, inputs_dict @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = self.dummy_input lowerCAmelCase_ : Dict = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = noise lowerCAmelCase_ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) assert image is not None, "Make sure output is not None" @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = 4 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Any = (2_5_6, 2_5_6) lowerCAmelCase_ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Optional[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase_ : int = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = 4 lowerCAmelCase_ : Dict = 3 lowerCAmelCase_ : List[str] = (3_2, 3_2) lowerCAmelCase_ : Any = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Optional[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase_ : List[str] = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def SCREAMING_SNAKE_CASE__ ( self : int ): # not required for this model pass
224
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Any = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Any = '<pad>' lowerCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : int = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name ) lowerCAmelCase_ : Tuple = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pickle.dumps(SCREAMING_SNAKE_CASE_ ) pickle.loads(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : Dict = self.get_rust_tokenizer() lowerCAmelCase_ : Tuple = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Any = 'Hello World!' lowerCAmelCase_ : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase_ : int = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): # fmt: off lowerCAmelCase_ : List[str] = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
224
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'tf_padding')) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'depth_multiplier')) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=1_3 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : int=3_2 , _lowerCAmelCase : List[Any]=0.25 , _lowerCAmelCase : Tuple=8 , _lowerCAmelCase : List[str]=8 , _lowerCAmelCase : List[Any]=6 , _lowerCAmelCase : List[str]=3_2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : int="relu6" , _lowerCAmelCase : str=1_2_8_0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=1_0 , _lowerCAmelCase : Any=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =num_channels __lowercase =image_size __lowercase =depth_multiplier __lowercase =depth_divisible_by __lowercase =min_depth __lowercase =expand_ratio __lowercase =tf_padding __lowercase =output_stride __lowercase =first_layer_is_expansion __lowercase =finegrained_output __lowercase =hidden_act __lowercase =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) __lowercase =classifier_dropout_prob __lowercase =use_labels __lowercase =is_training __lowercase =num_labels __lowercase =initializer_range __lowercase =scope def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowercase =None __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.num_labels) __lowercase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __lowercase =self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCamelCase ( self : int): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =MobileNetVaModel(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int): '''simple docstring''' __lowercase =self.num_labels __lowercase =MobileNetVaForImageClassification(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =self.num_labels __lowercase =MobileNetVaForSemanticSegmentation(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( A , A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =MobileNetVaModelTester(self) __lowercase =MobileNetVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds') def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions') def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =model_class(_lowerCAmelCase) __lowercase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase =[*signature.parameters.keys()] __lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple): __lowercase =model_class(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() with torch.no_grad(): __lowercase =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)) __lowercase =outputs.hidden_states __lowercase =1_6 self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase) __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase) @slow def __lowerCamelCase ( self : Dict): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =MobileNetVaModel.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) def _A ( ): """simple docstring""" __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCamelCase ( self : str): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224') if is_vision_available() else None ) @slow def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224').to(_lowerCAmelCase) __lowercase =self.default_image_processor __lowercase =prepare_img() __lowercase =image_processor(images=_lowerCAmelCase , return_tensors='pt').to(_lowerCAmelCase) # forward pass with torch.no_grad(): __lowercase =model(**_lowerCAmelCase) # verify the logits __lowercase =torch.Size((1, 1_0_0_1)) self.assertEqual(outputs.logits.shape , _lowerCAmelCase) __lowercase =torch.tensor([0.2445, -1.1993, 0.1905]).to(_lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4)) @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513') __lowercase =model.to(_lowerCAmelCase) __lowercase =MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513') __lowercase =prepare_img() __lowercase =image_processor(images=_lowerCAmelCase , return_tensors='pt').to(_lowerCAmelCase) # forward pass with torch.no_grad(): __lowercase =model(**_lowerCAmelCase) __lowercase =outputs.logits # verify the logits __lowercase =torch.Size((1, 2_1, 6_5, 6_5)) self.assertEqual(logits.shape , _lowerCAmelCase) __lowercase =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4))
166
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AlbertTokenizer lowerCAmelCase__ = AlbertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =AlbertTokenizer(_lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '▁eloquent') self.assertEqual(len(_lowerCAmelCase) , 3_0_0_0_0) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0) def __lowerCamelCase ( self : int): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='I was born in 92000, and this is falsé.' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase) __lowercase =tokenizer.tokenize('This is a test') self.assertListEqual(_lowerCAmelCase , ['▁this', '▁is', '▁a', '▁test']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4_8, 2_5, 2_1, 1_2_8_9]) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9]) __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =AlbertTokenizer(_lowerCAmelCase) __lowercase =tokenizer.encode('sequence builders') __lowercase =tokenizer.encode('multi-sequence build') __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase ={'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
166
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase : str = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase : Tuple = 4 UpperCAmelCase : Dict = 48 UpperCAmelCase : Union[str, Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase : Tuple = [6, 6, 6, 6] UpperCAmelCase : Optional[Any] = 60 UpperCAmelCase : Union[str, Any] = [6, 6, 6, 6] UpperCAmelCase : Tuple = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase : Union[str, Any] = 4 UpperCAmelCase : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase : Tuple = 1 UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Union[str, Any] = 1_26 UpperCAmelCase : str = 7 UpperCAmelCase : List[str] = 255.0 UpperCAmelCase : Optional[int] = '' return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase : List[str] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCAmelCase : List[str] = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: UpperCAmelCase : Any = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: UpperCAmelCase : Union[str, Any] = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: UpperCAmelCase : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCAmelCase : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCAmelCase : List[str] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase : Tuple = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: UpperCAmelCase : Dict = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: UpperCAmelCase : str = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: UpperCAmelCase : List[str] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: UpperCAmelCase : Union[str, Any] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: UpperCAmelCase : Optional[Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": UpperCAmelCase : List[str] = 'layernorm.weight' if name == "norm.bias": UpperCAmelCase : int = 'layernorm.bias' if "conv_first" in name: UpperCAmelCase : Union[str, Any] = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase : Dict = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase : int = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: UpperCAmelCase : Optional[Any] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: UpperCAmelCase : List[str] = name.replace('upsample.2' , 'upsample.convolution_1' ) UpperCAmelCase : List[Any] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase : Tuple = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) UpperCAmelCase : Dict = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: UpperCAmelCase : List[Any] = 'swin2sr.' + name return name def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase : int = orig_state_dict.pop(UpperCAmelCase_ ) if "qkv" in key: UpperCAmelCase : Optional[int] = key.split('.' ) UpperCAmelCase : Tuple = int(key_split[1] ) UpperCAmelCase : Union[str, Any] = int(key_split[4] ) UpperCAmelCase : Any = config.embed_dim if "weight" in key: UpperCAmelCase : Tuple = val[:dim, :] UpperCAmelCase : List[str] = val[dim : dim * 2, :] UpperCAmelCase : List[Any] = val[-dim:, :] else: UpperCAmelCase : str = val[:dim] UpperCAmelCase : Any = val[dim : dim * 2] UpperCAmelCase : Optional[Any] = val[-dim:] pass else: UpperCAmelCase : Tuple = val return orig_state_dict def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = get_config(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = SwinaSRForImageSuperResolution(UpperCAmelCase_ ) model.eval() UpperCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' ) UpperCAmelCase : Tuple = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: raise ValueError('Missing keys when converting: {}'.format(UpperCAmelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values UpperCAmelCase : Optional[Any] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' UpperCAmelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) UpperCAmelCase : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase : Optional[Any] = 1_26 if 'Jpeg' in checkpoint_url else 2_56 UpperCAmelCase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase : Union[str, Any] = transforms(UpperCAmelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase : Dict = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase : List[Any] = model(UpperCAmelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase : Any = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase : str = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase : List[Any] = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase : Any = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase : str = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCAmelCase_ , atol=1E-3 ) print('Looks ok!' ) UpperCAmelCase : List[Any] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } UpperCAmelCase : Optional[int] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") lowercase__ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
280
0
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase__ = TypeVar('''T''') UpperCAmelCase__ = Union[List[T], Tuple[T, ...]] UpperCAmelCase__ = Union[T, List[T], Dict[str, T]] UpperCAmelCase__ = Union[str, bytes, os.PathLike]
5
import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
285
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: if isinstance(__A , __A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase_ :Tuple = deepcopy(__A ) elif os.path.exists(__A ): with io.open(__A , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :str = json.load(__A ) else: try: lowerCAmelCase_ :Dict = baseaa.urlsafe_baadecode(__A ).decode("""utf-8""" ) lowerCAmelCase_ :int = json.loads(__A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase_ :Optional[Any] = config self.set_stage_and_offload() def __lowerCAmelCase ( self ) -> Tuple: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase_ :Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowerCAmelCase_ :Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase_ :Optional[int] = set(["""cpu""", """nvme"""] ) lowerCAmelCase_ :Union[str, Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase_ :Optional[int] = True def __lowerCAmelCase ( self , __A ) -> Optional[Any]: lowerCAmelCase_ :str = self.config # find the config node of interest if it exists lowerCAmelCase_ :Tuple = ds_key_long.split(""".""" ) lowerCAmelCase_ :List[str] = nodes.pop() for node in nodes: lowerCAmelCase_ :Tuple = config.get(__A ) if config is None: return None, ds_key return config, ds_key def __lowerCAmelCase ( self , __A , __A=None ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.find_config_node(__A ) if config is None: return default return config.get(__A , __A ) def __lowerCAmelCase ( self , __A , __A=False ) -> Optional[Any]: lowerCAmelCase_ :Tuple = self.config # find the config node of interest if it exists lowerCAmelCase_ :Union[str, Any] = ds_key_long.split(""".""" ) for node in nodes: lowerCAmelCase_ :int = config lowerCAmelCase_ :Any = config.get(__A ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.get_value(__A ) return False if value is None else bool(__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[str] = self.get_value(__A ) return False if value is None else not bool(__A ) def __lowerCAmelCase ( self ) -> str: return self._stage == 2 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._stage == 3 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._offload class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Optional[int]: lowerCAmelCase_ :Dict = engine def __lowerCAmelCase ( self , __A , **__A ) -> str: # runs backpropagation and handles mixed precision self.engine.backward(__A , **__A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> List[str]: super().__init__(__A , device_placement=__A , scaler=__A ) lowerCAmelCase_ :List[str] = hasattr(self.optimizer , """overflow""" ) def __lowerCAmelCase ( self , __A=None ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __lowerCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __lowerCAmelCase ( self ) -> int: if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A ) -> Optional[int]: super().__init__(__A , __A ) def __lowerCAmelCase ( self ) -> Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=0.0_0_1 , __A=0 , **__A ) -> List[Any]: lowerCAmelCase_ :str = params lowerCAmelCase_ :Any = lr lowerCAmelCase_ :List[Any] = weight_decay lowerCAmelCase_ :Any = kwargs class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=None , __A=0 , **__A ) -> List[str]: lowerCAmelCase_ :Optional[int] = optimizer lowerCAmelCase_ :int = total_num_steps lowerCAmelCase_ :List[Any] = warmup_num_steps lowerCAmelCase_ :int = kwargs
1
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=A ).to(A ) UpperCAmelCase : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) UpperCAmelCase : Optional[int] = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids UpperCAmelCase : Dict = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids UpperCAmelCase : List[str] = model(input_ids.to(A ) , labels=labels.to(A ) ).loss UpperCAmelCase : Optional[int] = -(labels.shape[-1] * loss.item()) UpperCAmelCase : Union[str, Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
265
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
265
1
from __future__ import annotations def __lowercase ( lowerCamelCase : str , lowerCamelCase : list[str] | None = None ): UpperCamelCase_ : Any = word_bank or [] # create a table UpperCamelCase_ : int = len(lowerCamelCase ) + 1 UpperCamelCase_ : list[list[list[str]]] = [] for _ in range(lowerCamelCase ): table.append([] ) # seed value UpperCamelCase_ : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase )] == word: UpperCamelCase_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase )]: combination.reverse() return table[len(lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
356
def __lowercase ( lowerCamelCase : list[int] ): if not numbers: return 0 if not isinstance(lowerCamelCase , (list, tuple) ) or not all( isinstance(lowerCamelCase , lowerCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase_ : Optional[Any] = numbers[0] for i in range(1 , len(lowerCamelCase ) ): # update the maximum and minimum subarray products UpperCamelCase_ : Tuple = numbers[i] if number < 0: UpperCamelCase_, UpperCamelCase_ : List[str] = min_till_now, max_till_now UpperCamelCase_ : List[str] = max(lowerCamelCase , max_till_now * number ) UpperCamelCase_ : Dict = min(lowerCamelCase , min_till_now * number ) # update the maximum product found till now UpperCamelCase_ : List[str] = max(lowerCamelCase , lowerCamelCase ) return max_prod
50
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCamelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCamelCase : Optional[Any] = "xvjiarui/stable-diffusion-2-inpainting" UpperCamelCase , UpperCamelCase : Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_ ) UpperCamelCase : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCamelCase : List[Any] = jax.random.PRNGKey(0 ) UpperCamelCase : Optional[Any] = 50 UpperCamelCase : List[str] = jax.device_count() UpperCamelCase : Optional[int] = num_samples * [prompt] UpperCamelCase : str = num_samples * [init_image] UpperCamelCase : Optional[Any] = num_samples * [mask_image] UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = pipeline.prepare_inputs(A_ , A_ , A_ ) # shard inputs and rng UpperCamelCase : List[str] = replicate(A_ ) UpperCamelCase : Any = jax.random.split(A_ , jax.device_count() ) UpperCamelCase : Dict = shard(A_ ) UpperCamelCase : Any = shard(A_ ) UpperCamelCase : Tuple = shard(A_ ) UpperCamelCase : int = pipeline( A_ , A_ , A_ , A_ , A_ , A_ , jit=A_ ) UpperCamelCase : Optional[Any] = output.images.reshape(A_ , 512 , 512 , 3 ) UpperCamelCase : Optional[Any] = images[0, 253:256, 253:256, -1] UpperCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase : List[Any] = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
52
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_ ( _lowerCAmelCase ) -> str: def remove_articles(_lowerCAmelCase ): UpperCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCAmelCase , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCamelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase : Tuple = scount * numref UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase : Dict = ccount * numref # KEEP UpperCamelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCamelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCamelCase : Dict = sgramcounter_rep & rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Any = 1 UpperCamelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCamelCase : str = delgramcounter_rep - rgramcounter UpperCamelCase : Any = sgramcounter_rep - rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCamelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCamelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Tuple = 1 UpperCamelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = ssent.split(" " ) UpperCamelCase : Dict = csent.split(" " ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Dict = [] UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Tuple = [] for rsent in rsents: UpperCamelCase : List[Any] = rsent.split(" " ) UpperCamelCase : List[str] = [] UpperCamelCase : int = [] UpperCamelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCamelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCamelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCamelCase : Union[str, Any] = sentence if not return_str: UpperCamelCase : Tuple = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCamelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCamelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> List[str]: UpperCamelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCamelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} result.update({"sari": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"exact": compute_em(predictions=A_ , references=A_ )} ) return result
52
1
"""simple docstring""" class snake_case : def __init__( self : Optional[Any] ): '''simple docstring''' a : List[str] = '' a : Tuple = '' a : Dict = [] def lowerCamelCase__ ( self : str , A : int , A : int ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: a : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: a : Union[str, Any] = self.__min_dist_top_down_dp(A , n - 1 ) a : Dict = self.__min_dist_top_down_dp(m - 1 , A ) a : Dict = self.__min_dist_top_down_dp(m - 1 , n - 1 ) a : int = 1 + min(A , A , A ) return self.dp[m][n] def lowerCamelCase__ ( self : Union[str, Any] , A : str , A : str ): '''simple docstring''' a : Union[str, Any] = worda a : List[Any] = worda a : List[str] = [[-1 for _ in range(len(A ) )] for _ in range(len(A ) )] return self.__min_dist_top_down_dp(len(A ) - 1 , len(A ) - 1 ) def lowerCamelCase__ ( self : Optional[Any] , A : str , A : str ): '''simple docstring''' a : str = worda a : Optional[Any] = worda a : Optional[int] = len(A ) a : str = len(A ) a : Optional[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty a : Optional[Any] = j elif j == 0: # second string is empty a : Tuple = i elif worda[i - 1] == worda[j - 1]: # last characters are equal a : Optional[int] = self.dp[i - 1][j - 1] else: a : Optional[Any] = self.dp[i][j - 1] a : List[str] = self.dp[i - 1][j] a : List[Any] = self.dp[i - 1][j - 1] a : Tuple = 1 + min(A , A , A ) return self.dp[m][n] if __name__ == "__main__": _UpperCamelCase : Optional[int] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() _UpperCamelCase : Union[str, Any] = input('Enter the first string: ').strip() _UpperCamelCase : Any = input('Enter the second string: ').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
186
"""simple docstring""" _UpperCamelCase : List[Any] = 8.31_44_62 # Unit - J mol-1 K-1 def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
186
1
from __future__ import annotations import math def a ( A__ : Union[str, Any] , A__ : List[Any] , A__ : List[str] , A__ : Any , A__ : Dict ) -> int: """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(A__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) return min( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) def a ( ) -> None: """simple docstring""" _lowercase =[90, 23, 6, 33, 21, 65, 123, 34423] _lowercase =math.log(len(A__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , A__ , A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
205
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: __A : List[str] = x __A : str = y for step in range(a ): # noqa: B007 __A : Union[str, Any] = a * a - b * b + x __A : Optional[int] = 2 * a * b + y __A : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: __A : str = Image.new('RGB' , (image_width, image_height) ) __A : Dict = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates __A : Dict = figure_width / image_width * image_height __A : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __A : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __A : Union[str, Any] = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __A : Optional[Any] = get_color_coded_rgb(a ) else: __A : Dict = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
280
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _UpperCAmelCase : def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[int]=13 , lowercase_ : int=7 , lowercase_ : Dict=True , lowercase_ : str=True , lowercase_ : int=99 , lowercase_ : List[str]=32 , lowercase_ : Optional[Any]=5 , lowercase_ : List[str]=4 , lowercase_ : Tuple=37 , lowercase_ : Dict="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : int=50 , lowercase_ : int=0.02 , lowercase_ : str=True , lowercase_ : Any=None , ): snake_case_ : Optional[int] = parent snake_case_ : Optional[int] = batch_size snake_case_ : Optional[Any] = seq_length snake_case_ : Tuple = is_training snake_case_ : Tuple = use_input_mask snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Tuple = initializer_range snake_case_ : List[Any] = use_labels snake_case_ : Optional[int] = scope def _snake_case ( self : Optional[int] ): snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[str] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def _snake_case ( self : Union[str, Any] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def _snake_case ( self : Optional[Any] ): ( snake_case_ ) : List[str] = self.prepare_config_and_inputs() snake_case_ : str = True snake_case_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Any , **lowercase_ : Optional[Any] , ): snake_case_ : str = BertGenerationEncoder(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case_ : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) snake_case_ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : str , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , **lowercase_ : str , ): snake_case_ : Tuple = True snake_case_ : Tuple = BertGenerationEncoder(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case_ : str = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) snake_case_ : Optional[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : str , lowercase_ : Tuple , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[str] , **lowercase_ : str , ): snake_case_ : List[str] = True snake_case_ : int = True snake_case_ : Tuple = BertGenerationDecoder(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() # first forward pass snake_case_ : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) snake_case_ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] snake_case_ : Any = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] # select random slice snake_case_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def _snake_case ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : str , *lowercase_ : Dict , ): snake_case_ : List[Any] = BertGenerationDecoder(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case_ : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Optional[int] ): snake_case_ : str = self.prepare_config_and_inputs() snake_case_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase): _lowerCAmelCase : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _lowerCAmelCase : Optional[Any] = (BertGenerationDecoder,) if is_torch_available() else () _lowerCAmelCase : Optional[Any] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _snake_case ( self : Any ): snake_case_ : Optional[int] = BertGenerationEncoderTester(self ) snake_case_ : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def _snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() snake_case_ : Dict = """bert""" self.model_tester.create_and_check_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self : List[Any] ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def _snake_case ( self : Optional[int] ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def _snake_case ( self : List[Any] ): # This regression test was failing with PyTorch < 1.3 ( snake_case_ ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ : List[str] = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) def _snake_case ( self : Any ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) @slow def _snake_case ( self : Union[str, Any] ): snake_case_ : Optional[int] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : List[Any] ): snake_case_ : str = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) snake_case_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): snake_case_ : List[str] = model(lowerCamelCase_ )[0] snake_case_ : Union[str, Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , lowerCamelCase_ ) snake_case_ : Union[str, Any] = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : str ): snake_case_ : Tuple = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) snake_case_ : str = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(lowerCamelCase_ )[0] snake_case_ : Tuple = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , lowerCamelCase_ ) snake_case_ : List[Any] = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
365
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _UpperCAmelCase : def __init__( self : int , lowercase_ : int , lowercase_ : int=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Dict=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : Dict=5 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=37 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=16 , lowercase_ : List[str]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[str]=None , ): snake_case_ : Optional[int] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : List[str] = use_input_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : str = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : str = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : int = type_sequence_label_size snake_case_ : Tuple = initializer_range snake_case_ : Any = num_labels snake_case_ : Dict = num_choices snake_case_ : str = scope def _snake_case ( self : Dict ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[str] = None if self.use_input_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = None snake_case_ : str = None snake_case_ : Any = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : List[str] ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _snake_case ( self : Any , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Any ): snake_case_ : List[Any] = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Any = model(lowercase_ , attention_mask=lowercase_ ) snake_case_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , ): snake_case_ : List[str] = True snake_case_ : Tuple = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) snake_case_ : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) snake_case_ : Any = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Dict , lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , ): snake_case_ : Optional[int] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : str = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , ): snake_case_ : int = True snake_case_ : Optional[int] = True snake_case_ : List[Any] = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass snake_case_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) snake_case_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : int = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] snake_case_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice snake_case_ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) : List[str] = config_and_inputs snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _lowerCAmelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False _lowerCAmelCase : Union[str, Any] = False def _snake_case ( self : List[Any] ): snake_case_ : Any = OpenLlamaModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ : Tuple = type self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : Optional[int] ): snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Dict = 3 snake_case_ : Dict = input_dict['''input_ids'''] snake_case_ : int = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : Tuple = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Union[str, Any] ): snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Dict = 3 snake_case_ : str = '''single_label_classification''' snake_case_ : Tuple = input_dict['''input_ids'''] snake_case_ : Optional[int] = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : Union[str, Any] = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : List[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Optional[Any] ): snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = 3 snake_case_ : Optional[Any] = '''multi_label_classification''' snake_case_ : Tuple = input_dict['''input_ids'''] snake_case_ : str = input_ids.ne(1 ).to(lowercase_ ) snake_case_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ : Any = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _snake_case ( self : List[str] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _snake_case ( self : Tuple , lowercase_ : Dict ): snake_case_, snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[str] = ids_tensor([1, 10] , config.vocab_size ) snake_case_ : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Any = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() snake_case_ : Optional[Any] = original_model(lowercase_ ).last_hidden_state snake_case_ : Optional[Any] = original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Dict = {'''type''': scaling_type, '''factor''': 10.0} snake_case_ : Union[str, Any] = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() snake_case_ : str = scaled_model(lowercase_ ).last_hidden_state snake_case_ : List[str] = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
155
0